Dealing with Input Noise in Statistical Machine Translation

Lluis Formiga! Jose A.R. Fonollosa®
(1) Universitat Politécnica de Catalunya
{1luis.formiga, jose.fonollosa}@upc.edu

ABSTRACT

Misspelled words have a direct impact on the final quality obtained by Statistical Machine
Translation (SMT) systems as the input becomes noisy and unpredictable. This paper presents
some improvement strategies for translating real-life noisy input. The proposed strategies
are based on a preprocessing step consisting in a character-based translator (MT) from noisy
into cleaned text. The use of a character-level translator allows us to provide various spelling
alternatives in a lattice format to the final bilingual translator. Therefore, the final MT is the
one that decides the best path to be translated. The different hypotheses are obtained under
the assumption of a noisy channel model for this task. This paper shows the experiments done
with real-life noisy input and a standard phrase-based SMT system from English into Spanish.
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Estudio de estrategias para tratar los errores ortograficos
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1 Introduction

Internet and Social Media have changed the trends of written text communication during the
last years providing a straightforward and informal scenario (Agichtein et al., 2008). Thus, the
focus of written text has evolved from grammatically correct structures to a content centered
scenario. Nowadays, human web readers do not get surprised of finding misspellings or low-
profile language. The text of chats, comments, tweets or SMS’s is usually full of misspelled
words, slang or wrong abbreviations introducing noise into the text data (Subramaniam et al.,
2009; Yvon, 2010) and affecting NLP tasks such as text-mining, machine translation or opinion
classification (Dey and Haque, 2009).

The Machine Translation (MT) task, as a field related to Natural Language Processing (NLP),
is not immune to this noise (Aikawa et al., 2007). Generally, misspelling problems can be
addressed with a simple Levenshtein distance under a noisy channel model paradigm (Brill and
Moore, 2000). On the other side, Bertoldi et al. (2010) presented a preliminary work focused
on preserving all spelling alternatives to the input of MT system through Confusion Networks
(CNs). However, this preliminary work was focused on an artificially generated noise that is not
able to cover all the different properties of real-scenario weblog noise.

In this paper, we present a study of the performance of the aforementioned spelling correction
strategies for real weblog translation requests. In addition, we present two new adaptive
strategies based on obtaining the spelling alternatives from character-based translation models
with multiple weighted cost functions.

2 Related work

Misspelling correction has been a recurrent issue to be resolved on NLP since its very first
beginnings (Damerau, 1964). Good surveys of different types of noisy text and its related
spell-correction programs can be found in Pedler (2007); Subramaniam et al. (2009); Kukich
(1992) along with (Mitton, 1996).

According to Deorowicz and Ciura (2005), misspelling correction methods can be separated
as isolated-word error detection-correction methods (Damerau, 1964; Philips, 2000; Toutanova
and Moore, 2002), where isolated words are processed independently of their context and
context-dependent error detection-correction methods where they feature their analysis in a more
phrase-consistent manner(Deorowicz and Ciura, 2005; Pedler, 2007; Jacquemont et al., 2007).
Usually Noisy-Channel model is assumed for this task.

Among other new strategies, in this paper we study two already existing spelling correction
strategies based on the Noisy Channel Model (Mays et al., 1991). First, we study the perfor-
mance of a simple edit-distance based strategy computed from a lexicon of words under a
noisy channel model scenario. Secondly, we study a strategy specially designed for the MT
framework (Bertoldi et al., 2010). We did not consider context-dependent strategies due to
their dependency to several language-specific analysis tools, which are beyond the scope our
study.

3 Adaptive spelling correction based on character-based translation
models

The strategy presented by Bertoldi et al. (2010) consists in generating hypotheses from a
sequence of characters by means of confusion networks heuristically defined. The best sequences
are retrieved from the CN according to char based language model (6-gram). The novelty of
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Source Target Probabilities
Ident. Subst. Del. Add.
a a el 0 Y 20
a b 0 eP(bla) o0 &0
a e0 eP(_la) &0 0
a NULL 0 0 RS
a _a 0 &0 &0 ol
a a_ 0 0 &0 ol
a ab 0 e &0 ol
a ba e0 0 €0 ol

Table 1: Heuristic phrase table used for the spelling hypotheses generator (Moses decoder).

their work is the method employed to generate spelling alternatives, which it is a character-
based decoder of heuristically defined CNs. Thus, the simplified decoder is based only on a
single character-based LM without any phrase-based or distortion models. Hence, the strategy
assumes that all editing operations are equally weighted at decoding stage since CNs are globally
weighted (weight-i). However, state-of-the art decoders (e.g. Moses) may deal with multiple
transformation models. We propose two new strategies that deal with multiple transformation
models.

