Translating Questions to SQL Queries with Generative
Parsers Discriminatively Reranked

Alessandra Giordani and Alessandro Moschitti
Computer Science and Engineering Department
University of Trento, Povo (TN), Italy

{giordani,moschitti}@disi.unitn.it

ABSTRACT

In this paper, we define models for automatically translating a factoid question in natural
language to an SQL query that retrieves the correct answer from a target relational database
(DB). We exploit the DB structure to generate a set of candidate SQL queries, which we rerank
with an SVM-ranker based on tree kernels. In particular, in the generation phase, we use
(i) lexical dependencies in the question and (ii) the DB metadata, to build a set of plausible
SELECT, WHERE and FROM clauses enriched with meaningful joins. We combine the clauses
by means of rules and a heuristic weighting scheme, which allows for generating a ranked
list of candidate SQL queries. This approach can be recursively applied to deal with complex
questions, requiring nested SELECT instructions. Finally, we apply the reranker to reorder the
list of question and SQL candidate pairs, whose members are represented as syntactic trees. The
F1 of our model derived on standard benchmarks, 87% on the first question, is in line with the
best models using external and expensive hand-crafted resources such as the question meaning
interpretation. Moreover, our system shows a Recall of the correct answer of about 94% and
98% on the first 2 and 5 candidates, respectively. This is an interesting outcome considering
that we only need pairs of questions and answers concerning a target DB (no SQL query is
needed) to train our model.
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TABLES COLUMNS

TABLE_SCHEMA | TABLE_NAME TABLE_SCHEMA | TABLE_NAME | COLUMN_NAME | DATA_TYPE
geogquery state geoquery state state_name varchar
geoquery city geoquery state population float
geoquery tiver geoquery city city_name varchar
geoquery border geoquery city state_name varchar
geoquery highlow geoquery river traverse varchar

KEY_COLUMN_USAGE

TABLE SCHEMA | TABLE. NAME | COLUMN. NAME REFERENCED_ | REFERENCED_ | REFERENCED_
B B -~ TABLE_SCHEMA | TABLE_NAME | COLUMN_NAME

geoquery city state_name geoquery state state_name
geoguery tiver traverse geoquery state state_name

Figure 1: A DBMS catalog containing GEOQUERY database

1 Introduction

In the last decade, a variety of approaches have been developed to automatically convert natural
language questions into machine-readable instructions. A considerable amount of research
work has tackled such problem along the line of semantic parsing, e.g., (Ge and Mooney, 2005;
Wong and Mooney, 2006) defined algorithms for mapping natural language questions to logical
forms, (Minock et al., 2008) made use of a specific semantic grammar and (Zettlemoyer and
Collins, 2005; Wong and Mooney, 2007) applied lambda calculus to the meaning representation
of the questions.

In the perspective of question answering (QA) targeting the information of databases (DBs), the
automatic system only needs to execute one or more Structured Query Language (SQL) queries
that retrieve the answer to the posed natural language question. In our recent work (Giordani
and Moschitti, 2009a,b, 2010, 2012), we have shown that machine learning algorithms, ex-
ploiting syntactic representations of both questions and queries, can be used to automatically
associate a question with the corresponding SQL queries. One limitation of this approach is that
the set of possible queries that a user would execute on the DB must be known in advance. This
because such method cannot generate new queries, it can only verify if a given query probably
retrieves the correct answer for the asked question. This limitation is critical as the design of
a generative parser which, given a question, feeds the model above with a reasonable set of
candidate queries seems inevitably to fall in the category of semantic parsers.

This paper will demonstrate that it is possible to avoid full-semantic interpretation by relying on
(i) a simple SQL generator, which both exploits syntactic lexical dependencies in the questions
along with the target DB metadata; and (ii) advanced machine learning such as kernel-based
rerankers, which can improve the initial candidate list provided by the generative parser.

