
Proceedings of COLING 2012: Posters, pages 103–112,
COLING 2012, Mumbai, December 2012.

Improved Spelling Error Detection and
Correction for Arabic

Mohammed Attia
1, 4 Pavel Pecina

2
 Younes Samih

3

Khaled Shaalan
1 Josef van Genabith

4

(1) The British University in Dubai, UAE
(2) Institute of Formal and Applied Linguistics,
 Faculty of Mathematics and Physics,
 Charles University in Prague, Czech Republic
(3) Heinrich-Heine-Universität, Germany
(4) School of Computing, Dublin City University, Ireland

{mattia,josef}@computing.dcu.ie, pecina@ufal.mff.cuni.cz,

samih@phil.uni-duesseldorf.de, khaled.shaalan@buid.ac.ae

ABSTRACT

A spelling error detection and correction application is based on three main components: a

dictionary (or reference word list), an error model and a language model. While most of the

attention in the literature has been directed to the language model, we show how improvements in

any of the three components can lead to significant cumulative improvements in the overall

performance of the system. We semi-automatically develop a dictionary of 9.3 million fully

inflected Arabic words using a morphological transducer and a large corpus. We improve the

error model by analysing error types and creating an edit distance based re-ranker. We also

improve the language model by analysing the level of noise in different sources of data and

selecting the optimal subset to train the system on. Testing and evaluation experiments show that

our system significantly outperforms Microsoft Word 2010, OpenOffice Ayaspell and Google

Docs.

TITLE IN ARABIC

 اكتشاف وتصحيح الأخطاء الإملائية في اللغة العربية تحسين

ABSTRACT IN ARABIC

 ونموذج مرجعية(، كلمات قائمة)أو قاموس وهي: رئيسية مكونات ثلاث على الإملائية الأخطاء وتصحيح اكتشاف تطبيقات تقوم

 على إدخالها يتم التي التحسينات أن نبين فإننا ،اللغة نموذج على العلمية الأبحاث في الاهتمام ينصب وبينما اللغة. ونموذج الخطأ

 قاموس بتطوير البحث هذا في قمنا وقد البرنامج. لأداء النهائية النتائج في تراكمية تحسينات إلى تؤدي أن يمكن الثلاثة المكونات

 بتحسين وقمنا بيرة.ك نصوص وذخيرة صرفي محلل باستخدام آلي شبه بشكل كلمة كاملا تصريفا مصرفة مليون 9.3 من يتكون

 مسافة خوارزمية عن الناتجة المقترحات ترتيب لإعادة وسيلة وتطوير الإملائية الأخطاء أنواع تحليل طريق عن الخطأ نموذج

 المثالي الجزء واختيار المختلفة البيانات مصادر في الأخطاء نسبة تحليل طريق عن اللغة نموذج بتحسين كذلك وقمنا التحرير.

 وأوبن 0202 أوفيس مايكروسوفت على كبير بشكل يتفوق البرنامج أن والتقييم الاختبار تجارب وتبين عليه. رنامجالب لتدريب

 جوجل. وملفات أوفيس

KEYWORDS : Arabic, spelling error detection and correction, finite state morphological

generation, Arabic spell checker, spelling error model, Arabic word list

KEYWORDS IN ARABIC:

قائمة التدقيق الإملائي،اللغة العربية، اكتشاف وتصحيح الأخطاء الإملائية، التوليد الصرفي باستخدام آلات الحالة المحدودة،

 كلمات اللغة العربية

103

1 Introduction

Spelling correction solutions have significant importance for a variety of applications and NLP

tools including text authoring, OCR, pre-editing or post-editing for parsing and machine

translation, intelligent tutoring systems, etc.

The spelling correction problem is formally defined (Brill, and Moore, 2000) as: given an

alphabet , a dictionary consisting of strings in , and a spelling error , where ∉ and

 ∊ , find the correction , where ∊ , and is most likely to have been erroneously typed as

 . This is treated as a probabilistic problem formulated as (Kernigan, 1990; Norvig, 2009; Brill,

and Moore, 2000):

Here is the correction, is the spelling error, is the probability that is the correct word

(or the language model), and is the probability that is typed when is intended (the

error model or noisy channel model), is the scoring mechanism that computes all

plausible values of the correction c and maximizes its probability.

