
Proceedings of COLING 2012: Posters, pages 255–264,
COLING 2012, Mumbai, December 2012.

Metric Learning for Graph-based Domain Adaptation

Paramveer S. Dhillon
Computer and Information Science, University of Pennsylvania, U.S.A

dhillon@cis.upenn.edu

Partha Pratim Talukdar
Machine Learning Department, Carnegie Mellon University, U.S.A

ppt@cs.cmu.edu

Koby Crammer
Department of Electrical Engineering, The Technion, Israel

koby@ee.technion.ac.il

Abstract
In many domain adaption formulations, it is assumed to have large amount of unlabeled data from
the domain of interest (target domain), some portion of it may be labeled, and large amount of
labeled data from other domains, also known as source domain(s). Motivated by the fact that labeled
data is hard to obtain in any domain, we design algorithms for the settings in which there exists
large amount of unlabeled data from all domains, small portion of which may be labeled.

We build on recent advances in graph-based semi-supervised learning and supervised metric learning.
Given all instances, labeled and unlabeled, from all domains, we build a large similarity graph
between them, where an edge exists between two instances if they are close according to some
metric. Instead of using predefined metric, as commonly performed, we feed the labeled instances
into metric-learning algorithms and (re)construct a data-dependent metric, which is used to construct
the graph. We employ different types of edges depending on the domain-identity of the two vertices
touching it, and learn the weights of each edge.

Experimental results show that our approach leads to significant reduction in classification error
across domains, and performs better than two state-of-the-art models on the task of sentiment
classification.

Keywords: Machine Learning, Domain Adaptation, Graph-based Semi-Supervised Learning,
Sentiment Analysis.

255

1 Introduction

Domain adaptation is an important machine learning subtask where the goal is to perform well
on a particular classification task on a target domain, especially when most of the resources are
available from other different domains, called source(s) domain(s) (Pan and Yang, 2009), and only
limited amount of supervision is available to the target domain. In the standard setting, most domain
adaptation algorithms assume the availability of large amounts of labeled data for the source domain,
with little or no labeled data from the target domain (Arnold et al., 2008; Dai et al., 2007; Wang
et al., 2009). However, in many practical situations, obtaining labeled data from any domain is
expensive and time consuming, while unlabeled data is easily available. This setting of domain
adaptation, where there is only limited amount of labeled data and large amounts of unlabeled data,
both from all domains, is relatively unexplored.

To address the issue of labeled data sparsity even within a single domain, recent research has focused
on Semi-Supervised Learning (SSL) algorithms, which learn from limited amounts of labeled data
combined with widely available unlabeled data. Examples of a few graph-based SSL algorithms
include Gaussian Random Fields (GRF) (Zhu et al., 2003), Quadratic Criteria (QR) (Bengio et al.,
2006), and Modified Adsorption (MAD) (Talukdar and Crammer, 2009). Given a set of instances
that contain small amount of labeled instances and a majority that is unlabeled, most graph based
SSL algorithms first construct a graph where each node corresponds to an instance. Similar nodes
are connected by an edge, with edge weight encoding the degree of similarity. Once the graph is
constructed, the nodes corresponding to labeled instances are injected with the corresponding label.
Using this initial label information along with the graph structure, graph based SSL algorithms
assign labels to all unlabeled nodes in the graph. Most of the graph based SSL algorithms are
iterative and also parallelizable, making them suitable for large scale SSL setting where vast amounts
of unlabeled data is usually available.

Most of the graph based SSL algorithms mentioned above concentrate primarily on the label
inference part, i.e., assigning labels to nodes once the graph has already been constructed, with very
little emphasis on construction of the graph itself. Only recently, the issue of graph construction
has begun to receive attention (Wang and Zhang, 2006; Jebara et al., 2009; Daitch et al., 2009;
Talukdar, 2009). Most of these methods emphasize on constructing graphs which satisfy certain
structural properties (e.g., degree constraints on each node). Since our focus is on SSL, a certain
number of labeled instances are available at our disposal. However, the graph construction methods
mentioned above are all unsupervised in nature, i.e., they do not utilize available label information
during the graph construction process. As recently proposed by (Dhillon et al., 2010), the available
label information can be used to learn a distance metric, which can then be used to set the edge
weights in the constructed graph.

