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ABSTRACT
We fill a gap in the systematically analyzed space of available techniques for state-of-the-art
dependency parsing by comparing non-projective strategies for graph-based parsers. Using
three languages with varying frequency of non-projective constructions, we compare the
non-projective approximation algorithm with pseudo-projective parsing. We also analyze the
differences between different encoding schemes for pseudo-projective parsing. We find only
minor differences between the encoding schemes for pseudo-projective parsing, and that the
non-projective approximation algorithm is superior to pseudo-projective parsing.

KEYWORDS: Multilingual Dependency Parsing, Non-projective Parsing, Pseudo-projective
Parsing.
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1 Introduction
One common justification for dependency syntax is that it, in contrast to constituent syntax,
can represent long-distance dependencies between words through non-projective dependencies
in a more straightforward way, without the use of traces or secondary edges. Informally, a
dependency tree is said to be non-projective if it cannot be drawn without crossing edges. An
example is shown in Figure 1.

root It is what federal support should try hardest to achieve
SBJ

ROOT

OBJ

NMOD SBJ

PRD

VC MNR

OPRD

IM

Figure 1: A non-projective sentence
Although there are decoding algorithms for graph-based parsers that are able to output non-
projective trees directly (e.g. spanning tree algorithms (McDonald et al., 2005b) and ILP-based
parsers (Riedel and Clarke, 2006, inter alia)), the chart-based algorithm of Eisner (1996), which
is restricted to projective output, has shown very promising results in recent years. It typically
outperforms the non-projective algorithms since it allows access to features involving pairs of
edges.

A notable extension to the chart-based parsing algorithm that is able to output non-projective
dependencies while still including edge-pair features is the non-projective approximation
algorithm of McDonald and Pereira (2006).

Non-projective edges have also been handled by applying pre- and post-processing steps to the
training and test data, allowing for the use of any labeled projective parsing algorithm, only
to recover the non-projective edges after parsing, e.g. pseudo-projective parsing (Nivre and
Nilsson, 2005).

In the CoNLL 2008 and 2009 Shared Tasks (Surdeanu et al., 2008; Hajič et al., 2009), some of
the best systems used the chart-based parsing algorithm. Besides using slightly different feature
sets, non-projective edges were handled differently – Bohnet (2009) used the non-projective
approximation algorithm, while Johansson and Nugues (2008) and Che et al. (2009) used
pseudo-projective parsing. Handling non-projective edges is unarguably an important aspect
of a parser, however, little is known about whether one of the methods mentioned above is
better than the other. With a fixed feature set, we compare pseudo-projective parsing with non-
projective approximation using a state-of-the-art chart-based dependency parser (Bohnet, 2010).
We also evaluate different encoding schemes for pseudo-projective parsing. More recently, highly
accurate parsers that model non-projective edges directly in the parsing algorithm have been
proposed, such as the ILP-based parser of Martins et al. (2010) as well as algorithms relying
on non-projective head automata (Koo et al., 2010). It would be interesting to include these
parsers in our study, however they only provide unlabeled trees. For now, we leave the extension
of these parsers to the labeled case and the comparison to future work.

All experiments are performed on three languages that exhibit different typological properties
and frequency of non-projective dependencies: Czech, English, and German. We find that
non-projective approximation performs better than pseudo-projective parsing, although both
methods clearly outperform a projective baseline. While similar studies have been carried out
for transition-based parsers (Kuhlmann and Nivre, 2010), this is the first time non-projective
strategies for graph-based algorithms are compared in a multilingual setting.
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2 Background

We consider single-rooted dependency trees with one head per token, such as the one in Figure 1.
We use the notation x = x0 ... xn to denote a sentence with n tokens, where x0 is a special root
node. A labeled head-dependent relation (or edge) between a head h and dependent c with

the label l is denoted (h
l→ c). We omit the label when this is not relevant. A dependency tree

for a sentence x is a set y = {(p1
l1→ x1), ..., (pn

ln→ xn)} of edges, such that each node except
the root has exactly one head, and the graph is acyclic (i.e., it forms a single-rooted tree). A
node x i dominates another node x j if x i is an ancestor of x j . An edge (x i → x j) is defined to be
projective iff x i dominates all words between x i and x j . Otherwise it is non-projective. Moreover,
a dependency tree y is projective iff every edge is projective. Otherwise it is non-projective.