The definition shows that a good spelling correction system needs a balanced division of labour

between the three main components: the dictionary, error model and language model. In this

paper we show that in the error model there is a direct relationship between the number of

correction candidates and the likelihood of finding the correct correction: the larger the number

of candidates generated by the error model, the more likely is to include the best correction. At

the same time, in the language model there is an inverse relationship between the number of

candidates and the ability of the model to decide on the right correction: the larger the number of

candidates, the less likely the language model will be successful in making the correct choice. A

language model is negatively affected by a high dimensional search space. A language model is

also negatively affected by noise in the data when the size of the data is not very large.

In this paper we deal with Modern Standard Arabic as used in official and edited news web sites.

Dialectal Arabic is beyond the scope of this research. Furthermore, we deal with non-word errors;

real word errors are not handled in this paper. The problem of spell checking and spelling error

correction for Arabic has been investigated in a number of papers. Shaalan et. al. (2003) provide

a characterization and classification of spelling errors in Arabic. Haddad and Yaseen (2007)

propose a hybrid approach that utilizes morphological knowledge to formulate morphographemic

rules to specify the word recognition and non-word correction process. Shaalan et. al. (2012) use

the Noisy Channel Model trained on word-based unigrams for spelling correction, but their

system performs poorly against the Microsoft Spell Checker.

Our research differs in that we use an n-gram language model (mainly bigrams) trained on the

largest available corpus to date, the Arabic Gigaword Corpus 5
th

 Edition. In addition, we classify

spelling errors by comparing the errors with the gold correction, and, based on this classification,

we develop knowledge-based re-ranking rules for reordering and constraining the number of

candidates generated though the Levenshtein edit distance (Levenshtein, 1966) and integrate

them into the overall model. Furthermore, we show that careful selection of the language model

training data based on the amount of noise present in the data, has the potential to further improve

overall results. We also highlight the importance of the dictionary (or reference word list) in the

processes of spell checking and candidate generation.

In order to evaluate the system, we create a test corpus of 400,000 running words (tokens)

consisting of news articles collected from various sources on the web (and not included in the

104

corpus used in the development phase). From this test corpus, we extract 2,027 spelling errors

(naturally occurring and not automatically generated), and we manually provide each spelling

error with its gold correction. We test our system against this gold standard and compare it to

Microsoft Word 2010, OpenOffice Ayaspell, and Google Docs. Our system performs

significantly better than the three other systems both in the tasks of spell checking and automatic

correction (or 1
st
 order ranking).

The remainder of this paper is structured as follows: Section 2 shows how the dictionary (or word

list) is created from the AraComLex finite-state morphological generator (Attia et al., 2011), and

how spelling errors are detected. Section 3 explains how the error model is improved by

developing rules to improve the ranking produced through finite-state edit distance. Section 4

shows how the language model is improved by selecting the right type of data to be trained on.

Various data sections are analysed to detect the amount of noise they have, then some subsets of

data are chosen for the n-gram language model training and the evaluation experiments. Finally

Section 5 concludes.

2 Improving the Dictionary

The dictionary (or word list) is an essential component of a spell checker/corrector, as it is the

reference against which the decision can be made whether a given word is correct or misspelled.

It is also the reference against which correction candidates are filtered. There are various options

for creating a word list for spell checking. It can be created from a corpus, a morphological

analyser/generator, or both. The quality of the word list will inevitably affect the quality of the

application whether in checking errors or generating valid and plausible candidates.

We use the AraComLex Extended word list for Arabic described in Shaalan et. al. (2012) further

enhancing it by matching its word list against the Gigaword corpus. Words found in the

Gigaword corpus and not included in the AraComLex Extended are double-checked by a second

morphological analyser, the Buckwalter Arabic Morphological Analyser (Buckwalter, 2004), and

the mismatches are manually revised, ultimately creating a dictionary of 9.3 million fully

inflected Arabic word types.