In this paper, we bring together these three lines of work: domain adaptation, graph-based SSL, and
metric learning for graph construction, and make the following contributions:

1. We consider an important setting for domain adaptation: one where most of the data is
unlabeled and only limited amount of instances are labeled. This holds across all domains.
This setting is relatively unexplored.

2. To the best of our knowledge, we are the first to employ graph-based non-parametric methods
for domain adaptation.

256

2 Related Work
Several methods for domain adaptation have recently been proposed (Arnold et al., 2008; Blitzer
et al., 2006; Dai et al., 2007; Pan and Yang, 2009; Eaton et al., 2008; Wang et al., 2009). In (Arnold
et al., 2008), the labeled data comes entirely from the source domain, while certain amount of
unlabeled target data is also used during transduction. Similar setting is also explored in (Dai et al.,
2007; Wang et al., 2009). In contrast to these methods, we assume that limited amount of labeled
data and large amounts of unlabeled data from both source and target domains are available. This
is motivated by the fact that obtaining large amount of labeled data from any domain is expensive
to prepare. The method presented by (Blitzer et al., 2006) also explores a similar setting, but our
method is easier to implement and it does not make use of the high domain specific prior knowledge
(i.e., for pivot selection) performed by (Blitzer et al., 2006).

All previously proposed methods mentioned above are parametric in nature. The graph-based
adaptation method presented in this paper is non-parametric. To the best of our knowledge, it is
novel in the context of domain adaptation.The method of (Wang et al., 2009) is similar in spirit as
both employ graphs, yet they use a hybrid graph structure involving both instances and features for
transfer learning, while we focus on domain adaptation and use homogeneous graph consisting of
instance nodes only. Another important difference is that the graphs their algorithms build do not
take available label information into account, while our algorithms do take such information into
account. We will see below in Section 8, that this leads to significant improvement in performance.
Another work similar in spirit to ours is of (Eaton et al., 2008). They build a graph over tasks (i.e.,
a node in such a graph is a task) to decide on the transferability among different tasks for transfer
learning. In contrast, we focus on domain adaptation and build a graph over data instances, i.e., a
node in our graph corresponds to a data instance.

3 Notation
We denote by ns

l and ns
u, the number of labeled and unlabeled instances (respectively) from the

source domain. Similarly, nt
l and nt

u are the number of labeled and unlabeled instances from
the target domain. Denote by n the total number of instances. Let X be the d × n matrix of n
d-dimensional column instances (from source and target domains combined). We define the n× n
diagonal label-indicator matrix S to be Sii = 1 iff instance x i is labeled, and zero otherwise. We
denote by L the set of all possible labels of size m = |L |. We define the n×m instance-label
matrix by Y , where Yi, j = 1 iff the ith instance is labeled by the jth label. Note, that the ith column
of Y is undefined if Si,i = 0, i.e., the data instance is not labeled. Similarly, we denote by Ŷ the
n×m matrix of estimated label information, i.e., output of a inference algorithm (e.g., see Section
5). Such algorithms assign a labeling score to all instances, including labeled and unlabeled.

4 Domain Adaptation
Formally, we consider the following problem. Given, a total of ns

l + nt
l labeled instances from

the source(s) and target domains combined, and in addition ns
u + nt

u unlabeled instances from the
same domains. Our goal is to label these nt

u unlabeled instances from the target domain (domain
of interest). The task is challenging and non-trivial since we assume that ns

l ≪ ns
u, and similarly

nt
l ≪ nt

u. Our setting is different from previous approaches in two ways: First, we assume small
amount of labeled data from all domains, as opposed to most previous work in domain adaption
which have focused in the “asymmetric” case where there is large amount of labeled source instances,
and only very few, if any, labeled target instances. Second, we compensate, this lack in labeled data
by considering unlabeled data from all domains, source and target, as opposed to previous settings

257

which assumed unlabeled data only from the target domain. We believe that our “symmetric” setting
is very realistic, since labeled data is expensive in any domain.