The idea of point (i) can be understood by noting that database designers tend to choose names
for entities, relationships, tables and columns according to the semantics of the application
domain. Such logic organization is referred to as catalog, and in SQL systems it is stored in
a database called INFORMATION_ScHEMA (IS for brevity). The values stored in IS along with
their constraints and data types are important metadata, which is useful to decode a natural
language question about the DB domain in a corresponding SQL query. For example, given
the IS associated with a DB, shown in Figure 1 and 2, if we ask a related question, g,:Which
rivers run through New York?', a human being will immediately derive the semantic predicate

1GeoQueries (Tang and Mooney, 2001) is available at http://www.cs.utexas.edu/ml/geo.html
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CITY RIVER

CITY_NAME | STATE_NAME | POPULATION RIVER_NAME | TRAVERSE |...
new york | new york 7071640 delaware | new york
newark | new jersey 329248 delaware |new jersey
allegheny | new york
STATE hudson new york
STATE_NAME | CAPITAL | POPULATION hudson | new jersey

new york | albany | 17558000
hew jersey |trenton| 7365000

Figure 2: GEOQUERY database fragment

run_through(rivers, New York) from it. Then she/he will associate the argument river, which is
also the question focus, with the table RIVER. Once the latter is targeted, she/he will select
the column TRAVERSE, which, being a synonym of run through, provides the same predicative
relation asked in the question. Finally, by instantiating the available argument, New York,
in such predicate, she/he will retrieve the set {Delaware, Allegheny, Hudson} from the
column RIVER_NAME, i.e., the missing argument (as they are in the same row of New York).
The above example shows that several inference steps must be performed to retrieve the
correct answer. In particular, lexical relations must be extracted from the questions, e.g., using
dependency syntactic parsing and predicate arguments must be expanded with their synonyms
or related concepts, e.g., using Wordnet (Miller, 1995).

Additionally, ambiguity and noise play a critical role in deriving the interpretation of the
question described above but we can exploit metadata to verify that the selected sense is
correct, e.g., from the fact that New York in this database is in the column TRAVERSE, we can
gather evidence that the sense of running-through matches the one of traverse. Therefore, the
general idea is to generate all possible (even ambiguous) queries exploiting related metadata
information (i.e., primary and foreign keys, constraints, datatypes, etc.) to select the most
probable one using a ranking approach.

Last but no least, we deal with nested SQL queries and complex questions containing subordi-
nates, conjunctions and negations. We designed a generative algorithm based on the matches
between lexical dependencies and SQL structure, which allows for building a set of feasible
queries. Starting from the general syntactic formulation of an SQL query, i.e.,:

SELECT column FROM table [WHERE condition], (@9)

we generate the set of column, table and condition terms using the lexical relations in the
questions. The relation arguments can be generalized using Wordnet and disambiguated using
metadata and the execution of the resulting query candidates in the reference DB. Once the
list of candidates is available, we can apply supervised rerankers to improve the accuracy of
the system. For this step, we improved on the model, we proposed in (Giordani and Moschitti,
2009b), by designing a preference reranker based on structural kernels. The input of such
model consists of pairs of syntactic trees of the questions and queries, where for the query we
use their derivation tree provided by the SQL compiler.

We tested our model on three subsets of GeoQuery data (Tang and Mooney, 2001) such that we
could compare with several systems of previous work. The results show that our generative
model is robust and accurate achieving a Recall of 95.0% on the first 5 candidate answers.
Additionally, when we apply our structural reranker to the generated list, we obtain state-of-
the-art results, i.e., an F1 of 87.2 on the top answer and a Recall of about 98% on the top 5
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answers. The major contribution of our approach is that it is simple and does not require any
heavy annotation or handcrafted semantic resources. It just relies on the database and the
availability of a training set of correct question and answer pairs targeting a DB.