The first strategy works with a heuristic phrase-table containing different model scores depend-
ing on the type of transformation that is addressed (i.e. identity, substitution, deletion, addition),
and also allows the reordering of chars according to a distance-based distortion model. The
second strategy is based on the classical SMT training strategy but adapted to character level.
These strategies allow weighting all the probability models independently. Thus, they are
more suited for being adapted into training data by means of an optimization step as more
functions take part into the final hypothesis. Analogously to the previous approach, the N-best
hypotheses may be fused in a lattice or confusion network form and submitted as input to the
final translator. In this paper we only work with lattices as input to the translator. The lattices
are built from a three-step process (Formiga and Fonollosa, 2012); first each character-sequence
of the N-best list is transformed into a single-path word-based lattice, then the different word
lattices are aligned to the original sequence through a distance based algorithm. Once aligned,
the single-path lattices are combined generating a single lattice containing all the spelling
variations that have been seen on the N-best output of the character-based decoder.

3.1 Misspelling correction through a heuristic phrase-table

All the possible edit operations can be represented through phrase table transformations.
Therefore, our first strategy designs a heuristic phrase table with all the probabilities of the
possible transformations separated in different models according to their type. A fragment
of the table is given in Table 1. The table is composed of 4 transformation models: Identity,
Substitution, Deletion and Addition.

Probabilities are given on an exponential base as Moses works on the log-space and we are
more interested in working in a linear space. We assign a binary probability (e°,e!) to identity,
addition and deletion operations because they are not distance based. On the other side, since
substitution operations might be based in a distance model, we assign the same probability
defined on Bertoldi et al. (2010). It is important to highlight that each entry of the phrase table
takes a single non-zero probability for its related operation, being all the others set to e°. In
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addition, we also consider that transposition operations can be performed by the distance based
reordering implemented in the Moses decoder. That approach contrasts with the CN decoding
approach (Bertoldi et al., 2010), were transposition operations were performed by the sum of
deletion and addition operations. In order to prevent big reorderings we limit the distortion
up to three positions. Therefore, we consider 6 different probability models: character-based
language model, distance based distortion, identity, substitution, deletion and addition.

3.2 Misspelling correction through character-based SMT models

With the strategies presented so far we have only addressed issues related to low-level mis-
spellings. Unfortunately, the noise of chat/SMS domains concerns higher level errors. Within
these errors we can distinguish two types: i) structural errors in the order of words within the
sentence due to the lack of knowledge of the language and ii) on-purpose induced errors based
on the economy of language consisting of abbreviations, acronyms, contraction or slang among
others.

Similar to Contractor et al. (2010), our second improvement strategy learns a SMT at character-
level in order to propose alternative spelling to the final translator. In this sense, we first clean
manually a certain amount of noisy text (e.g 8000 sentences) gathered from web translation
requests. Afterwards, both the noisy text and the clean text are converted to character sequences
using a common alignment tool (e.g. GIZA++). Once aligned, the character level bicorpus is
used to learn the typical probabilities of a phrase-based SMT. That is: i) ¢(f|e) inverse phrase
translation, ii) lex(f|e) inverse lexical weighting, iii) ¢(e|f) direct phrase translation and iv)
lex(e|f) direct lexical weighting along with a v) transformation penalty (which is e') inspired
in the phrase penalty. The main difference of this strategy with respect to the one presented in
Section 3.1 is the building of the phrase-table. While the previous strategy builds a heuristic
phrase-table, the new one learns from the real proofreading. This approach also allows the
use of a penalty model (based on word-based penalty of Moses). In that case, we consider
8 different probability models: character-based language model, distance based distortion,
p(fle), lex(fle), ¢(elf), lex(e|f), transformation-based penalty and character-based penalty.