In Section 8, we report the results of experiments using a sentiment dataset, which contains reviews
on products from a few categories. We assume that only a few instances are hand-labeled with the
correct sentiment for every category, and our goal is to exploit the labeled and unlabeled instances
from all domains to perform well on a single pre-defined target domain. Our task is harder, since we
have only few labeled examples from each domain, however, we exploit additional cheap resource,
namely unlabeled data from all the domains.

5 Graph Construction & Inference
Given a set X of n instances, both from the source and target domains, we construct a graph where
each instance is associated with a node. We add an edge between two nodes if the two nodes
are similar and the edge’s weight represents the degree of similarity between the corresponding
instances. Denote the resulting graph by G = (V, E, W) be this graph, where V = V s

l ∪V s
u ∪V t

l ∪V t
u is

the set of vertices with |V |= n, |V s
l |= ns

l , |V s
u |= ns

u, |V t
l |= nt

l , |V t
u |= nt

u; E is the set of edges, and
W is the symmetric n×n matrix of edge weights. Wi j is the weight of edge (i, j) which is monotonic
in the similarity between instances x i and x j . Additionally, V s = V s

l ∪ V s
u , and V t = V t

l ∪ V t
u are the

set of vertices associated with sources and target domain instances, respectively. Gaussian kernel
(Zhu et al., 2003) is a widely used measure of similarity between data instances, which can be used
to compute edge weights as shown in Eq. (1).

Wi j = αi j × exp
�
−dA(x i , x j)/(2σ

2)
�

(1)

where dA(x i , x j) is the distance measure between instances x i and x j and A is a positive definite
matrix of size d×d, which parameterizes the (squared) Mahalanobis distance (Eq. (3)). Furthermore,
σ is the kernel bandwidth parameter, and αi j = α (0≤ α≤ 1) if the edge connects instances from
two different domains, and αi j = 1, otherwise. In other words, the hyperparameter, α, controls the
importance of cross domain edges. Setting edge weights directly using Eq. (1) results in a complete
graph, where any two pair of nodes are connected, since the Gaussian kernel always attains strictly
positive values by definition. This is undesirable as the graph is dense (and in fact complete) and
thus all computation times are at least quadratic in the number of instances, which may be very
large. We thus generate a sparse graph by retaining only edges to k nearest neighbors of each node,
and dropping all other edges (i.e., setting corresponding edge weights to 0), a commonly used
graph sparsification strategy. The number of edges in the resulting graph is linear in the number of
instances.

With the graph G = (V, E, W) constructed, we perform inference over this graph to assign labels to
all nu unlabeled nodes. This is done by propagating the label information from the labeled nodes to
the unlabeled nodes. Any of the several graph based SSL algorithms mentioned in Section 1 may be
used for this task. For the experiments in this paper, we use the GRF algorithm (Zhu et al., 2003)
which minimizes the optimization problem shown in (2).

min
Ŷ

∑
i, j

∑
l∈L

Wi, j(Ŷil − Ŷjl)
2, s.t. SY = SŶ (2)

As outlined in (Zhu et al., 2003), this optimization can be efficiently and exactly solved to obtain Ŷ .
The result, is a labeling of all instances, including the nt

u unlabeled instances from the target domain.