2 Syntactic Dependencies and Relational Algebra

We extract lexical relations from the question using the Stanford Dependencies Parser (de Marn-
effe et al., 2006). This provides a set of binary grammar relations existing between a governor
and a dependent, where each dependency has the format abb_rel_name (gov, dep), while gov
and dep are words in the sentence associated with a number indicating the position of the word
in the sentence. In particular, we consider collapsed representations, i.e., the dependencies,
involving prepositions, conjuncts, as well as information about the referent of relative clauses,
are collapsed to get direct dependencies between content words. For example, the Stanford
Dependencies Collapsed (SDC) representation for the question,
qq: “What are the capitals of the states that border the most populated state?”
is the following:
SDC,, = {attr(are-z, what-1), root(ROOT-0, are-2), det(capitals-4, the-3), nsubj(are-2, capitals-4),
nsubj(border-9, states-7), rcmod(states-7, border-9), det(states-13, the-10),
advmod (populated-12, most-11), amod (state-13, populated-12), dobj(borders-9, state—lS)}

A general SQL query structure is shown in Eq. 1. Its execution starts from the relation in the FROM
clause by selecting DB tuples that satisfy the condition indicated in the WHERE clause (optional) and then
projects the target attribute specified in the SELECT clause. In relational algebra, selection and projection
are performed by o and 7 operators respectively. The meaning of the SQL query above is the same as that

of the relational expression:
TlcoLumN (UCONDITION(TABLE)) 2

It is worth noting that while relational algebra formally applies to sets of tuples (i.e. relations), in a
DBMS relations are bags so it may contain duplicate tuples (Garcia-Molina et al., 2008). For our purposes
the fact of having duplicates in the result adds noise?. In our QA task we expect that questions can be
answered with a single result set (e.g., we can deal with “Cities in Texas” and “Populations in Texas” but
not with the combined query “Cities and their population in Texas”). That is, even if in general COLUMN
could be a - possibly empty - list of attributes, in our system it just contains one attribute. We can apply
aggregation operators to this attribute that summarize it by means of SUM, AVG, MIN, MAX and COUNT,
always combined with DISTINCT keyword, e.g. SELECT COUNT(DISTINCT state.state_name).

Instead, CONDITION is a logical expression where basic conditions e; OP e, with OP={<, >, LIKE, IN},
are combined with AND, OR, NOT operators. While e; is always in the form table.column, e, could be:

e numerical value (e.g. city.population > 15000) or
e string value (e.g. city.state_name LIKE "Texas") or
o nested query (e.g. city.city_name IN (SELECT state.capital FROM state)

An example of a complex WHERE condition could be the following, selecting “major non-capital cities
excluding texas”): city.population > 15000 AND city.city_name NOT IN
(SELECT state.capital FROM state)) AND NOT city.state_name LIKE "Texas".

The meaning of TABLE is more straightforward, since it should contain the table name(s) to which the
other two clauses refer. This clause could just be a single relation or a JOIN operation, which selectively
pairs tuples of two relations. In practice we take the Cartesian product of two relations and exclusively
select those tuples that satisfy a condition C. We use the SQL keyword ON to keep this condition C
separated from the other WHERE conditions since it reflects a database requirement and should not match
any term of the question (e.g., city JOIN state ON city.city_name = state.capital). The

2We always delete multiple copies of a tuple by using the keyword DISTINCT in the COLUMN field
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(1)root(ROQT, are), I1 = {capital, state}

(2)nsubj(are, capital), E={are}=>2=¢
(3)prep_of (capital, state),

(4)nsubj(border, state), I’ = {state, border}
(5)rcmod(state, border), %" = {border, state}
(6)advmod(populat, most),

(7)amod(state, populat), 1" = {most, populat, state}
(8)dobj(border, state) 2 =¢

Figure 3: Categorizing stems into projection and/or selection oriented sets

2

§ = {state.capital®, state.state_name

border_info.state name', ...}

fo.borde

3 3 b
§'={border_in fo.state_name” , border state.state_name?, ... }

Br= {ma\r(srnh'.pcwrmﬁon]1. max(eicy.population)’®, state population”, .,

Figure 4: A subset of SELECT clauses for ¢,

complexity of generated queries is fairly high indeed, since we can deal with questions that require nesting,
aggregation and negation in addition to basic projection, selection and joining (e.g. “How many states
have major non-capital cities excluding Texas”).

