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ABSTRACT

In this paper, we suggest a lattice rescoring architecture that has featur@sieofDB basel
language model (LM) server aralnaive parameter estimation (NPE) to integrate distribute
language models. The Trie DBVl server supports an efficient computation of LM score to r
rank the n-best sentences extracted from the lattice. In the case ofitNRE, a role of an
integration of heterogeneous LM resources. Our approach distributes LMitztiops not only
to distribute LM resources. This is simple and easy to implemenmanatain the distributed
lattice rescoring architecture. The experimental results show that the performaheelaifice
rescoring has improved with the NPE algorithm that can find the optimights of the LM
interpolation. In addition, we show that it is available to integrate n-gramndvDIMI LM.
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1 Introduction

The speech dictation with over multi-million words requires the large-tmaguage model. This
need has a few problems suchadsigh computation time and memory limitation. Automatic
speech recognition for the multiple simultaneous aesesescupies the memory as multi-
processes and uses multi-core capability of the CPU to guarantee higtmpece service.
Hence, the limitation of the system resource requires the distributecaapgdor the large-scale
language model. Previous researches have shown that the distributed gnegglinach is
available to avoid these problems.

In the case of language model researches, the distribution approach fattisesclient/server
paradigm with splittinga training corpus as a technique of suffix array (Zhang, 2066Eamami,
2007). These approaches depend on the distributed n-gram cours;semiie other hand, there
is a more sophisticated technique to alleviate the burden of network communitatises
MapReduce programming model to save and serve the smoothed prypludbiligram (Brants,
2007). These researches have presented the distributed architecture for the n-gram
language model. In the case of composite language model, there is a resdsdoth,
simultaneously accounts for lexical information, syntactic structure amdrdie content under a
directed Markov random field paradigm (Tan, 2011). In additionctimeposite language model
approach showed the limitation in the training time, which takesi®fu6s for the EM algorithm
to build model of 230M corpus in the cloud environment.

In this paper, we suggest a lattice rescoring architecture that has featarésiefDB based
language model (LM) server and naive parameter estimation (NPE) to intdigtatieuted
language models. We use this architecture for speech recognition. Téeta®multi-stage
lattice rescoring approach is prerequisite. The Trie DB language model servarroies of
efficient computation of LM score to re-rank the n-best sentences extfemtedhe lattice. In
the case of NPE, it has a roleasfintegration of heterogeneous LM resources.

2 Latticerescoring architecture

21 Latticerescoring flow

The process of lattice rescoring begins with the automatic speech recog#itdR) that
recognizes the input speech and generates the lattice that is a weightestl diogclic graph
where represents the ASR results. With the lattice input, the am/Im decosfimgsplits
acoustic modelAM) and language modeli1) scores of the lattice for the lattice rescoring sinc
in the LM rescoring stage, we only use AM scores of the input lattice. Afterittlextracts the
N-best list from the lattice. The rescoring step rescores the sentence scores-be#tdist with
large scaled LM resources. Finally, it reorders the n-best list accordingrtewthecores.

The rescoring step uses the AM scores of n-best sentences and new LM sogreteddn
distributed LM servers. The LM server and rescoring module communicategylthstream
sockets. The LM servers return each LM scores when it receives n-best sefteagescoring
module re-ranks the n-best sentences after interpolating new LM sewmeised from the
distributed LM servers.
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The rescoring flow depends on two approaches, one is the LM interpolatimeter estimation
and the other is the LM Trie DB. The step of the LM interpolation paramstenation
computes the interpolation weights in the back-end step with the coi®&ttrésult scripts. We
propose Naive parameter estimation algorithm to estimate the LM interpolatightsv In the
case of LM Trie DB, we build LM as a Trie DB that guarantees high perfarenand light
footprint. Figure 1 describes the flow of lattice rescoring.
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FIGURE 1 — System architecture for a lattice rescoring

2.2 Lattice Generation and AM/LM Decoupling

We implement the unit of generating lattices considering high performahedattice is built at
the ASR decoding step without the increase of memory and computat®ulethder generates
the lattice using the recognized word path at the backtracking step. lteatmmpleted word
paths to the 1-best recognized word at the specific time according to the accuikeéterbd
score.