In most previous graph-based SSL methods (e.g., (Zhu et al., 2003)), the matrix A is predefined
to the identity A= I , in Eq. (1), resulting in the standard Euclidean distance in input space. This

258

Algorithm 1 Supervised Graph Construction (SGC) Input: instances X , training labels Y , training
instance indicator S, neighborhood size k Output: Graph edge weight matrix, W

1: A←MetricLearner(X , S, Y)
2: W ← ConstructKnnGraph(X , A, k)
3: return W

Algorithm 2 Iterative Graph Construction (IGC) Input: instances X , training labels Y , training
instance indicator S, label entropy threshold β , neighborhood size k Output: Graph edge weight
matrix, W

1: Ŷ ← Y , Ŝ← S
2: repeat
3: W ← SGC(X , Ŷ , k)
4: Ŷ

′ ← GraphLabelInference(W, Ŝ, Ŷ)
5: U ← SelectLowEntInstances(Ŷ

′
, Ŝ,β)

6: Ŷ ← Ŷ + UŶ
′

7: Ŝ← Ŝ + U
8: until convergence (i.e., Uii = 0, ∀i)
9: return W

method of unsupervised graph construction is not task dependent. Instead, we also learn the matrix
A using the (small) set of labeled instances using metric learning algorithms. We add more detail
below in Section 7. In a nutshell, we construct a similarity metric tailored to the current specific
adaptation task.

6 Metric Learning Review
We now review a recently proposed supervised method for learning Mahalanobis distance between
instance pairs. We shall concentrate on learning the PSD matrix A � 0 which parametrizes the
distance, dA(x i , x j), between instances x i and x j .

dA(x i , x j) = (x i − x j)
⊤A(x i − x j) (3)

This is equivalent to finding a linear transformation P of the input space, and then applying Euclidean
distance on the transformed instances P x i .

Information-Theoretic Metric Learning (ITML) (Davis et al., 2007) assumes the availability
of prior knowledge about inter-instance distances. In this scheme, similar instances should have
low Mahalanobis distance between them, i.e., dA(x i , x j)≤ u, for some non-trivial upper bound u.
Similarly, dissimilar instances should have a large distance between them, that is, dA(x i , x j)≥ l for
some l. Given a set of similar instances S and dissimilar instances D, the ITML algorithm chooses
the matrix A that minimizes the following optimization problem:

min
A�0,ξ

Dld(A, A0) + γ · Dld(ξ,ξ0) (4)

s.t. tr{A(x i − x j)(x i − x j)
⊤} ≤ ξc(i, j), ∀(i, j) ∈ S

tr{A(x i − x j)(x i − x j)
⊤} ≥ ξc(i, j), ∀(i, j) ∈ D

where γ is a hyperparameter which determines the importance of violated constraints and A0 is a
Mahalanobis matrix provided using prior knowledge. To solve the optimization problem in (4), an

259

algorithm involving repeated Bregman projections is presented in (Davis et al., 2007), which we use
for the experiments reported in this paper.

7 Using Labeled Data for Graph Construction
We now describe how to incorporate labeled and unlabeled data during graph construction. We start
with a review of a new graph construction framework (Dhillon et al., 2010) which combines existing
supervised metric learning algorithms (such as ITML) with transductive graph-based label inference
to learn a new distance metric from labeled as well as unlabeled data combined. In self-training
styled iterations, IGC alternates between graph construction and label inference; with output of label
inference used during next round of graph construction, and so on.

7.1 Iterative Graph Construction (IGC)
IGC builds on the assumption that supervised (metric) learning improves with more labeled data.
Since we are focusing on the SSL setting with nl labeled and nu unlabeled instances, the algorithm
automatically labels the unlabeled instances using some existing graph based SSL algorithm, and
then includes a subset of the labeled instances in the training set for the next round of metric learning.
Naturally, only examples with low assigned label entropy (i.e., high confidence label assignments)
are used. Specifically, we use a threshold parameter β > 0 to determine which examples will be
used for the next round. (In practice we set β = 0.05 and observed that indeed most of the low
entropy instances which are selected for inclusion in next iteration of metric learning, are classified
correctly.) This iterative process continues until no new instances are set of labeled instances. This
occurs when either all the instances are already exhausted, or when none of the remaining unlabeled
instances can be assigned labels with high confidence.