3 Automatic Generation of SQL Queries from a Question
The basic idea of our generative parser is to produce queries of the form:

IBes,3f €Z,Iwe ¥ st 1 (0,(f)) answers q, 3)
where q is the starting question represented by means of SDC, and ., #, # are the three sets of clauses
(argument of SELECT, FROM and WHERE, respectively). The query answering a question, 7, (crw( f )),
can be chosen among the set of all possible queries .o/ ={SELECT sx FROM f x WHERE w} in a way that
maximizes the probability of generating a result set answering q.

Clause set construction. To build & and # sets, we identify the stems that can most probably
participate in the role of projection (i.e., composing the SELECT argument) and/or selection (composing
the WHERE condition). Accordingly, we create two sets of terms I and ¥. The main idea is that some
terms can be used to choose the DB table and column where the answer is contained whereas others tend
to indicate properties (i.e., table rows) useful to locate the answer in the column. For categorizing terms
we use a heuristic based on the grammatical relations provided by a dependency parser®. For example, let
us consider the list of preprocessed dependencies SDC, in Fig. 3. At the first iteration, we use ROOT to
add are to . Then, the nsubj(are,capital) suggests that the subject capital may be a focus of a projection
thus we included in I1. Additionally, given prep_of(capital, state), state is a modifier of the subject thus it
may have the same role and we include it in IT. We immediately verify this assumption by automatically
checking that there is an occurrence of state.capital inIS.

We use the set II to retrieve all the metadata terms that match with its elements: this will produce S
according to our generative grammar*. For example, considering the IS scheme in Figure 1, the SELECT
clauses that are generated from II, whose elements are listed in the right side of Fig. 3, are shown in Fig. 4
5. For generating the WHERE clauses, we need to divide Y. in two distinct sets: %, and %, for the left-and
right-hand side of the condition, respectively. The set X; contains stems matching the IS metadata terms.
3, is used to generate the left condition %/ .

Query Generation. Since each clause set may contain up to ten items, the cartesian product between
clause set can be very large. Thus, we verify some conditions during the generative process, e.g., tables

3For lack of space we cannot report such heuristics in this paper.
“#Again for lack of space we cannot report it here.
5The superscript numbers just indicate the weight associated with each statement.
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Figure 5: Possible pairing between clauses for ¢,

appearing in SELECT and WHERE clauses must also appear in the FROM clause to avoid the failure of the
execution of the query. As an example, Figure 5 shows generated clauses from the question g,, together
with possible combinations; the tuple (sl, f1s wl) is not correct as it leads to the MySQL error: Unknown
table: border_info.

4 The Experiments

We ran several experiments to evaluate the accuracy of our approach for automatic generation and
selection of correct SQL queries from questions. We experimented with a well-known dataset GeoQuery
developed in the context of semantic parsing.

To generate the set of possible SQL queries we applied our algorithm described in Section 3 to the
GEOQUERIES corpus. We considered the full GeoQuery annotation (GEo880) but we used the subset of 700
pairs (henceforth GE0700) since they are translated by (Popescu et al., 2003) from Prolog data to SQL
queries. Additionally, to compare with latest systems (Clarke et al., 2010; Liang et al., 2011), which used
a subset of 500 pairs, hereafter GE0500, we annotated the remaining 180 pairs as they were included in
GE0500. The latter was randomly split by (Clarke et al., 2010) in 250 pairs for training and 250 pairs for
testing. The data is slightly easier since the number of logical symbols per word are limited to an average
of 13 logical symbols. It is worth noting that even if we manually annotated missing questions with their
answering SQL queries, we only used them for extracting the answer from the database and evaluate the
pair correctness (so we do not really use the SQL queries).

To learn the reranker, we used SVM-Light-TK®, which extends the SVM-Light optimizer (Joachims, 1999)
with tree kernels (Moschitti, 2006) as described in (Giordani and Moschitti, 2009b). We modeled many
different combinations described in the next section. We used the default parameters, i.e. the cost and
trade-off parameters = 1 (for normalized kernels) and A = 0.4.