The lattice link has the likelihood score thataisummation of AM and LM scores witheh
proportion determined empirically. We decouple the likelihood scorethétioriginal LM of the
ASR decoder since we cannot improve the result of lattice rescoring whenaim&in the
original LM scores Therefore, the basic step of the lattice rescoring is the replacement of
lattice LM score with other LM resources.

23 LM TrieDB Server

We propose LM Trie DB server. It consists of two components; ®tigei LM Trie DB and the
other is the service function. The LM Trie DB is built by converting the®P ARormat for
language model representation into a Trie structimethe case of the server function, it
computes the LM scores for the n-best sentences in a style of dynagiaming.In runtime,
the DB is loaded in the memory space to deal with the requests of LM vahpeitzdion for the
N-best sentence list. As a DB structure, we use a double-array Trie ap@koaci992).

The basic schema of LM Trie DB is a pair of key string and data sffimg.1-gram entry has
“word” as a key and “prob_backoff winx” as a data; “word” is a unigram word string, “prob” is a
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LM probability, “backoff” is a value of backoff anwinx” is the index of this entry which is
used in n-gram entries. In the case of 2-geamy, the key string is “winx_winx”. It means that
the key string is composed of two 1-gram word indexes. Ai$@as“winx2” for a 2-gram index
used in 3-gram entries. Table 1 shows the schema of LM Trie DB.

word prob backoff winx
Winx winx prob backoff winx2
Winx2 winx prob backoff winx3
winx3 winx prob backoff winx4
winxd winx prob backoff winx5
winx5 winx prob backoff

TABLE 1— Schema of LM Trie DB

The dynamic chart for the computation of LM score is described in Figlieifigure shows to
compute LM score for the input string with 4-gram LM. First line showesit string. The LM
values are presented frorff 2ayer to &' layer. The cell filled with backoff;tand probability p
The arrow shows the computation with previous layer scores whenigheoen-gram entry in
LM DB. We denote a probability of a dynamic chart as a DC(n-gragram a backoff value as

a DC(n-gramhb,).
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FIGURE 2 — Dynamic chart for the computation of LM score

When the LM Trie DB server receives the request of the computation of dlive Vvfirst, it
searches 1-gram data in the LM Trie DB with input sentence $sw W, .. W, </s>. Then, it
searches 2-gram data. When it cannot find the 2-gram data, it éillsldhof the dynamic chart
with the backoff and probability of each composed 1-gram; R&(wp,) € DC(wy, p) +
DC(wo, by). If there is no backoff value, the previous probability trangferthe current slot
DC(WowqW,, ps) € DC(wiw,, p). Finally, the summation of last slots is the LM value of th
input sentencey DC(-, py). This procedure is same witmormal procedure for backoff in LM.
The difference is that the DC computation depends on the scherh& Dfie. DB. The higher n-
gram DB search uses theinx” of the lower n-grams.

24 Distributed LM interpolation

We propose naive parameter estimation (NPE) algorithm for the integratitistrifuted LMs.
The goal of NPE estimates the optimal interpolation weights of the distributedtdNtee
evaluation set. Simply, NPE uses the accuracy of the ASR to the evaluativithseach LM.
The idea is that the update of the weight of the LM is multiplicative (highgehamhen the
accuracy of ASR decreases and the other is additive (small change) wrasttinacy of ASR
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increases. Although we adopt simple approach to estimate LM interpolation syéfgfatn find
the optimal weights of all LMs in a few iterations.

In addition, we can process the NPE in distributed environment #iecéASR evaluation
function only uses the network procedures. The evaluation funationeval(), sends the
message of LM score computation and receives the message of LM scoeaftoioM server.

Although the NPE sends the network calls iteratively to the LM servesa iefficiently process
the task since the NPE uses not only the distributed LM resources duhealdistributed LM

computation.

0: E := {ei..en}

1: W € initialize() # W := {wi..w,}
2: AW € W * ¢ #0<c<1
3: acc old € do eval (W, E)

4: for itr = 0 to max_iteration do
5: W& w

6: for i = 0 to number of LMs do
7 w'; € wit+ Aw;

8: acc_new € do_eval (W', E)
9: if (acc_old-acc_new > 0) then
10: Aw; € -Aw; * random ()
11: else

12: Aw; € Aw: + random ()

13: end if

14: end for

15: W€ W+ AW

16: acc_old € do_eval (W, E)

17: if (acc_old is max) then

18: Weax € W

19: end if

20: end for

21: return W,..

