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Abstract

Estimating word relatedness is essential in natural language processing (NLP), and in many
other related areas. Corpus-based word relatedness has its advantages over knowledge-based
supervised measures. There are many corpus-based measures in the literature that can not
be compared to each other as they use a different corpus. The purpose of this paper is to
show how to evaluate different corpus-based measures of word relatedness by calculating
them over a common corpus (i.e., the Google n-grams) and then assessing their performance
with respect to gold standard relatedness datasets. We evaluate six of these measures as a
starting point, all of which are re-implemented using the Google n-gram corpus as their
only resource, by comparing their performance in five different data sets. We also show
how a word relatedness measure based on a web search engine can be implemented using
the Google n-gram corpus.

Keywords: Word Relatedness, Similarity, Corpus, Unsupervised, Google n-grams, Tri-
grams.
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1 Introduction

Word relatedness between two words refers to the degree of how much one word has to do
with another word whereas word similarity is a special case or a subset of word relatedness.
A word relatedness method has many applications in NLP, and related areas such as
information retrieval (Xu and Croft, 2000), image retrieval (Coelho et al., 2004), paraphrase
recognition (Islam and Inkpen, 2008), malapropism detection and correction (Budanitsky and
Hirst, 2006), word sense disambiguation (Schutze, 1998), automatic creation of thesauri (Lin,
1998a; Li, 2002), predicting user click behavior (Kaur and Hornof, 2005), building language
models and natural spoken dialogue systems (Fosler-Lussier and Kuo, 2001), automatic
indexing, text annotation and summarization (Lin and Hovy, 2003). Most of the approaches
of determining text similarity use word similarity (Islam and Inkpen, 2008; Li et al., 2006).
There are other areas where word similarity plays an important role. Gauch et al. (1999) and
Gauch and Wang (1997) applied word similarity in query expansion to provide conceptual
retrieval which ultimately increases the relevance of retrieved documents. Many approaches
to spoken language understanding and spoken language systems require a grammar for
parsing the input utterance to acquire its semantics. Meng and Siu (2002) used word
similarity for semi-automatic grammar induction from unannotated corpora where the
grammar contains both semantic and syntactic structures. An example in other areas is
database schema matching (Islam et al., 2008).

Existing work on determining word relatedness is broadly categorized into three major
groups: corpus-based (e.g., Cilibrasi and Vitanyi, 2007; Islam and Inkpen, 2006; Lin et al.,
2003; Weeds et al., 2004; Landauer et al., 1998), knowledge-based (e.g., Radinsky et al.,
2011; Gabrilovich and Markovitch, 2007; Jarmasz and Szpakowicz, 2003; Hirst and St-Onge,
1998; Resnik, 1995), and hybrid methods (e.g., Li et al., 2003; Lin, 1998b; Jiang and
Conrath, 1997). Corpus-based could be either supervised (e.g., Bollegala et al., 2011) or
unsupervised (e.g., losif and Potamianos, 2010; Islam and Inkpen, 2006). In this paper, we
will focus only on unsupervised corpus-based measures.

Many unsupervised corpus-based measures of word relatedness, implemented on different
corpora as resources (e.g., Islam and Inkpen, 2006; Lin et al., 2003; Weeds et al., 2004;
Landauer et al., 1998; Landauer and Dumais, 1997), can be found in literature. These
measures generally use co-occurrence statistics (mostly word n-grams and their frequencies)
of target words generated from a corpus to form probability estimates. As the co-occurrence
statistics are corpus-specific, most of the existing corpus-based measures of word relatedness
implemented on different corpora are not fairly comparable to each other even on the same
task. In practice, most corpora do not have readily available co-occurrence statistics usable
by these measures. Again, it is very expensive to precompute co-occurrence statistics for
all possible word tuples using the corpus as the word relatedness measures do not know the
target words in advance. Thus, one of the main drawbacks of many corpus-based measures
is that they are not feasible to be used on-line. There are other corpus-based measures that
use web page count of target words from search engine as co-occurrence statistics (e.g., Iosif
and Potamianos, 2010; Cilibrasi and Vitanyi, 2007; Turney, 2001). The performance of
these measures are not static as the contents and the number of web pages are constantly
changing. As a result, it is hard to fairly compare any new measure to these measures.