4 Experiments

We based our experiments under the framework of a factored decoder (Moses — Koehn and
Hoang (2007)) from English into Spanish (See details in Formiga et al. (2012)). In this
experiments, we preprocessed the text to lowercase in order to overcome the casing problems,
which are quite frequent under noisy scenarios. The weights of the system were optimized by
MERT and a BLEU score with the help of a weblog development set consisting of 999 sentences,
as explained in the next section.

We have conducted the experiments in three parts. Firstly we studied the properties of the
real-life noisy scenario. Then, we compared the systems performance when generating spelling
correction hypotheses and then we analyzed the actual performance of the systems as for the
translation task.

4.1 Real-life scenario: dealing with actual noisy words

Most of the work mentioned in Section 2, deals with synthetic or controlled noisy scenarios.
However, real-life texts are poorly related with this controlled scenario in terms of literary
quality (Agichtein et al., 2008; Subramaniam et al., 2009).
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Perplexity WER
Data DEV TEST DEV TEST
Original Source (wr) 835.713 | 891.55 - -
Clean Source 0 (w0) 541.58 | 533.74 | 13.54% | 16.33%
Clean Source 1 (w1) 575.35 | 660.34 | 8.61% 6.51%
Combined Clean Sources (wO.wl) | 558.39 | 594.03 | 6.67% 6.35%

Table 2: Perplexity and WER obtained between original and cleaned data.

As we wanted to deal with real data, we used weblog translations from the FAUST project
(Pighin et al., 2012) for testing the translation performance with noisy texts. Regarding the
weblog translations we considered 1997 translation requests submitted to Softissimo’s portal .

Two independent human translators corrected the most obvious typos and provided reference
translations into Spanish for all of them along with the clean versions of the input requests.
Hence, there are three different test sets from this material: i) Weblog Raw (wr): The noisy
weblog input, ii) Weblog Clean; (w0 and w1): the cleaned version of the input text provided by
different humans on the source side. Cleaned versions may differ due to the interpretation of
the translators and iii) Weblog Clean0.1 (w0.w1): the cleaned versions with mixed up criteria.
In that case the cleaned versions are concatenated (making up a set of 3994 sentences). In
order to perform the different optimization tasks, we have divided the noisy set in development
(999 sentences) and test (998 sentences) sets.

We analyzed through some indicators the presence of noise within the weblog data sets following
the work performed by Subramaniam et al. (2009). Concretely we measured the level of noise
on the real data computing Word-Error-Rate (WER) (Kobus et al., 2008) and Language Model
Perplexity (Kothari et al., 2009).

Results are detailed on table 2. From the tables it can be observed that WER can vary up to
5% depending on the human translator who made the cleaning task. Still, considering all the
test sets, the averaged WER is around 11%, and no notable differences are found between the
development and the test sets. In that sense, the w0 set takes higher edit modifications than
wl compared to the original text. Consequently, as for the perplexity results, w0 takes less
perplexity regarding the character-based LM with respect to wl. This fact shows that strong
changes (due to high-lever error fixing) on the edit distance (higher WER) lead to a more
normalized input (lower perplexity).

4.2 Implemented Systems

In our study we compared the different strategies presented in Sections 2 and 3. They are
named i) Distance (Levenshtein distance plus a LM), ii) Confusion (Bertoldi et al., 2010), iii)
Heuristic PT (heuristically defined phrase-table) and iv) GIZA PT (monolingual char-based MT).
In the latter case we post-edited manually 8000 noisy sentences submitted to the same portal
(Softissimo), so they were similar to the dev/test sets. The number was chosen heuristically
based on the previous work of Aw et al. (2006). The noisy and cleaned sentences were character-
aligned with mGIZA and then the standard phrase-based SMT models were trained at character
level. Distortion limit was set to the Moses standard 6-positions. It had 8 weights to be tuned
(5 phrase-table model weights, language model, character penalty and distortion).

Thttp://www.reverso.net
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The weights of the character-based strategies were tuned with the weblog development set
already mentioned. We modified the MERT script to work with the Character Error Rate metric.

Regarding the N-best size for building the lattice, we studied different values on the low-range
in order to obtain low-dimensionality lattices. Thus we studied building the lattice from the
1-best, 5-best and 10-best lists of the preprocessing step.

Additionally, the fact of providing a lattice to the Eng—Spa translator required to perform a
retuning step in order to find the appropriate weight value for the edges of the lattice (w;). We
did this retuning step for each strategy only searching different values for the w; weight and
fixing all the others to the already tuned value.