For spelling error detection, we use two methods, the direct method, that is matching against the

dictionary (or word list), and a character-based language modelling method in case such a word

list is not available. The direct way for detecting spelling errors is to match words in an input text

against a dictionary. Such a dictionary for Arabic runs into several million word types, therefore

it is more efficient to use finite state automata to store words in a more compact manner. An

input string is then compared against the valid word list paths and spelling errors will show as the

difference between the two word lists (Hassan et al., 2008, Hulden, 2009a).

Shaalan et. al. (2012) implement error detection through language modelling. They build a

character-based tri-gram language model using SRILM
1
 (Stolcke et al., 2011) in order to classify

words as valid and invalid. They split each word into characters, and create two language models:

one for the total list of words pre-classified as valid (9,306,138 words), and one for a list of

words classified as invalid (5,841,061 words). Their method yields a precision of 98.2 % at a

recall of 100 %.

1 http://www.speech.sri.com/projects/srilm/

105

3 Improving the Error Model: Candidate Generation

Having detected a spelling error, the next step is to generate possible and plausible corrections for

that error. For a spelling error and a dictionary , the purpose of the error model is to generate

the correction , or list of corrections
 where

 ∊ , and
 are most likely to have been

erroneously typed as . In order to do this, the error model generates a list of candidate

corrections that bear the highest similarity to the spelling error .

We use a finite-state transducer to propose candidate corrections within edit distance 1 and 2

measured by Levenshtein Distance (Levenshtein, 1966) from the misspelled word (Oflazer, 1996;

Hulden, 2009b; Norvig, 2009; Mitton, 1996). The transducer works basically as a character-based

generator that replaces each character with all possible characters in the alphabet as well as

deleting, inserting, and transposing neighbouring characters. There is also the problem of merged

(or run-on) words that need to be split, such as أوأي ‘>w>y’ “or any”.

Candidate generation using edit distance is a brute-force process that ends up with a huge list of

candidates. Given that there are 35 alphabetic letters in Arabic, for a word of length , there will

be deletions, − 1 transpositions, 35 replaces, 35 + 1 insertions and − 3 splits,

totaling 73 + 31 . For example, a misspelt word consisting of 6 characters will have 469

candidates (with possible repetitions). This large number of candidates needs to be filtered and

reordered in such a way that the correct correction comes top or near the top of the list. To filter

out unnecessary words, candidates that are not found in the dictionary (or word list) are

discarded. The ranking of the candidates is explained in the following sub-section.

3.1 Candidate Ranking

The ranking of candidates is initially based on a simple edit distance measure where the cost

assignment is based on arbitrary letter change. In order to improve the ranking, we analyse error

types in our gold standard of 2,027 misspelt words with their corrections to determine how they

are distributed in order to devise ranking rules for the various edit operations.

Insert 2

Substitute 2

Delete 2

FIGURE 1 – Simple edit distance measure

Insert 3

Substitute 3

Delete 3

Cost 2

&:> r: :r }:y j:p :t :A :w t:n b:y :h :d ':} s:$:' w: |:A d: :Y p:h v:t :l w:A :n v:t t:v T: :T

$:s b: l: >:| y:} q: :q >:' y:d z:s m: n:t x:H n: t: }:> x: :E >:& }:& :w f:k S: :S :b d:*

Y:A |:< w:r q:f :m j:k :& g:j T:t h:d :p p: ':> }:' :} q: l: :y y: l:S A:

Cost 1

>:A <:A |:A A:| A:> A:< <:> >:< |:> >:| >:& y:Y Y:y h:p h:p &:' H:j j:H S:l y ':} y ':y

FIGURE 2 – Re-ranked edit distance

Based on these facts we use a re-ranker to order edit distance operations according to their

likelihood to generate the most plausible correction. Our analysis shows that hamzahs (>, <, &,

106

A, }, {, ' and |), the pair of yaa (y) and alif maqsoura (Y), and the pair of taa marboutah (p) and

haa (h) contribute to the largest amount of spelling errors. Our re-ranker is sensitive to these facts

and primes the edit distance scoring mechanism with different rules following the error patterns

for Arabic. It assigns a lower cost score to the most-frequently confused character sets (which are

often graphemically similar), and a higher score to other operations. We use the foma (Hulden,

2009b) “apply med <string>” command to find approximate matches to the string in the top

network by minimum edit distance. Figure 1 and 2 show the different configuration files for the

simple and re-ranked edit distance.