Graph-based Dependency Parsing algorithms solve the parsing problem by finding the highest
scoring dependency tree for a sentence: ŷ = argmaxy F(x , y), given a scoring function F . To
make the search for the optimal tree tractable, the scoring function is decomposed into a sum
over factors of the tree (McDonald et al., 2005a):

F(x , y) =
∑

f ∈ f actors(x ,y)

ψ( f ) ·w

where ψ is a feature-mapping function that maps a factor f to a vector in high-dimensional
feature space and w a weight vector.

The chart-based algorithm of Eisner (1996) has the advantage that it can incorporate second-
order factors while still remaining computationally feasible. The version we use is due to Car-
reras (2007) and makes use of second-order factors including sibling and grandchild relations.
This factorization offers access to valuable features but comes at the cost of a time complexity
of O(Ln4), where L is the number of edge labels. To reduce the impact of the factor L, edge
filters are applied (Bohnet, 2010), constraining the search of edge labels to those observed in
training for the same head and dependent POS-tags; this reduces execution time considerably.

The Non-projective Approximation algorithm (McDonald and Pereira, 2006) exploits the
observation that, although the chart-based parsing algorithm is only able to output projective
structures, the weight vector used to score the factors of the tree is not limited in this respect.
Hence, starting from the highest scoring projective tree output by the chart-based algorithm, it
iteratively tries to reattach all tokens, one at a time, everywhere in the sentence as long as the
tree property holds. In each iteration, the highest scoring move, i.e., the move that increases
the total score of the tree the most is executed. The process terminates when the increase is
below a certain threshold.

Pseudocode1 for the algorithm is given in Figure 2. The auxiliary function ALLOWED-
LABELS(h, c, x) returns the labels permitted by the edge filters and TREE(y) returns true if

y is a tree, and false otherwise. The notation y[ j
k→ i] denotes a tree identical to y, except

that the head of x i is replaced by x j , and its label by k. This process could potentially take
exponential time, although this is not a problem in practice, and the algorithm typically halts
after a few moves (McDonald and Pereira, 2006).

Pseudo-projective Parsing can be used with any labeled projective parsing algorithm. The
training data is pre-processed by applying lifting operations to the non-projective edges while

1From McDonald and Pereira (2006), but adapted to the labeled case.
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input Sentence x , tree y , scoring function F , threshold t
returns (Non-)projective tree y ′

score← F(x , y)
while true

m←−∞, c←−1, p←−1, l ← null
for i : 1..n

for j : 0..n
y ′← y[ j→ i]
if ¬TREE(y ′) continue
for k ∈ ALLOWED-LABELS(i, j)

y ′← y[ j
k→ i]

s← F(x , y ′)
if s > m

m← s, c← i, p← j, l ← k
if m− score > t

score← m, y ← y[p
l→ c]

else return y

Figure 2: Non-projective approximation

encoding information about the lifts into the edge labels in the tree. The parser is then trained
on these projective trees and learns the encoding of the liftings. An inverse transformation
that recovers the non-projective edges is then applied to the parser output (Nivre and Nilsson,
2005). This way, non-projective edges are introduced in a post-processing step allowing for the
use of any projective parsing algorithm.

Nivre and Nilsson (2005) propose three label encoding schemes differing in terms of the
granularity in the marking of lifts: Head - each lifted edge is marked as lifted, and additionally
receives the label of its original head; Path - the lifted edge is marked as lifted, and all heads
along the path it was lifted through get marked as having had a dependent lifted; HeadPath -
a combination of Head and Path, where the lifted edge is marked as in the Head scheme and
all heads along the path it was lifted get marked as in the Path scheme. Figure 3 shows the
dependency tree from Figure 1 when the edge of what has been lifted using the HeadPath
scheme.

root It is what federal support should try hardest to achieve
SBJ

ROOT OBJ↑IM
NMOD SBJ

PRD

VC↓ MNR

OPRD↓
IM↓

Figure 3: The same sentence as in Figure 1, but the non-projective edge has been lifted using
the HeadPath scheme

Each of the encoding schemes leads to an increase in the set of edge labels (up to 2n(n+ 1)
new labels for HeadPath (Nivre and Nilsson, 2005)), and thus to an increase in parsing time.
Additionally, there is a possible data sparsity issue as a result of very infrequent lifted edges. It
has therefore been proposed to cap the number of newly introduced labels and retain only the
m most frequent new labels in the training data (Johansson and Nugues, 2008).