The IGC framework is presented in Algorithm 2. The algorithm iterates between the two main
steps as follows. In Line 1, any supervised metric learner, such as ITML, may be used as the
MetricLearner. Using the distance metric learned in Line 1, a new k-NN graph is constructed in
Line 2, whose edge weight matrix is stored in W . In Line 4, GraphLabelInference optimizes over
the newly constructed graph the GRF objective (Zhu et al., 2003) shown in Eq. (5).

min
Ŷ ′

tr{Ŷ ′⊤LŶ
′}, s.t. ŜŶ = ŜŶ

′
(5)

where L = D−W is the (unnormalized) Laplacian, and D is a diagonal matrix with Dii =
∑

j Wi j .
The constraint, ŜŶ = ŜŶ

′
, in (5) makes sure that labels on training instances are not changed during

inference. In Line 5, a currently unlabeled instance x i (i.e., Ŝii = 0) is considered a new labeled
training instance, i.e., Uii = 1, for next round of metric learning if the instance has been assigned
labels with high confidence in the current iteration, i.e., if its label distribution has low entropy (i.e.,
Entropy(Ŷ

′
i:)≤ β). Finally in Line 6, training instance label information is updated. This iterative

process is continued till no new labeled instance can be added, i.e., when Uii = 0 ∀i. IGC returns
the learned matrix A which can be used to compute Mahalanobis distance using Eq. (3). The number
of parameters estimated by IGC (i.e., dimensions of W) increases as the number data instances
increase. Hence, we note that that IGC is non-parametric, just as other graph-based methods.

8 Experiments
Data: We use data from 12 domain pairs obtained from (Crammer et al., 2009), and preprocessed
to keep only those features which occurred more than 20 times. The classification task is the
following: given a product review, predict user’s sentiment, i.e., whether it is positive or negative.

260

Domain Pairs SVM PCA IGC
Electronics-DVDs 43.1± 0.3 41.4± 0.2 38.3± 0.3
DVDs-Electronics 37.1± 0.2 36.5± 0.3 27.9± 0.3

DVDs-Books 41.0± 0.3 40.3± 0.4 31.9± 0.4
Books-DVDs 43.9± 0.2 43.1± 0.3 40.3± 0.2
Music-Books 41.0± 0.3 39.9± 0.3 30.1± 0.3
Books-Music 36.7± 0.3 36.4± 0.2 31.8± 0.5

Video-Electronics 35.9± 0.2 35.5± 0.3 28.4± 0.3
Electronics-Video 37.4± 0.3 36.6± 0.4 32.9± 0.4

Video-DVDs 43.0± 0.2 42.0± 0.3 40.1± 0.3
DVDs-Video 38.1± 0.3 36.8± 0.2 33.0± 0.2

Kitchen-Apparel 35.0± 0.2 33.8± 0.3 32.9± 0.5
Apparel-Kitchen 38.2± 0.3 37.0± 0.4 27.5± 0.4

Table 1: Classification errors (lower is better, lowest marked in bold) comparing SVM, GRF (see Section 5) in
PCA space, and GRF in IGC space. Total n= 3000 instances, with total 300 labeled instances (ns

l = 200 and
nt

l = 100). The reported errors are on nt
u = 1400 instances, with results averaged over 4 trials.

Hence, this is a binary classification problem with number of classes m = 2. A total of 1,500
instances from each domain were sampled, i.e., n = 3000 . We note that the goal is to label
unlabeled target data (nt

u), so in all experiments reported below we have at least 1, 300 instances to
be labeled.