We also notice that split words constitute 16 % of the spelling errors in the Arabic data. These are

cases where two words are joined together and the space is omitted, such as عبدالدايم

‘EbdAldAym’ “Abdul-Dayem”. The problem with split words is that they are not handled by the

edit distance operation. Therefore we add a process for automatically inserting spaces between

the various parts of the string. This will create more candidates: a word of length will have

 − 3 candidates, given that the minimum word length in Arabic is two characters.

3.2 Evaluation of the Candidate Ranking Technique

Our purpose in ranking generated candidates is to see the correct candidate (the gold correction)

at or near the top of the list, so that when we reduce the list of candidates we do not lose so many

of the correct ones. We test the ranking mechanism using our gold standard of 2,027 misspelt

words with their gold correction.

Cut-

off

limit

Simple edit distance score

gold found in candidates

Re-ranked edit distance score

gold found in candidates

without split

words %

after adding

split words %

without split

words %

after adding

split words %

100 79.97 90.97 82.09 93.09

90 79.87 90.87 82.04 93.04

80 79.72 90.73 82.04 93.04

70 79.33 90.33 82.04 93.04

60 78.93 89.94 81.85 92.85

50 78.34 89.34 81.85 92.85

40 77.16 88.16 81.65 92.65

30 75.04 86.04 81.55 92.55

20 71.88 82.88 81.01 92.01

10 64.58 75.58 79.92 90.92

9 62.90 73.90 79.72 90.73

8 61.77 72.77 79.63 90.63

7 59.60 70.60 79.13 90.13

6 56.83 67.83 78.93 89.94

5 53.33 64.33 78.59 89.59

4 48.99 59.99 78.10 89.10

3 44.06 55.06 77.70 88.70

2 37.15 48.15 75.78 86.78

1 23.88 34.88 65.66 76.67

TABLE 1 – Comparing simple edit distance with re-ranked edit distance

107

We compare the simple edit distance measure to our revised edit distance re-ranking scorer. As

Table 1 shows, the re-ranking scorer performs better at all levels. We notice that when the

number of candidates is large the difference between the simple edit distance and the re-ranked

edit distance is not big (about 2 % absolute at the 100 cut-off limit without splits), but when the

limit for the number of candidate is lowered the difference increases quite considerably (about

42 % absolute at 1 cut-off limit without splits). This indicates that our knowledge-based edit

distance re-ranker has been successful in pushing good candidates up the top of the list. We also

notice that adding splits for merged words has a beneficial effect on all counts.

4 Spelling Correction

Having generated correction candidates and improved their ranking based on the study of the

frequency of the error types, we now use language models trained on different corpora to finally

choose the single best correction. We compare the results against the Microsoft Spell Checker in

Office 2010, Ayaspell used in OpenOffice, and Google Docs.

4.1 Correction Procedure

For automatic spelling correction (or first order ranking) we use n-gram language models.

Language modelling assumes that the production of a human language text is characterized by a

set of conditional probabilities,
 , where

 is the history and is the prediction,

so that the probability of a sequence of k words P(w1, …, wk) is formulated as a product (Brown

et al., 1992):

We use the SRILM toolkit
2
 (Stolcke et al., 2011) to train 2-, 3- and 4-gram language models on

our data sets. As we have two types of candidates, normal words and split words, we use two

SRILM tools: disambig and ngram. We use the disambig tool to choose among the normal

candidates. Handling split words is done as a posterior step where we use the ngram tool to score

the chosen candidate from the first round and the various split-word options. Then the candidate

with the least perplexity score is selected. The perplexity of a language model is the reciprocal of

the geometric average of the probabilities. If a sample text S has |S| words, then the perplexity is

 (Brown et al., 1992). This is why the language model with the smaller perplexity is in

fact the one with the higher probability with respect to S.