Thus, the research question arises: How can we compare a new word relatedness measure
that is based on co-occurrence statistics of a corpus or a web search engine with the existing
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measures? We find that the use of a common corpus with co-occurrence statistics—e.g., the
Google n-grams (Brants and Franz, 2006)—as the resource could be a good answer to this
question. We experimentally evaluated six unsupervised corpus-based measures of word
relatedness using the Google n-gram corpus on different tasks. The Google n-gram dataset*
is a publicly available corpus with co-occurrence statistics of a large volume of web text.
This will allow any new corpus based word relatedness measure to use the common corpus
and compare with different existing measures on the same tasks. This will also facilitate
a measure based on the Google n-gram corpus to be used on-line. Another motivation is
to find an indirect mapping of co-occurrence statistics between the Google n-gram corpus
and a web search engine. This is also to show that the Google n-gram corpus could be a
good resource to many of the existing and future word relatedness measures. One of the
previous works of this nature is (Budanitsky and Hirst, 2006), where they evaluate five
knowledge-based measures of word relatedness using WordNet as their central resource.

The reasons of using corpus-based measures are threefold. First, to create, maintain
and update lexical databases or resources—such as WordNet (Fellbaum, 1998) or Roget’s
Thesaurus (Roget, 1852)—requires significant expertise and efforts (Radinsky et al., 2011).
Second, coverage of words in lexical resources is not quite enough for many NLP tasks.
Third, such lexical resources are language specific, whereas Google n-gram corpora are
available in English and in 10 European Languages (Brants and Franz, 2009).

The rest of this paper is organized as follows: Six corpus-based measures of word relat-
edness are briefly described in Section 2. Evaluation methods are discussed in Section 3.
Section 4 and 5 present the experimental results from two evaluation approaches to compare
several measures. We address some contributions and future related work in Conclusion.

2 Unsupervised corpus-based Approaches

Corpus-based approaches to measuring word relatedness generally use co-occurrence statis-
tics (mostly word n-grams) of a target word from a corpus in which it occurs and then these
co-occurrence statistics may be used to form probability estimates. Different corpus-based
measures use different corpora to collect these co-occurrence statistics. The notation used in
all the measures of word relatedness described in this section are shown in Table 1. Corpus-

Notation |Description
C(wy - - - wy) [frequency of the n-gram, wy - - - wy,, where n € {1,---,5}
D(w; - - wy,) [number of web documents having n-gram, wy - - - w,, wheren € {1,--- , 5}
M (w1, wz) [number of tri-grams that start with w; and end with ws
pr(wi,wa) [SEEE 2 Clwiwiws) + 2572 C(wawiwn)), which repred
sents the mean frequency of M (wj,ws) tri-grams that start with w;
and end with wy, and M (ws,w;) tri-grams that start with w, and end

with wy
N total number of web documents used in Google n-grams
V| total number of uni-grams in Google n-grams
Cmax maximum frequency possible among all Google uni-grams, i.e.,

Cunax_= max({C(w)}1V)

Table 1: Notation used for all the measures
1Details can be found at www.ldc.upenn.edu/Catalog/docs/LDC2006T13/readme.txt
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based measures of word relatedness that use co-occurrence statistics directly collected from
the web using a search engine (e.g., Iosif and Potamianos, 2010; Cilibrasi and Vitanyi,
2007; Turney, 2001) can not directly be implemented using the Google n-gram corpus.
This is because these measures use some co-occurrence statistics which are not available
in the Google n-gram corpus. Though there is no direct mapping between the Google
n-gram corpus and a web search engine, it is possible to get an indirect mapping using
some assumptions. It is obvious that based on the notation of Table 1, C(wy) > D(w;)
and C(wyws) > D(wyws). This is because a uni-gram or a bi-gram may occur multiple
times in a single document. Thus, considering the lower limits of C'(wq) and C(wiws),
two assumptions could be: (1) C(w;) & D(w;) and (2) C(wiws) ~ D(wiws). Based on
these assumptions, we will use C(w1) and C(wyw,) instead of using D(w) and D(wiws),
respectively to implement measures using the Google n-gram corpus.