The inverse transformation looks for edges that are marked as lifted (i.e. of the form l↑ or
l↑lnp). It then does a breadth-first search, starting from the head of this edge, looking for a new
head for the dependent. Details depend on the encoding scheme: For Head, search halts at

138



the first token whose edge label matches the lifted edge (i.e. the first token with the label lnp);
for Path, only the subtrees marked with ↓ are considered, and search halts at the deepest edge
marked with ↓; for HeadPath the edge is reattached at the deepest token that matches lnp↓.
Additionally, for HeadPath, the inverse transformation of Head is used as a fallback in case the
search fails (Nivre and Nilsson, 2005).

3 Experiments and Results

The parser we employ (Bohnet, 2010)2 uses non-projective approximation by default.3 In the
experiments involving pseudo-projective parsing, we switched off the non-projective approxi-
mation.

We use the three data sets from the CoNLL 2009 Shared Task (Hajič et al., 2009) that contain
non-projective edges, namely Czech, English, and German. We use the standard data split. Since
the frequency of non-projective edges is relatively small, we resort to a 10-fold cross-validation
on the training set in order to get more reliable figures. A breakdown of the training sets for
each language is shown in Table 1. We use the “predicted” layers of annotation, i.e. output of
standard POS-taggers etc., for a realistic evaluation. We report labeled attachment score (LAS),
i.e. the percentage of correctly assigned heads and edge labels, and labeled exact match (LEM)
for complete sentences. The scores are micro-averaged, i.e., the parser output for all folds are
concatenated and compared against the whole training set.

Following Kuhlmann and Nivre (2010) we also compute precision and recall for non-projective
edges. They define recall as the percentage of tokens that have a non-projective dependency
in the gold standard and receive the correct head and label in the parser output. Precision is
defined as the percentage of tokens getting a non-projective dependency in the parser output
receiving the correct head and label. As Kuhlmann and Nivre (2010) point out, these definitions
are somewhat unusual since they have different numbers of true positives, and combining
them through the unweighted harmonic mean is not meaningful. Hence we do not present any
F-measures in the tables.

Sentences #NP edges (%) % NP sentences
Czech 38,727 12,112 (1.86%) 22.42%
English 39,279 3,724 (0.39%) 7.63%
German 36,020 15,123 (2.33%) 28.10%

Table 1: Breakdown of the training sets of each language. NP means non-projective.

In the experiments we want to investigate three questions: (1) Are pseudo-projective parsing
and non-projective approximation equally good, or is one better than the other? (2) What is
the difference between the different label encoding schemes for pseudo-projective parsing?
(3) How badly does label capping for pseudo-projective parsing degrade performance?

We also trained a baseline parser on trees that were projectivized, but received no augmented
edge labels. All results are shown in Table 2. The rows with subscripted pseudo-projective
encodings denote parsers that used a label cap (of 30). As an indication of how often the
different parsers produce non-projective edges, the total number of non-projective edges are
given in the last column.

2http://code.google.com/p/mate-tools
3The threshold t has already been tuned to 0.3 by Bohnet (2010), and we keep this fixed throughout the experiments.
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During training and testing we experienced that the capped parsers required about as much
time as the parsers that use the non-projective approximation, while the uncapped HeadPath
parsers took about twice as much time. This is because the increase in decoding time due
to the increased set of labels for the pseudo-projective parsers is roughly canceled out by the
call to the non-projective approximation algorithm. When the cap is dropped, however, the
pseudo-projective parsers are overwhelmed by the number of new labels and consequently need
more time for decoding.

All Non-projective
Czech LAS LEM P R #NP
Baseline 81.10 25.90 5.40 0
Path30 81.75 27.28 76.86 40.13 5,748
Head30 81.86 27.67 71.23 44.23 6,868
HeadPath30 81.73 27.51 71.64 39.28 5,973
Path 81.78 27.35 76.48 41.03 5,868
Head 81.94 27.87 70.10 48.18 7,716
HeadPath 81.94 27.94 70.40 48.82 7,727
NPA 82.11 28.40 68.95 65.72 11,394

English LAS LEM P R #NP
Baseline 89.73 28.95 7.44 0
Path30 89.74 29.08 75.42 23.58 834
Head30 89.80 29.37 61.47 39.02 1,983
HeadPath30 89.80 29.27 63.21 38.94 1,911
Path 89.77 29.41 75.85 23.85 824
Head 89.83 29.44 61.33 39.98 2,061
HeadPath 89.82 29.40 60.55 40.44 2,066
NPA 89.80 29.52 49.46 43.77 3,787

