
Proceedings of COLING 2012: Posters, pages 217–224,
COLING 2012, Mumbai, December 2012.

Lattice Rescoring for Speech Recognition Using Large Scale
Distributed Language Models

Euisok Chung Hyung-Bae Jeon Jeon-Gue Park and Yun-Keun Lee
Speech Processing Research Team, ETRI, 138 Gajeongno, Daejeon, 305-700, KOREA

eschung@etri.re.kr, hbjeon@etri.re.kr, jgp@etri.re.kr and

yklee@etri.re.kr

ABSTRACT

In this paper, we suggest a lattice rescoring architecture that has features of a Trie DB based
language model (LM) server and a naïve parameter estimation (NPE) to integrate distributed
language models. The Trie DB LM server supports an efficient computation of LM score to re-
rank the n-best sentences extracted from the lattice. In the case of NPE, it has a role of an
integration of heterogeneous LM resources. Our approach distributes LM computations not only
to distribute LM resources. This is simple and easy to implement and maintain the distributed
lattice rescoring architecture. The experimental results show that the performance of the lattice
rescoring has improved with the NPE algorithm that can find the optimal weights of the LM
interpolation. In addition, we show that it is available to integrate n-gram LM and DIMI LM.

KEYWORDS : lattice rescoring, distributed language model, large scale language model

217

1 Introduction

The speech dictation with over multi-million words requires the large-scale language model. This
need has a few problems such as a high computation time and a memory limitation. Automatic
speech recognition for the multiple simultaneous accesses occupies the memory as multi-
processes and uses multi-core capability of the CPU to guarantee high performance service.
Hence, the limitation of the system resource requires the distributed approach for the large-scale
language model. Previous researches have shown that the distributed modeling approach is
available to avoid these problems.

In the case of language model researches, the distribution approach focuses on the client/server
paradigm with splitting a training corpus as a technique of suffix array (Zhang, 2006 and Emami,
2007). These approaches depend on the distributed n-gram count servers; on the other hand, there
is a more sophisticated technique to alleviate the burden of network communication. It uses
MapReduce programming model to save and serve the smoothed probability of n-gram (Brants,
2007). These researches have presented the distributed architecture for the n-gram based
language model. In the case of composite language model, there is a research, which
simultaneously accounts for lexical information, syntactic structure and semantic content under a
directed Markov random field paradigm (Tan, 2011). In addition, the composite language model
approach showed the limitation in the training time, which takes 25.6 hours for the EM algorithm
to build model of 230M corpus in the cloud environment.

In this paper, we suggest a lattice rescoring architecture that has features of a Trie DB based
language model (LM) server and naïve parameter estimation (NPE) to integrate distributed
language models. We use this architecture for speech recognition. Therefore, the multi-stage
lattice rescoring approach is prerequisite. The Trie DB language model server has a role of
efficient computation of LM score to re-rank the n-best sentences extracted from the lattice. In
the case of NPE, it has a role of an integration of heterogeneous LM resources.

2 Lattice rescoring architecture

2.1 Lattice rescoring flow

The process of lattice rescoring begins with the automatic speech recognition (ASR) that
recognizes the input speech and generates the lattice that is a weighted directed acyclic graph
where represents the ASR results. With the lattice input, the am/lm decoupling step splits
acoustic model (AM) and language model (LM) scores of the lattice for the lattice rescoring since
in the LM rescoring stage, we only use AM scores of the input lattice. After that, it extracts the
N-best list from the lattice. The rescoring step rescores the sentence scores of the N-best list with
large scaled LM resources. Finally, it reorders the n-best list according to the new scores.

The rescoring step uses the AM scores of n-best sentences and new LM scores computed in
distributed LM servers. The LM server and rescoring module communicates through stream
sockets. The LM servers return each LM scores when it receives n-best sentences. The rescoring
module re-ranks the n-best sentences after interpolating new LM scores received from the
distributed LM servers.

218

The rescoring flow depends on two approaches, one is the LM interpolation parameter estimation
and the other is the LM Trie DB. The step of the LM interpolation parameter estimation
computes the interpolation weights in the back-end step with the correct ASR result scripts. We
propose Naïve parameter estimation algorithm to estimate the LM interpolation weights. In the
case of LM Trie DB, we build LM as a Trie DB that guarantees high performance and light
footprint. Figure 1 describes the flow of lattice rescoring.