2.1 Jaccard Coefficient

Jaccard coefficient (Salton and McGill, 1983) is defined as:

_ D(wlwg) - C(’wlwg)
Jaceard(wi, we) = 5 ) — Dlwnws) ~ Clwn) + Cluwa) — Cluwrwg) V)

In probability terms, Equation (1) represents the maximum likelihood estimate of the ratio
of the probability of finding a web document where words w; and ws co-occur over the

probability of finding a web document where either w; or ws occurs?.

2.2 Simpson Coefficient

The Simpson coefficient is useful in minimizing the effect of unequal size of the number of
web documents where the occurrence of w; and wy are mutually exclusive. Simpson or
overlap coefficient (Bollegala et al., 2011) is defined as:

D(’wlle) - O(w1w2)

Simpson(wy, wz) = min(D(w;), D(ws))  min(C(wr), C(ws))

2

which represents the maximum likelihood estimate of the ratio of the probability of finding
a web document where words w; and wy co-occur over the probability of finding a web
document where the word with the lower frequency occurs.

2.3 Dice Coefficient
Dice coefficient (Smadja et al., 1996; Lin, 1998b,a) is defined as:

2D(wiwa)  2C(wiws)
D(wr) + D(ws) — C(wr) + C(ws)

Dice(wy, ws) = (3)
which represents the maximum likelihood estimate of the ratio of twice the probability of

finding a web document where words w; and wy co-occur over the probability of finding a
web document where either w; or ws or both occurs.

2Normalization by the total number of web documents, N, is the same for the nominator and denominator,
and can be ignored.
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2.4 Pointwise Mutual Information

Pointwise Mutual Information (PMI) is a measure of how much one word tells us about the
other. PMI is defined as:

D(wiwz) C(wiws)
— N ~ N
PNII(U}]’ wQ) - 10g2 ( D(wy) D(wsz) > ~ 10g2 < C(wy1) C(ws) ) (4)
N N N N

where N is the total number of web documents. PMI between two words w; and ws
compares the probability of observing the two words together (i.e., their joint probability)
to the probabilities of observing w; and ws independently. PMI was first used to measure
word similarity by Church and Hanks (1990). Turney (2001) used PMI, based on statistical
data acquired by querying a Web search engine to measure the similarity of pairs of words.

2.5 Normalized Google Distance (NGD)

Cilibrasi and Vitanyi (2007) proposed a page-count-based distance metric between words,
called the Normalized Google Distance (NGD). Normalized Google Distance relatedness
between w; and wq, NGD(wy, w2)is defined as:
NGD (w1, ws) max(log D(wl.)7 log D(ws)) — log D(wiw2)
log N — min(log D(w1 ), log D(ws))
__ max(log C(w),log C(wz)) — log C(wiw2)
- log N — min(log C'(w1 ), log C'(ws))

()

(6)

NGD is based on normalized information distance (Li et al., 2004), which is motivated by
Kolmogorov complexity. The values of Equation (5) and (6) are unbounded, ranging from 0
to co. Gracia et al. (2006) proposed a variation of Normalized Google Distance in order to
bound the similarity value in between 0 and 1, which is:

NGD' (wy, wy) = ¢~ 2X¥NGD(wi,w2) (7

2.6 Relatedness based on Tri-grams (RT)

Islam et al. (2012) used Google n-grams, the Google tri-grams in particular, for determining
the similarity of a pair of words. Their tri-gram word relatedness model can be generalized
to n-gram word relatedness model. The main idea of the tri-gram relatedness model is to
take into account all the tri-grams that start and end with the given pair of words and
then normalize their mean frequency using uni-gram frequency of each of the words as well
as the most frequent uni-gram in the corpus used. Word relatedness between w; and ws
based on Tri-grams, RT (w1, ws) €0,1] is defined as:

wp(wy wy)CR
log Cw)Clwa) min(C(wy).Clwz))  f pr(wy,we)C2

oxlog Mn(Clu1).Clug)) Clwn)C (ws) min(C ) Clwa)) > L
RT(wl, ’wz) = log1.01 if pr(wi,wa)Cl <1 (8)
oxlog (), CTa)) Cw1)C(w) min(C(w:),C(wz)) =
o
0 if pr(wy,we) =0

3 Evaluation Methods

One of the commonly accepted approaches to evaluate word relatedness measures is a
comparison with human judgments. Considering human judgments of similarity or relat-
edness as the upper limit, this approach gives the best assessment of the ‘closeness’ and
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‘goodness’ of a measure with respect to human judgments. Another approach is to evaluate
the measures with respect to a particular application. If a system uses a measure of word
relatedness (often in back end) in one of the phases, it is possible to evaluate different
measure of word relatedness by finding which one the system is most effective with, while
keeping all other phases of the system constant. In the remainder of this paper, we will use
these two approaches to compare measures mentioned in sections 2.1 to 2.6.

4 Comparison with Human Ratings of Semantic Relatedness

4.1 Rubenstein and Goodenough’s 65 Word Pairs

Rubenstein and Goodenough (1965) conducted quantitative experiments with a group of 51
human judges who were asked to rate 65 pairs of word (English) on the scale of 0.0 to 4.0,
according to their similarity of meaning. A word relatedness measure is evaluated using the
correlation between the relatedness scores it produces for the word pairs in the benchmark
dataset and the human ratings. The correlation coefficients of the six implemented measures
with the human judges for the 65 word pairs from Rubenstein and Goodenough (1965)
dataset (henceforth, R&G dataset) are shown in Figure 1.

| | |
0.8 F 0.763] 0.635 0.635
0.606
0.6 - |
o =
3 3
= =
= =
o o
E g 0.4 |- B
&) &) 0.323  0.323
0.2
SimpsonJaccard Dice NGD’ PMI RT SimpsonJaccard Dice NGD’ PMI RT
Different Measures Different Measures
Figure 1: Similarity correlations on RG’s Figure 2: Similarity correlations on MC’s
65 noun pairs. 28 noun pairs.

4.2  Miller and Charles’ 28 Noun Pairs

Miller and Charles (1991) repeated the same experiment (done by Rubenstein and Good-
enough, 1965) restricting themselves to 30 pairs from the original 65, and then obtained
similarity judgments from 38 human judges. Most researchers used 28 word pairs of the
Miller and Charles (1991) dataset (henceforth, M&C dataset), because two word pairs
were omitted from the earlier version of WordNet. The correlation coefficient of different
measures with the human judges for 28 word pairs from M&C dataset are shown in Figure 2.
It is shown in Figure 2 that the correlation coefficients for both PMI and RT on M&C
dataset are same, whereas Figure 1 shows RT’s improvement of 16.5 percentage points over
PMI on R&G dataset.
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5 Application-based Evaluation of Measures of Relatedness

5.1 TOEFL’s 80 Synonym Questions

Consider the following synonym test question which is one of the 80 TOEFL (Test of
English as a Foreign Language) questions from Landauer and Dumais (1997): Given the
problem word infinite and the four alternative words limitless, relative, unusual, structural,
the task is to choose the alternative word which is most similar in meaning to the problem
word. The number of correct answers for different word relatedness measures on 80 TOEFL
questions is shown in Figure 3. RT measure gets 65 per cent correct answers. A human
average score on the same question set is 64.5 per cent (Landauer and Dumais, 1997).
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Figure 3: Results on TOEFL’s 80 syn- Figure 4: Results on ESL’s 50 synonym
onym questions. questions.