German LAS LEM P R #NP
Baseline 86.01 30.94 4.74 0
Path30 86.60 33.44 70.36 36.05 6,778
Head30 86.74 33.77 62.45 40.12 8,741
HeadPath30 86.64 33.58 64.32 40.24 8,416
Path 86.61 33.62 69.78 36.53 6,885
Head 86.79 33.74 60.27 41.65 9,424
HeadPath 86.75 33.66 60.78 42.14 9,359
NPA 87.05 34.99 65.37 58.47 14,208

Table 2: Results for pseudo-projective parsing and non-projective approximation (NPA). P and R
denote precision and recall for non-projective edges. #NP denotes the total number of predicted
non-projective edges.

Not surprisingly, our results indicate that handling non-projective edges is much more important
in Czech and German. In these languages, the baseline is clearly outperformed by all other
parsers. In English, non-projective approximation, and uncapped Head, HeadPath (p < 0.001),
and Path (p < 0.05) are all significantly better than the baseline (using a paired t-test).

The non-projective approximation has a considerably higher recall and the amount of non-
projective edges is closer to the real number (cf. Table 1), yet the precision does not seem to be
severely penalized. The low recall for the pseudo-projective parsers is explained by the fact that
these transformations rely on predicting corresponding labels (depending on encoding scheme)
in two places – the predicted projective head, with an augmented label, and the reattachment
location. Since the parser as such is not aware of this interdependency, it is possible that it
predicts a tree with a lifted edge, but no appropriate place to reattach it, in which case the edge
is left in place. The non-projective approximation algorithm does not have the same limitation
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as it simply moves single edges around as long as it increases the overall scores.

Pseudo-projective parsing vs Non-projective approximation. Comparing non-projective
approximation with the uncapped pseudo-projective parsers, we find that in Czech and German
the non-projective approximation is significantly better than all the pseudo-projective parsers
(p < 0.001). The difference in LAS, compared to the best pseudo-projective encoding, is roughly
0.25. Although this may seem tiny, the increase in exact match (LEM) is more than a point for
German and about half a point for Czech. This improvement is important since, ultimately, a
correct analysis of an entire tree is what we aim for. For English, the scores are much closer and
only the improvement for the non-projective approximation over Path is significant (p < 0.05).
The improvements in exact match are also rather small.

Pseudo-projective parsing. Considering pseudo-projective parsing alone, Path consistently
predicts the fewest non-projective edges, leading to the highest precision but almost always the
lowest recall. This is reasonable, as the requirement for Path to induce a non-projective edge is
that it predicts both a lifted edge, and a path of edges from the head to an appropriate place to
reattach it. Since these augmented labels are rather rare, it seems like the parser suffers from
sparsity issues during training and underpredicts these edges.

The recall figures are highest for HeadPath, although it lags a bit behind Head for the capped
version in Czech and English. This is because some of the most frequent labels in the HeadPath
scheme are of the form l↓, which means that the parser learns only very few lifted edges (i.e.
edges of the form l↑lnp).

Besides the slightly lower scores for Path, the overall difference between the encoding schemes
appear very small. With the cap, the Head encoding appears to be a bit better, but HeadPath
catches up when the cap is dropped.

Capping the number of new labels leads to slightly lower results in Czech and German, however
only the increases for HeadPath against its capped counterpart in Czech (p < 0.001) and
German (p < 0.01) are statistically significant.

4 Conclusion

We presented a comparative analysis of the non-projective approximation algorithm and pseudo-
projective parsing using a graph-based parser. Our experimental results indicate that the non-
projective approximation algorithm outperforms pseudo-projective parsing in overall accuracy
for Czech and German. For English, where non-projective dependencies are relatively infrequent,
the strategies are rather tied, albeit better than the baseline. In conclusion, the non-projective
approximation algorithm is clearly superior for languages that more often exhibit long-distance
dependencies.

Our evaluation of the different encoding schemes for pseudo-projective parsing reveals that the
schemes are roughly equivalent in overall performance, and that capping the number of labels
results only in a slight performance degradation.

In the future, we aim to extend our study to include parsers that handle non-projective edges
in the immediate parsing process. We also intend to look more closely at the underlying
phenomena that give rise to the non-projective edges.
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