FIGURE 1 – System architecture for a lattice rescoring

2.2 Lattice Generation and AM/LM Decoupling

We implement the unit of generating lattices considering high performance. The lattice is built at
the ASR decoding step without the increase of memory and computation. The decoder generates
the lattice using the recognized word path at the backtracking step. It attaches completed word
paths to the 1-best recognized word at the specific time according to the accumulated likelihood
score.

The lattice link has the likelihood score that is a summation of AM and LM scores with the
proportion determined empirically. We decouple the likelihood score with the original LM of the
ASR decoder since we cannot improve the result of lattice rescoring when we maintain the
original LM scores. Therefore, the basic step of the lattice rescoring is the replacement of the
lattice LM score with other LM resources.

2.3 LM Trie DB Server

We propose LM Trie DB server. It consists of two components; one is the LM Trie DB and the
other is the service function. The LM Trie DB is built by converting the ARPA format for
language model representation into a Trie structure. In the case of the server function, it
computes the LM scores for the n-best sentences in a style of dynamic programing. In runtime,
the DB is loaded in the memory space to deal with the requests of LM value computation for the
N-best sentence list. As a DB structure, we use a double-array Trie approach (Aoe, 1992).

The basic schema of LM Trie DB is a pair of key string and data string. The 1-gram entry has
“word” as a key and “prob_backoff_winx” as a data; “word” is a unigram word string, “prob” is a

219

LM probability, “backoff” is a value of backoff and “winx” is the index of this entry which is
used in n-gram entries. In the case of 2-gram entry, the key string is “winx_winx”. It means that
the key string is composed of two 1-gram word indexes. Also, it has “winx2” for a 2-gram index
used in 3-gram entries. Table 1 shows the schema of LM Trie DB.

TABLE 1 – Schema of LM Trie DB

The dynamic chart for the computation of LM score is described in Figure 2. This figure shows to
compute LM score for the input string with 4-gram LM. First line shows input string. The LM
values are presented from 2nd layer to 4th layer. The cell filled with backoff bi and probability pi.
The arrow shows the computation with previous layer scores when there is no n-gram entry in
LM DB. We denote a probability of a dynamic chart as a DC(n-gram, pn) and a backoff value as
a DC(n-gram, bn).

FIGURE 2 – Dynamic chart for the computation of LM score

When the LM Trie DB server receives the request of the computation of LM value, first, it
searches 1-gram data in the LM Trie DB with input sentence <s> w0 w1 w2 .. wn </s>. Then, it
searches 2-gram data. When it cannot find the 2-gram data, it fills the slot of the dynamic chart
with the backoff and probability of each composed 1-gram; DC(w0w1, p2)  DC(w1, p1) +
DC(w0, b1). If there is no backoff value, the previous probability transfers to the current slot;
DC(w0w1w2, p3)  DC(w1w2, p2). Finally, the summation of last slots is the LM value of the
input sentence; ∑ DC(-, p4). This procedure is same with a normal procedure for backoff in LM.
The difference is that the DC computation depends on the schema of LM Trie DB. The higher n-
gram DB search uses the “winx” of the lower n-grams.

2.4 Distributed LM interpolation

We propose naïve parameter estimation (NPE) algorithm for the integration of distributed LMs.
The goal of NPE estimates the optimal interpolation weights of the distributed LMs to the
evaluation set. Simply, NPE uses the accuracy of the ASR to the evaluation set with each LM.
The idea is that the update of the weight of the LM is multiplicative (high change) when the
accuracy of ASR decreases and the other is additive (small change) when the accuracy of ASR

220

increases. Although we adopt simple approach to estimate LM interpolation weights, it can find
the optimal weights of all LMs in a few iterations.

In addition, we can process the NPE in distributed environment since the ASR evaluation
function only uses the network procedures. The evaluation function, do_eval(), sends the
message of LM score computation and receives the message of LM score from each LM server.
Although the NPE sends the network calls iteratively to the LM servers, it can efficiently process
the task since the NPE uses not only the distributed LM resources but also the distributed LM
computation.

0: E := {e1..en}

1: W  initialize() # W := {w1..wn}

2: ΔW  W * c # 0 < c < 1

3: acc_old  do_eval(W, E)
4: for itr = 0 to max_iteration do

5: W’  W
6: for i = 0 to number of LMs do

7: w’i  wi + Δwi
8: acc_new  do_eval(W’, E)
9: if (acc_old-acc_new > 0) then

10: Δwi  -Δwi * random()
11: else

12: Δwi  Δwi + random()
13: end if
14: end for

15: W  W + ΔW
16: acc_old  do_eval(W, E)
17: if (acc_old is max) then

18: Wmax  W
19: end if
20: end for
21: return Wmax

FIGURE 3 – Naïve parameter estimation algorithm.