4.3 Spelling Correction Strategies Performance

Before evaluating the performance in the translation task, we wanted to evaluate the suitability
of each strategy for finding good spelling alternatives. We did this evaluation either in the
development and test weblog sets using four different evaluation metrics: CER, WER, BLEu and
METEOR (Denkowski and Lavie, 2011). We left out of our study Precision/Recall analyses as
we are focused on the translation performance and not only the misspellings, they could be
considered in future work. These results were obtained by comparing the automatically cleaned
input with the two human post-edited references (being CER and WER evaluated through mCER
and mWER). In case of CER, WER and BLEu this comparison was done considering only the
1-best spelling alternative of the strategy. In case of METEOR we computed the oracle results
considering the best hypothesis from the obtained N-best list (1000-best for dev and 50-best for
test).

Strategy dev [ test dev [ test dev [ test dev [ test
CER WER BLEU METEOR nbest oracle
Baseline 3.41 | 3.09 | 6.67 | 6.35 | 90.62 | 90.24 | 63.10 63.17
Distance 3.47 | 3.19 | 6.92 | 6.96 | 89.87 | 89.02 | 64.63 63.62
Confusion 3.40 | 3.10 | 6.62 | 6.36 | 90.72 | 90.19 | 64.00 63.69
Heuristic PT | 3.36 | 3.07 | 6.35 | 6.23 | 91.25 | 90.37 | 65.81 64.92
GIZA PT 3.33 | 299 | 6.26 | 5.82 | 91.32 | 91.02 | 64.02 64.24

Table 3: CER/WER/BLEU/METEOR scores obtained when cleaning the texts.

Results are detailed in table 3. Within these results “Baseline” refers to the case when no spelling
correction strategy is applied at all. We observe that the GIZA PT strategy performs better when
considering the 1-best output whereas the Heuristic PT strategy finds better alternatives within
the N-best list, despite they are not the first hypothesis. In addition we can see that the Distance
strategy worsens the baseline results for the 1-best tests whereas it can achieve a slightly
improvement in the N-best based tests. These results seem to indicate that the language-model
used for ranking the final hypothesis might not be fully functional for that purpose. We have
to remember that the language model was built from the formal WMT12 data and thus the
interpolation towards perplexity reduction may not be enough to obtain a good language model
based on the open-domain of weblog requests.

4.4 Translation Task Performance

After evaluating the spelling correction strategies we evaluated the overall strategy involving
the misspelling correction and translation tasks.
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Strategy N-best | w0 | wO.wl | wl wr AVG

Baseline 1 30.61 37.44 | 29.86 | 33.62 | 32.88
Distance 1 30.20 | 36.99 | 29.41 | 33.54 | 32.54
Distance 5 29.84 | 36.67 | 29.21 | 33.40 | 32.28
Distance 10 29.83 | 36.65 | 29.20 | 33.42 | 32.28
Confusion 1 30.77 | 37.56 | 29.90 | 33.72 | 32.99
Confusion 5 30.65 37.44 | 29.74 | 33.68 | 32.88

Confusion 10 30.59 | 37.35 | 29.66 | 33.64 | 32.81
Heuristic PT 1 30.70 | 37.51 | 29.83 | 33.74 | 32.95
Heuristic PT 5 30.45 | 37.27 | 29.62 | 33.95 | 32.82
Heuristic PT 10 30.37 | 37.17 | 29.50 | 33.88 | 32.73

GIZA PT 1 30.77 | 37.61 | 29.97 | 33.97 | 33.08
GIZA PT 5 30.76 | 37.62 | 29.98 | 33.98 | 33.09
GIZA PT 10 30.76 | 37.63 | 30.00 | 33.98 | 33.09

Table 4: BLEU scores obtained applying different misspelling MT strategies

The detailed results (BLEU) are shown in Table 4. A more detailed analysis might be found in
Formiga and Fonollosa (2012)