Experimental Setup: We used cosine similarity1 (using appropriate A) to set edge weights,
followed by k-NN graph sparsification, as described in Section 5. The hyperparameters
k ∈ {2, 5,10, 50, 100, 200, 500, 1000} and the Gaussian kernel bandwidth multiplier2, ρ ∈
{1, 2,5,10, 50, 100}, are tuned on a separate development set. The hyperparameter, α (see Eq. (1))
was tuned over the range [0.1, 1], with step size 0.1. The α value which gave the best GRF objective
(Eq. (2)) was selected. Please note that this is an automatic parameter selection mechanism requiring
no additional held out data. For all graph-based experiments, GRF (see Section 5) is used as the
inference algorithm.

Setting The Mahalanobis Matrix A: We consider two methods to set the value of the matrix A.
First, instances are projected into a lower dimensional space using Principal Components Analysis
(PCA). For all experiments, dimensionality of the projected space was set at 250. We set A= P⊤P,
where P is the projection matrix generated by PCA. We found the baseline algorithms to perform
better in this space than the input d-dimensional space, and hence this is used as the original space.
Second, the matrix A is learned by applying IGC (Algorithm 2) (see Section 7) on the PCA projected
space (above); with ITML used as MetricLearner in IGC. We use standard implementations of
ITML and IGC made available by respective authors.

8.1 Domain Adaptation Results
We experimented with a variety of settings in which we varied the amount of source and target
labeled and unlabeled data (ranging from 0 labeled instances to 200 labeled instances). Due to

1We experimented with both Gaussian kernels and cosine similarity, and cosine similarity lead to better performance, and
we use it in all experiments.

2σ = ρ σ0, where ρ is the tuned multiplier, and σ0 is set to average distance.

261

Domain Pairs TSVM EasyAdapt IGC
Electronics-DVDS 40.1± 0.2 41.0± 0.4 38.3± 0.3

Books-Music 32.7± 0.3 33.4± 0.3 31.8± 0.5
DVDs-Videos 33.8± 0.4 34.9± 0.4 33.0± 0.2

Videos-Electronics 29.7± 0.2 30.1± 0.4 28.4± 0.3
Kitchen-Apparel 33.9± 0.3 33.7± 0.1 32.9± 0.5

Table 2: Classification errors for IGC comparison with TSVM and EasyAdapt. In all cases, we use ns
l = 200

and nt
l = 100 labeled instances. The reported errors are on nt

u = 1400 instances, results averaged over four
trials. Lowest errors are marked in bold.

paucity of space we can not describe the details of those experiments here; the interested reader
is encouraged to refer to the longer version of this paper (Dhillon et al., 2012). The setting that
performed the best was the one which used source unlabeled data, 200 source labeled instances,
and 100 target labeled instances. So, for this setting, we compared the performance of GRF in IGC
space to GRF in PCA space and a Support Vector Machine (SVM) classifier trained over the 300
training instances (200 from the source domain, and 100 from the target domain) using a polynomial
kernel whose degree is tuned on a development set.

The results are summarized in Table 1. Clearly, for all domain pairs, GRF in PCA space is either
comparable or better than SVM. This may not be surprising since SVM did not use the additional
1, 300 source unlabeled data. Also, as already seen above, GRF in IGC space outperforms both
SVM baseline and GRF in PCA space. This demonstrates the benefit of using a learned metric (in
this case using IGC) during graph construction for graph-based domain adaptation.

8.2 Comparison with Other Methods
In previous sections, we have shown the superior performance of IGC over projections learnt using
PCA and standard SVM (a state-of-the-art baseline which is also the top performing algorithm
in the seminal sentiment classification work of (Pang et al., 2002)). However, a comparison with
state-of-the-art semi-supervised learning and domain adaptation approaches was pending. So, in
this section we compare the performance of IGC with TSVM (Transductive SVM) – a widely
used large margin transductive model which has shown state-of-the-art performance on many text
classification tasks (Joachims, 1999) and EasyAdapt (Daume III, 2007) which is a state-of-the-
art domain adaptation algorithm. The results are shown in Table 2, where we observe that IGC
outperforms TSVM and EasyAdapt.