The NPE algorithm is described in Figure 3. Firstly, it initializes the interpolation weights W as
many as the number of LMs (line1). In addition, it initializes ΔW which compute by multiplying
constant value c (0 < c < 1) to the interpolation weight W (line2). The last stage of the
initialization is to get the first accuracy with the initialized W (line3). At this time, do_eval()
evaluates the evaluation set E that is the set of the lattice and correct script pairs.

The evaluation step, do_eval(), extracts n-best from the input lattice and then rescores the n-best
with the distributed LMs. It sends the n-best sentences to the distributed LM servers and receives
each LM scores computed by the LM servers. Then, it computes the score of LM interpolation
with W to re-rank the n-bests. Finally, it can compare the correct scripts to find the accuracy.

The weight estimation step processes iteratively. It try to evaluate with the updated weight in
each LMs (line7 ~ line8). If new updated weight cannot show the better accuracy, it processes a
multiplicative decrease of the weight (line10). On the other hand, if new weight shows the better
result, it processes an additive increase of the weight (line12). We use the random scale to change
the weight value in order to avoid the stalled state, which is a repetition of two weight values.

After deciding all LM weights, NPE gets new evaluation value (line15 ~ line16). Then, if the
value is the maximum, it saves the value as Wmax(line18). Let the rescoring function for a
sentence s be res(s). We define:

221

Where, wnpe(i) is the NPE determined ith weight of the distributed LM and lmi(s) is the result of ith
distributed LM to the sentence s. am(s) is the decoupled AM score to the sentence s. These values
are in the log domain so that we can add them as shown in the equation.

3 Evaluation

3.1 Evaluation Set and LMs

The evaluation set also consists of four domains such as email, news, Q&A and twitter. It has
2,000 clean Korean speeches independent of LM training corpus. We converts the speeches into
HTK standard lattice format (SLF) files with wFST-based Korean speech recognizer, which uses
small LM. We prepare two evaluation sets as described in Table 2. EVAL1 uses all sentences and
EVAL2 divides the evaluation set into a train/development set and a test set.

of speech email news Q&A twitter All

EVAL1 200 400 400 1000 2000

EVAL2
train 150 300 300 750 1500

Test 50 100 100 250 500

TABLE 2 – Preparation of two evaluation sets.

We select a vocabulary set for building language models. The vocabulary has 1.3 million entries
which extracts from the corpus of 3.3 billion words with a coverage of 99.84% of the corpus. We
use the 3.3 billion words corpus as a training set for language models in this evaluation. The
domain of the corpus consists of twitter, news, community and Q&A. The training corpus is built
by crawling from the web sites

We builds two n-gram language models for the evaluation; one is Small LM (1.3m 1gram, 4.5m
2gram, 2.3 3gram), and the other is Big LM (1.3m 1gram, 42.1m 2gram, 45.8m 3gram). In
addition, we build the distance independent mutual information LM (DIMI LM) (GuoDong,
2004), which has 121 million pairs extracted from the training data within the 6 words distance.

3.2 Lattice Rescoring

We use EVAL1 to evaluate our distributed LM architecture. In this experiment, EVAL1 is a
training set of the NPE algorithm to estimate interpolation weights for the LMs. Also, EVAL1 is
a test set of this experiment. Table 3 shows the result of the lattice rescoring tests.

type email news Q&A twitter All

1 AM 85.13 80.34 83.59 85.6 84.32

2 AM+Small LM 86.93 83.17 86.49 87.16 86.35

3 AM+Big LM 88.3 84.67 87.4 88.15 87.41

4 AM+Big LM+DIMI LM 88.41 85.81 87.59 88.28 87.73

5 Big LM+DIMI LM (no AM) 85.1 83.75 85.7 85.28 85.13

TABLE 3 – Evaluation with EVAL1 (accuracy %, top1)

222

The result of type1 is the ASR accuracy with only AM scores. The result of type2 is the baseline
accuracy since it is the performance of ASR with small LM. We use the NPE algorithm from
type3 to type5. The gain of the accuracy is 1.06% when we apply the Big LM to replace small
LM in type3. The test type4, the accuracy of the all test sentences increases in small. However, in
news domain, the gain of the accuracy is 1.14%. The result of type5 shows the importance of AM
scores. The test cannot improve the result of lattice rescoring when we ignore AM scores in the
input lattice.

FIGURE 4 – Naïve parameter estimation algorithm.