5.2 ESL’s 50 Synonym Questions

The task here is the same as TOEFL’s 80 synonym questions task, except that the synonym
questions are from the English as a Second Language (ESL) tests. The number of correct
answers for different measures on 50 ESL synonym questions is shown in Figure 4.

5.3 Text Similarity

The task of text similarity is to find the similarity between two text items. The idea is
to use all the discussed word relatedness measures separately on a single text similarity
measure and then evaluate the results of the text similarity measure based on a standard
data set used for the task to see which word relatedness measure works better. There
are many text similarity measures, both supervised and unsupervised, in the literature
that use word similarity in the back end (e.g., Li et al., 2006; Liu et al., 2007; Feng et al.,
2008; O’Shea et al., 2008; Islam and Inkpen, 2008; Ho et al., 2010; Tsatsaronis et al., 2010;
Islam et al., 2012). We use one of the state-of-the-art unsupervised text similarity measures
proposed by Islam et al. (2012) to evaluate all the discussed word relatedness measures.
One of the reasons of using this text similarity measure is that it only uses the relatedness
scores of different word pairs in the back end. The main idea of the text similarity measure
proposed by Islam et al. (2012) is to find for each word in the shorter text, some most
similar matchings at the word level, in the longer text, and then aggregate their similarity
scores and normalize the result.
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In order to evaluate the text similarity measure, we compute the similarity score for 30
sentence pairs from Li et al. (2006) and find the correlation with human judges. The details
of this data set preparation are in (Li et al., 2006). This is one of the most used data sets
for evaluating the task. For example, Li et al. (2006); Liu et al. (2007); Feng et al. (2008);
O’Shea et al. (2008); Islam and Inkpen (2008); Ho et al. (2010); Tsatsaronis et al. (2010);
Islam et al. (2012) used the same 30 sentence pairs and computed the correlation with
human judges. The correlation coefficients of Islam et al. (2012) text similarity measures
(based on the discussed word relatedness measures) with the human judges for 30 sentence
pairs are shown in Figure 5. On the 30 sentence pairs, Ho et al. (2010) used one of the

| !
0.916 0.921

0.9 |-
0819 0818 0848 S0 ogag
0.825
0.8 |-
0.7 |-
-
o6l 0594
RT

Correlation

Worst  Mean of Simpson Jaccard Dice NGD’ PMI Best
Human Human Human
Participant Partic- Participant

ipants

Different Measures
Figure 5: Similarity correlations on Li’s 30 sentence pairs.

state-of-the-art word relatedness measures using WordNet to determine the relatedness
scores of word pairs, then applied those scores in Islam and Inkpen (2008) text similarity
measure, and achieved a Pearson correlation coefficient of 0.895 with the mean human
similarity ratings. On the same dataset, Tsatsaronis et al. (2010) achieved a Pearson
correlation coefficient of 0.856 with the mean human similarity ratings. Islam et al. (2012)
text similarity measure using RT achieves a high Pearson correlation coefficient of 0.916
with the mean human similarity ratings which is close to that of the best human participant.
The improvement achieved over Ho et al. (2010) is statistically significant at 0.05 level.

Conclusion

This paper shows that any new corpus-based measure of word relatedness that uses n-gram
statistics can easily be implemented on the Google n-gram corpus and be fairly evaluated
with existing works on standard data sets of different tasks. We also show how to find
an indirect mapping of co-occurrence statistics between the Google n-gram corpus and a
web search engine using some assumptions. One of the advantages of measures based on
n-gram statistics is that they are language independent. Although English is the focus of
this paper, none of the word relatedness measures discussed in this paper depends on any
specific language, and could be used with almost no change with many other languages
that have a sufficiently large n-gram corpus available. Future work could be to evaluate
other corpus-based measures using the common Google n-gram corpus and the standard
data sets for different tasks.
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