FIGURE 3 — Naive parameter estimation algorithm.

The NPE algorithm is described in Figure 3. Firstlynitializes the interpolation weight#/ as
many as the number of LMs (linel). In addition, it initializ&¥ which compute by multiplying
constant valuec (0 < ¢ < 1) to the interpolation weighw (line2). The last stage of the
initialization is to get the first accuracy with the initialized (line3). At this time, do_eval()
evaluates the evaluation $ethat is the set of the lattice and correct script pairs.

The evaluation step, do_eval(), extracts n-best from the input lattice ancetitenes the n-best
with the distributed LMs. It sends the n-best sentences to the distribMtedricers and receives
each LM scores computed by the LM servers. Then, it computes the sddveiterpolation
with W to re-rank the n-bests. Finally, it can compare the correct scriptsitthéraccuracy.

The weight estimation step processes iteratively. It try to evaluate with the updstgd in
each LMs (line7 ~ line8). If new updated weight cannot shovb#tier accuracy, it processes &
multiplicative decreasef the weight (line10). On the other hand, if new weight shows ¢kterb
result, it processes an additive increase of the weight (line12). Weeussnttom scale to change
the weight value in order to avoid the stalled state, which is a repetition efdight values.

After deciding all LM weights, NPE gets new evaluation value (linel5 ~ linex&n,Tif the
value is the maximum, it saves the value as,Yiinel8). Let the rescoring function for a
sentence beregs). We define:
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res(S) = am(S) + Zn Wnpe (1) * Im; (S)
i=1

Where,w,,{i) is the NPE determined' weight of the distributed LM anidn(s) is the result of't
distributed LM to the sentensean(s) is the decoupled AM score to the sentencEhese values
are in the log domain so that we can add them as shown in the aquatio

3  Evaluation

3.1 Evaluation Set and LMs

The evaluation set also consists of four domains such as emad, @&A and twitter. It has
2,000 clean Korean speeadindependent of LM training corpus. We converts the speeches i
HTK standard lattice format (SLF) files with wFST-based Korean speech recognimehr,ushs
small LM. We prepare two evaluation sets as described in Table 2. EVAL1 uses all sentence
EVAL2 divides the evaluation set into a train/development sehaest set.

# of speech email news | Q&A | twitter | All
EVALL 200 400 400 1000 2000
train 150 300 300 750 1500
EVAL2
Test 50 100 100 250 500

TABLE 2 - Preparation of two evaluation sets.

We selecia vocabulary set for building language models. The vocabulary hasillichrantries
which extracts from the corpus of 3.3 billion words with a cagerof 99.84% of the corpus. We
use the 3.3 billion words corpus as a training set for language mod#is ievaluation. The
domain of the corpus consists of twitter, news, community and.Q&e training corpus is built
by crawling from the web sites

We builds two n-gram language models for the evaluation; one is Skiall.3m 1gram, 4.5m
2gram, 2.3 3gram), and the other igBM (1.3m 1gram, 42.1m 2gram, 45.8m 3gram). Ir
addition, we build the distance independent mutual informaditign (DIMI LM) (GuoDong,
2004), which has 121 million pairs extracted from the training daténwhe 6 words distance.

3.2 Lattice Rescoring

We use EVALL to evaluate our distributed LM architecture. In this experimerALENs a
training set of the NPE algorithm to estimate interpolation weights fdrNfse Also, EVALL is
a test set of this experiment. Table 3 shows the result of the lattice rggestn

type email | news | Q&A | twitter | All

1 AM 85.13 | 80.34 | 83.59 | 856 84.32
2 AM+Small LM 86.93 | 83.17 | 8649 | 87.16 | 86.35
3 AM+Big LM 88.3 84.67 | 874 88.15 87.41
4 AM+Big LM+DIMI LM 8841 | 8581 | 87.59 | 88.28 | 87.73
5 Big LM+DIMI LM (no AM) 85.1 83.75 | 85.7 85.28 85.13

TABLE 3— Evaluation with EVAL1 (accuracy %, topl)
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The result of typel is the ASR accuracy with only AM scores.rébelt of type2 is the baseline
accuracy since it is the performance of ASR with small LM. We useNBPE algorithm from
type3 to type5The gain of the accuracy is 1.06% when we apply the Bigtalveplace small
LM in type3. The test type4, the accuracy of the all test sentences inénesrsedl. However, in
news domain, the gain of the accuracy is 1.14%. The result of $jyjmets the importance of AM
scores. The test cannot improve the result of lattice rescoring when we #gdoscores in the
input lattice.