4.1 Generative Results

We carried out the first experiment on GEo700. Our algorithm could generate a correct SQL query in
the first 25 candidates for 95.3% of the cases but could not answer to 33 questions. This was due to (i)
empty clauses set & and/or ¥, for example, “How many square kilometers in the US?” does not contain
useful stems; and (ii) mismatching in nested queries, for example, “Count the states which have elevations
lower than what Alabama has” contains an implicit reference to the missing information. In addition, there
were incomplete questions like “Which states does the Colorado?” from which we retrieved an incomplete
dependency set. When our algorithm can generate an ordered list of possible queries, the top query is
correct for 82% of the cases. Additionally, the correct answer is contained in the first 10 candidates for
99% of the cases (excluding the 33 questions above). Note also that the correct query is found among the
first three in 93% of the cases. This shows that our ranking based on heuristic weights is rather robust and
produce high recall. The accuracy on the top candidate can then be promisingly increased with reranking.
We obtain similar results with the GEo500 subset: we fail to generate an answer in 18 out of the 250 pairs
of the test set. We also found that the correct answer is 78% of the times in the top position while it can
be retrieved among the first top seven in 98% of the cases.

Shttp://disi.unitn.it/ moschitt/Tree-Kernel.htm
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Combination Rec@1 Rec@2 Rec@3 Rec@4 Rec@5
NO RERANKING | 81.4+5.8 | 87.6+3.8 | 90.8+3.1 | 94.0£2.4 | 95.0+£2.0
STK + STK 83.5+£3.6 | 90.4+3.5 | 94.242.9 | 95.8+£2.0 | 96.7£1.7
STK x STK 86.5+£4.0 92.6+3.7 95.3£3.2 | 97.0£1.8 | 97.7£1.4
BOW x STK 86.7£4.1 | 92.1£3.2 | 95.6+2.5 | 97.1£1.4 | 97.6£1.2
(1+STK x STK)?> | 87.2+3.9 | 94.1+3.4 | 95.6£2.7 | 97.1+1.9 | 97.9+1.4

Table 1: Kernel combination recall (+ Std. Dev) for GEo700 dataset

4.2 Reranking Results

To improve the accuracy of our generative model, we used a preference reranking approach (Moschitti
et al., 2006, 2012; Severyn and Moschitti, 2012). The reranker uses the following kernels: STK,+STK,,
STK, x STK,, BOW, x STK; and (1+STK, x STK,)?, where n indicates kernels for questions and s for queries,
respectively. We applied standard 10-fold cross validation and measured the average Recall in selecting a
correct query for each question. The results for different models on GE0700 are reported in Table 1. The
first column lists the kernel combination by means of product and sum between pairs of basic kernels used
for the question and the query, respectively. The other columns show the Recall of at least 1 correct answer
in the top k positions (more precisely the average of Recall@k over 10 folds & Std. Dev). Additionally, we
evaluated the same kernels for reranking pairs generated from the GEo500 dataset. Using STK,,+STK, we
obtain a Recall of 84.77%, while if we exploit the product STK, x STK,, we achieve 87.31%. These results
are rather exciting since they compare favorably with the state-of-the-art.

5 Related Work and Discussion

Early work on semantic parsing (Tang and Mooney, 2001) required either the definition of rules and
constrains in an ILP framework or manually produced meaning representations (Ge and Mooney, 2005;
Wong and Mooney, 2006), which are costly to produce. Additionally, authoring systems where developed
by specifying a semantic grammar (Minock et al., 2008), which requires large effort of human experts.

Table 2 shows the f-measure of some state-of-the-art systems to which we compare. Such systems were
tested on GEOQUERIES, according to different experimental setups and data versions. The first half of the
table reports on systems exploiting the annotated logical form (deriving the answer) whereas the last five
rows show the f-measure of systems only exploiting the training pairs, questions and answers.

PrecISk (Popescu et al., 2003) is the only system evaluated on GE0700 in terms of correct SQL queries.
The value reported in the table refers to the correctness of answering questions if the expected SQL query
(i.e., one with equivalent result) is produced by one of the top k queries’. Also our system can provide
multiple answers and if we select the first k candidates, we highly increase the Recall (within the first 2
we have an F1 of 90%). Note that (Popescu et al., 2003) needed to rephrase some queries to achieve their
result. Another system similar to ours, which applies SVMs and string kernel is Krisp (Kate and Mooney,
2006). The major difference is that it requires meaning representations (following a user-defined MR
grammar), instead of SQL queries.