Figure 4 shows the oscillation of the accuracy when NPE estimates the interpolation weights to
the big LM and DIMI LM (type4). The NPE finds the optimal weights in the 43th iteration and
the duration time is not over 20 minutes. Although the NPE cannot maintain the optimal accuracy,
the result shows that it is available to find the appropriate interpolation weights in the short-term.
This evaluation shows that the NPE can integrate a long-distance LM that is different with n-
gram based LMs. In addition, the algorithm can estimate the interpolation weights to the multiple
LM resources.

type email news Q&A twitter All

Baseline AM+Small LM
Train 86.15 83.71 86.26 87.23 86.29

Test 87.84 82.01 85.57 86.48 85.97

Lattice

Rescoring

AM+Big LM

+DIMI LM

Train 87.65 86.28 87.83 88.23 87.63

Test 88.87 83.61 86.21 88.18 87.37

TABLE 4 – Evaluation with EVAL2 (accuracy %, top1), NPE with Train Set

The evaluation with EVAL2 described in Table 4. In this experiment, we apply NPE only to the
train set. The result shows that the gain of accuracy of test set is 1.4% when the gain of accuracy
of train set is 1.34%. From this test, we find that the NPE cannot guarantee the optimal weight of
test set with only train set because of the over-fitting problem; the accuracy of all test is 87.47
when we apply NPE to test set. However, the result shows consistency in the gain of accuracy in
all domains.

 Distributed LM Non-distributed LM

Acc. % Time(sec) Acc. % Time(sec)

1st 88.44 180 88.44 206

2nd 88.33 164 88.47 249

3rd 88.36 184 88.36 193

Avg. 88.37 176 88.42 216

TABLE 5 – Distributed LM vs. Non-distributed LM

223

In addition, we test the email set of EVAL1 considering the comparison of distributed LM and
non-distributed LM. We test it 3 times of NPE with 30 iterations. The total number of LM score
computation is 394,581 in one NPE process. The type of experiment is same with type 4 in Table
4. From the Table 5, we find that the reduction of the time is 18%. In the case of accuracy, there
is only marginal difference between two tests.

If the Non-distributed LM is 1st-pass big LM based ASR, then the result of this test, EVAL1
email set, is 89.16% accuracy; EVAL1 all set is 88.20%. The two-pass approach such as the
lattice rescoring cannot overcome 1st pass approach of the big LM since the small LM based ASR
cannot show the coverage of n-gram path of big LM. However, in this paper, our assumption is
the case that it is not possible to use the approach of 1st pass big LM ASR.

The main feature of our approach is to distribute LM computations not only to distribute LM
resources. The rescoring client sends the k numbers of n-best sentences to the k numbers of LM
servers. The LM servers return LM scores of the n-best sentences to the client. The computation
of a LM scoring is only occurred in the servers in parallel with each other. This is simple and
easy to implement and maintain the distributed lattice rescoring architecture.

Conclusion and perspectives

In this paper, we proposed the lattice rescoring architecture for applying the large scale
distributed language model to the speech recognition. AM/LM decoupling approach of a lattice is
required to replace large scale LMs with first-pass small LM. In the distributed LM server, we
adopted socket-streaming approach and the Trie-based memory DB for LM. Finally, we
suggested the naïve parameter estimation algorithm for the interpolation of multiple LMs. The
evaluation showed the appropriate gain using NPE algorithm that can find the optimal weights of
the LM interpolation. Also, we showed the integration between n-gram LM and DIMI LM. In the
future, we will improve the NPE algorithm in various domains. Domain adaptation technique can
be one of them.

References

Aoe, J., Morimoto, K. and Sato, T. (1992). An efficient implementation of trie structures,
Software Practice & Experiments, 22(9): 695-721.

Emami, A., Papineni, K. and Sorensen, J. (2007). Large-scale distributed language modeling. In
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing 2007.

Guodong, Z. (2004). Modeling of Long Distance Context Dependency. In Proceedings of the
20th international conference on computational linguistics, COLING ’04, page 92, 2004.

Tan, M., Zhou, W., Zheng, L. and Wang, S. (2011). A Large Scale Distributed Syntactic,
Semantic and Lexical Language Model for Machine Translation. In 49th Annual Meeting of the
Association for Computational Linguistics(ACL), 201-210.

Zhang, Y., Hildebrand, A. S. and Vogel, S. (2006). Distributed language modeling for Nbest list
re-ranking. In Proceedings of the 2006 Conference on Empirical Methods in Natural Language
Processing, pages 216–223.

224