In general terms we observe that the GIZA PT strategy outperforms all the other strategies
across all the metrics and test sets. Regarding the recovery from the noisy set (wr) we can
see a maximum gain of 0.36 BLEU points. Also we can observe slightly improvements on the
clean sets: ~ 0.16 BLEU points,. The improvements on the clean sets are explained by some
tokenization errors of Freeling that are fixed thanks to the misspelling correction step (e.g. I'll
go — I will go or I'’ll go). In that sense the misspelling correction step also performs a revision
of the tokenization carried out beforehand. We can see also that the GIZA PT strategy is quite
robust while increasing the N-best list to build the lattice. In contrast, the other strategies
decrease the quality when the N-best list size is increased. As it has been explained, this might
be motivated due to the high perplexities of the language model to the open domain text,
making it not suitable for ranking the different hypotheses. The Confusion and Heuristic PT
strategies perform slightly better than the baseline (no-processing at all) for the 1 and 5-best
configurations in the noisy test sets. However, when it comes to the clean test sets they are not
able to improve the baseline and worsening the result in case of increasing the n-best list size.
The Distance based strategy is the worst, even compared to the baseline, across all the metrics
and test sets. Making it not feasible for dealing with noisy input translations.

5 Discussion

The results of the experiments allow us to gain an in-depth specific understanding of how each
strategy contributes to the misspelling correction when making MT from real-life texts.

The translation results obtained are coherent with the 1-best spelling correction results reported
in table 3. However, the higher scores obtained in the METEOR N-best oracle case show that
there may be scope for improvement if a more adecuate language model based on an open
domain (e.g. Google N-grams) helps in the reranking of the proposed hypotheses.

In detail, we see that strategies based on a simple distance with respect to some closed lexicon
worsen the baseline system. This is explained by the real-word errors corrections and the lack
of a good language model (perplexities are over 500). Replacing a misspelled word with a
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correctly spelled word but senseless in that specific context usually leads to a worse automatic
translation.

Secondly, the results of the heuristic strategies (Confusion and Heuristic PT) show that the
translation scores improve with noisy input but can decrease the quality of clean input transla-
tions. This behavior had already been identified by Bertoldi et al. (2008) in two cases: when
the noise level was lower than 2% or when the errors were caused mainly by real-word errors.
In order to avoid the decrease of the MT quality on clean texts for the heuristic strategies, they
(Bertoldi et al., 2010) reported that it would be necessary to incorporate a noisy-text detector
step on the input data which would trigger the correction process.

However, the new GIZA PT strategy presented in this paper is also robust to clean text, avoiding
the need of a clean / noisy-text detector. In fact, the GIZA PT strategy can partially correct both
the noisy and cleaned text fixing low-level (e.g. thats fun — that is fun) as well as high-level
errors (e.g. prove’em wrong — prove them wrong).

In addition, we want to highlight that the presented methodology is somewhat language
independent since it does not need deep-language tools such as parsers or semantic role
labelers. A small training corpus (or development corpus in case of the heuristic strategies) of
about 8000 sentences might be enough to obtain a good spelling corrector, given a constant
noise density ratio bounded to weblog translations.

6 Conclusions and Future work

We presented a detailed study of different spelling correction strategies for improving the quality
of Machine Translation in real-life noisy scenarios. Real-life errors may be produced by different
causes such as general misspelling (low-level errors) or informal text conventions (high-level
errors) among others.

Apart from the basic strategy based on the Levenshtein distance, we also studied two strategies
based on heuristic models and a strategy based on building a character-level translator. Regard-
ing the heuristic methods, we adapted an existing strategy to take full advantage of standard
feature functions such as distortion and we included a MERT-based tuning of the weights.

Whereas the distance-based strategy is not able to deal with real-life errors, the heuristic
strategies show some improvement to the baseline translation and are easy to implement.
However, the heuristic strategies are bounded to low-level misspelling errors and rely solely in
the quality of the language model used for scoring the different alternatives.

In contrast, the trainable character-based strategy, namely GIZA PT, reports a significant and
robust improvement across all the evaluated test sets and metrics. The GIZA PT offers a good
trade-off between cost of implementation and quality improvement. Concretely it achieves an
improvement of 0.36 BLEU points when translating noisy text.

However, oracle results show that there may be still margin for improvement on the heuristic
strategies if a better ranking method for the hypotheses could be found. In the future we plan
to study the behavior of bigger language models for open domain tasks (e.g. Google N-grams)
and we will try to combine the heuristic and trained character-based phrase-tables in order to
provide additional robustness to the proposed misspelling correction strategies.
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