Recent work has also explored learning to map sentences to meaning representations suitable for applying
lambda-calculus (Zettlemoyer and Collins, 2005; Wong and Mooney, 2007). This kind of system require a
large amount of supervision. In particular, the system in (Zettlemoyer and Collins, 2005) shows a Precision
of 96.3% and a Recall of 79.3%, for an f-measure of 86.9%, while our system shows a Precision of 82.8%
and a Recall of 87.2%, for an f-measure of 85.0%. Thus, our system trades-off 2 points of accuracy for
avoiding large work for handcrafting resources, i.e., the semantic trees manually annotated for each
question. Moreover, our system is much simpler to implement. A more recent work (Lu et al., 2008) does
not rely on annotation and shows a Precision of 89.3% and a Recall of 81.5%, for an f-measure of 85.2%.
Their generative model coupled with a discriminative reranking technique (MopELIII+R) is conceptually
similar to our approach.

SeEMREsP (Clarke et al., 2010) also learn a semantic parser from question-answer pairs. They achieve the

7Being k a small constant, not better defined by the authors.
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System Name Human Supervision Ge0500 | GEo700 | GEo880

PRECISE Rephrase question - 87% -
Krisp Specify the grammar - - 81%
MopELIII+R - - - 85%
SEMRESP Define a Lexicon 80% - -
UBL Specify a CCG Lexicon - - 89%
SEMRESP Define a Lexicon 73% - -
UBL Specify a CCG Lexicon - - 85%
DCS Define Lexical Triggers 79% - 89%
DGCS* Define an Augmented Lexicon 87% - 91%
OUR sysTEM/SQL* - 87% 85% -

Table 2: Comparison between state-of-the-art systems in terms of F1.

highest accuracy when tested on annotated logical forms whereas when tested on answers their accuracy
is lower (80% vs. 73% in f-measure). In contrast, our system, evaluated on answers, outperforms their
best system in all setting, e.g., (85% vs. 80%).

Another system evaluated both with logical forms and with answers is UBL (Kwiatkowski et al., 2010).
Starting from a restricted set of lexical items and CCG combinatory rules, it is able to learn new lexical
entries and achieves the best performance with GEo880 when trained with logical forms.

In contrast, the best performing system that does not exploit the annotation of the GEo880 is DCS
(Liang et al., 2011). The comparison of the systems above with ours on GEo500 shows that ours largely
outperforms DCS (87% vs. 78% in f-measure). Our system performs comparably to the version enriched
with prototype triggers, DCS*, even though we do not exploit such manual resources.

In summary, our system is competitive with other supervised parsers as it: (i) only relies on the answers,
i.e., without using any annotated meaning representations (e.g. Prolog data, MR, Lambda calculus, SQL
queries); and (ii) requires much less supervision since there is no need to build semantic representation.
Our manual intervention only regards the definition of few synonym relations, i.e., border and next to as
synonyms for traverse, since there are not such relations in Wordnet. The rest of the lexicon is induced by
the database metadata or obtained exploiting Wordnet.

Finally, our system is competitive with the state-of-the-art defined in (Lu et al., 2008). This is not surprising
since we use a very similar approach, i.e., a generative model coupled with discriminative reranking.
However, while the system above learns a parser on meaning representations, we only need natural
language questions their answers (of course targeting a DB).

6 Conclusion

In this paper, we have approached question answering targeting database information by automatically
generating SQL queries in response of the posed question. Our method exploits grammatical dependencies
and metadata matching. To our knowledge, our approach to build and combine clauses sets is novel.
Additionally, we firstly experimented with a preference reranking kernel, which is able to boost the
accuracy of our generative model.

Given the high accuracy, the simplicity and the practical usefulness of our approach, (e.g., we can generate
the correct question in the first 5 candidates in 98% of the cases), we believe that it can be successfully
used for real-world applications.
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