R e R NN R R ARSI N RAC I RRERINB S F 5SS

FIGURE 4 — Naive parameter estimation algorithm.

Figure 4 shows the oscillation of the accuracy when NPE estimategehgolation weights to
the big LM and DIMILM (type4). The NPE finds the optimal weights in the 43th iteration a
the duration time is not over 20 minutes. Although the NPE cannatairathe optimal accuracy,
the result shows that it is available to find the appropriate interpolation weights $hort-term.
This evaluation shows that the NPE can integrate a long-distance LM that isrdifféth n-
gram based LMs. In addition, the algorithm can estimate the interpolatightsvéo the multiple
LM resources.

type email | news | Q&A | twitter | All

Train | 86.15 | 83.71 | 86.26 | 87.23 86.29
Test 87.84 | 82.01 | 85.57 | 86.48 85.97
Lattice AM+Big LM Train | 87.65 | 86.28 | 87.83 | 88.23 87.63
Rescoring | +DIMI LM Test 88.87 | 83.61 | 86.21 | 88.18 87.37

Baseline AM+Small LM

TABLE 4 — Evaluation with EVAL2 (accuracy %, top1), NPE with Train Set

The evaluation with EVAL2 described in Table 4. In this experiment, we &Pk only to the
train set. The result shows that the gain of accuracy of test se¥isnhdn the gain of accuracy
of train set is 1.34%. From this test, we find that the NPE cannot guaraategtithal weight of
test set with only train set because of the over-fitting problem; theeaagcof all test is 87.47
when we apply NPE to test seétowever, the result shows consistency in the gain of accuracy
all domains.

Distributed LM Non-distributed LM

Acc. % Time(sec) | Acc. % Time(sec)
1=t 88.44 180 88.44 206
2nd 8833 164 88.47 249
3 88.36 184 88.36 193
Avg. 88.37 176 88.42 216

TABLE 5- Distributed LM vs. Non-distributed LM
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In addition we test the email set of EVALL considering the comparison of distributedridv
non-distributed LM. We test it 3 times of NPE wa&h iterations. The total number of LM score
computation is 394,581 in one NPE process. The type of expélisr&ame with type 4 in Table
4. From the Table 5, we find that the reduction of the time is 18%eleabe of accuracy, there
is only marginal difference between two tests.

If the Non-distributed LM is %pass big LM based ASR, then the result of this test, EVAL
email set, is 89.16% accuracy; EVALL all set is 88.20%. The two-pasea@ppsuch as the
lattice rescoring cannot overcomégdass approachf the big LM since the small LM based ASR
cannot show the coverage of n-gram path of big LM. However, irp#per, our assumption is
the case that it is not possible to use the approachpss big LM ASR.

The main feature of our approach is to distribute LM computations mgtto distribute LM

resources. The rescoring client sendskiimeimbers of n-best sentences to kheumbers of LM

servers. The LM servers return LM scotdéghe n-best sentences to the clifiiite computation
of a LM scoring is only occurred in the servers in parallel with eacdbr.offhis is simple and
easy to implement and maintain the distributed lattice rescoring architecture.

Conclusion and per spectives

In this paper, we proposed the lattice rescoring architecture for applyintartie scale
distributed language model to the speech recognition. AM/LM decouplingagipof a lattice is
required to replace large scale LMs with first-pass small LM. In the distrituMederver, we
adopted socket-streaming approach and the Trie-based memory DBMforFibally, we
suggested the naive parameter estimation algorithm for the interpolationltgfle LMs. The
evaluation showed the appropriate gain using NPE algorithm that can fiodtimal weights of
the LM interpolation. Also, we showed the integration between n-gram LNDEAHLM. In the
future, we will improve the NPE algorithin various domains. Domain adaptation technique cz
be one of them.
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