9 Conclusion
We brought together three active directions of research: domain adaptation, graph-based learning,
and metric learning, and made the following contributions: (1) investigated usage of unlabeled
data from all domains and limited labeled data from all domains; and (2) employed graph-based
non-parametric methods for domain adaptation. We plan to further investigate improved usage of
graph-based techniques to adaptation. Here, we considered only two domains at once. We plan to
extend these methods for multiple source domains.

Acknowledgment
This work is supported in part by European Union grant IRG-256479, DARPA (contract number FA8750-09-C-
0179), and Google. Any opinions, findings, conclusions and recommendations expressed in this paper are the
authors’ and do not necessarily reflect those of the sponsors.

262

References
Arnold, A., Nallapati, R., and Cohen, W. (2008). A comparative study of methods for transductive
transfer learning. In ICDM Workshop on Mining and Management of Biological Data., pages
77–82. IEEE.

Bengio, Y., Delalleau, O., and Le Roux, N. (2006). Label propagation and quadratic criterion.
Semi-supervised learning, pages 193–216.

Blitzer, J., McDonald, R., and Pereira, F. (2006). Domain adaptation with structural correspondence
learning. In EMNLP, pages 120–128.

Crammer, K., Dredze, M., and Kulesza, A. (2009). Multi-Class Confidence Weighted Algorithms.
In EMNLP.

Dai, W., Xue, G., Yang, Q., and Yu, Y. (2007). Co-clustering based classification for out-of-domain
documents. In KDD, pages 210–219. ACM.

Daitch, S., Kelner, J., and Spielman, D. (2009). Fitting a graph to vector data. In ICML.

Daume III, H. (2007). Frustratingly easy domain adaptation. In Proceedings of the 45th Annual
Meeting of the Association of Computational Linguistics, pages 256–263, Prague, Czech Republic.
Association for Computational Linguistics.

Davis, J., Kulis, B., Jain, P., Sra, S., and Dhillon, I. (2007). Information-theoretic metric learning.
In ICML.

Dhillon, P., Talukdar, P., and Crammer, K. (2010). Inference-driven metric learning for graph
construction. Technical report, MS-CIS-10-18, CIS Department, University of Pennsylvania, May.

Dhillon, P., Talukdar, P., and Crammer, K. (Nov. 2012). Metric Learning for Graph-based Domain
Adaptation. Technical report, MS-CIS-12-17, CIS Department, University of Pennsylvania,
http://repository.upenn.edu/cis_reports/975/.

Eaton, E., Desjardins, M., and Lane, T. (2008). Modeling transfer relationships between learning
tasks for improved inductive transfer. Machine Learning and Knowledge Discovery in Databases,
pages 317–332.

Jebara, T., Wang, J., and Chang, S. (2009). Graph construction and b-matching for semi-supervised
learning. In ICML.

Joachims, T. (1999). Transductive inference for text classification using support vector machines.
In Proceedings of the Sixteenth International Conference on Machine Learning, ICML ’99, pages
200–209, San Francisco, CA, USA.

Pan, S. and Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on Knowledge and
Data Engineering.

Pang, B., Lee, L., and Vaithyanathan, S. (2002). Thumbs up?: sentiment classification using
machine learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in
natural language processing - Volume 10, EMNLP ’02, pages 79–86. Association for Computa-
tional Linguistics.

263

Talukdar, P. (2009). Topics in graph construction for semi-supervised learning. Technical report,
MS-CIS-09-13, CIS Department, University of Pennsylvania.

Talukdar, P. and Crammer, K. (2009). New Regularized Algorithms for Transductive Learning. In
ECML-PKDD. Springer.

Wang, F. and Zhang, C. (2006). Label propagation through linear neighborhoods. In ICML.

Wang, Z., Song, Y., and Zhang, C. (2009). Knowledge transfer on hybrid graph. In IJCAI, pages
1291–1296.

Zhu, X., Ghahramani, Z., and Lafferty, J. (2003). Semi-supervised learning using Gaussian fields
and harmonic functions. In ICML.

264