4.2 Analysing the Training Data

Our language model is based on raw data from two sources: the Arabic Gigaword Corpus 5
th

Edition and a corpus of news articles crawled from the Al-Jazeera web site. The Gigaword corpus

is a collection of news articles from nine news sources: Agence France-Presse, Xinhua News

Agency, An Nahar, Al-Hayat, Al-Quds Al-Arabi, Al-Ahram, Assabah, Asharq Al-Awsat and

Ummah Press.

Before we start using our available corpora in training the language model, we analyse the data to

measure the amount of noise in each subset of the data. In order to do this, we create a list of the

most common spelling errors. This list of spelling errors is created by analysing the data using

MADA (Habash et al., 2005; Roth et al., 2008) and checking instances where words have been

normalized. In this case the original word is considered to be a suboptimal variation of the

spelling of the diacritized form. We collect these suboptimal forms and sort them by frequency.

2 http://www.speech.sri.com/projects/srilm/

108

Then we take the top 100 misspelt forms and see how frequent they are in the different subsets of

data in relation to the word count in each data set.

The analysis shows that the data has a varying degree of cleanness, ranging from the very clean

to the very noisy. Data in the Agence France-Presse (AFP) is the noisiest while Ummah Press is

the cleanest, and Al-Jazeera is the second cleanest. Due to the fact that the Ummah Press data is

small in size compared to the AFP data we ignore it in our experiments and use instead the Al-

Jazeera data for representing the cleanest data set.

4.3 Automatic Correction Evaluation

For comparison, we first evaluate the automatic correction (or first order ranking) of three

industrial text authoring applications: Google Docs
3
, Open-Office Ayaspell, and Microsoft Word.

We use our test set of 2,027 spellings errors. We test the automatic correction on two levels: at

the word type level (that is unique words without repetition) and the word token level (that is

words as they are found in the corpus with possible repetition). The results in Table 2 are

reported in terms of accuracy (number of correct corrections divided by the number of all errors).

 Google Docs

Accuracy %

OpenOffice Ayaspell

Accuracy %

MS Word

Accuracy %

Tested on word types 17.02 41.88 71.24

Tested on word tokens 9.32 41.86 57.15

TABLE 2 – Evaluation of spelling correction of Google Docs, Ayaspell and MS Word 2010

cut-off

limit

normal candidates accuracy

2-gram

normal candidates + splitword

accuracy 2-gram

 AFP Jazeera Gigaword AFP Jazeera Gigaword

100 44.58 59.75 61.27 50.75 67.34 68.98

90 44.85 60.32 61.64 51.03 67.90 69.30

80 45.66 60.95 62.19 51.58 68.54 69.76

70 47.46 62.40 64.05 53.39 69.97 71.62

60 47.90 62.92 64.58 53.88 70.43 72.10

50 48.88 63.87 65.34 54.75 71.39 72.82

40 50.50 64.67 66.05 56.29 72.18 73.49

30 51.90 66.10 67.43 57.58 73.53 74.82

20 53.85 67.90 69.20 59.13 74.94 76.37

10 60.94 70.82 72.11 64.95 77.05 78.87

9 61.79 71.21 72.43 65.31 77.33 79.12

8 62.90 71.88 73.07 66.17 77.82 79.58

7 63.87 72.17 73.69 67.04 78.07 80.12

6 66.42 72.79 74.39 69.23 78.51 80.73

5 67.60 73.78 74.91 69.97 79.10 81.03

4 69.37 75.21 75.95 71.21 80.05 81.79

3 72.73 76.48 77.24 73.93 80.97 82.86

2 70.68 72.47 73.33 70.72 76.37 78.39

TABLE 3 – Correction accuracy with 2-gram LM trained on AFP, Al-Jazeera and Gigaword

3 Tested in June 2012

109

Next we evaluate our approach using language models trained on the AFP data (as representing

the noisiest type of data), the Al-Jazeera data (as representing the cleanest subset of data) and the

entire Gigaword corpus (as representing a huge data set with a moderate amount of noise). We

run our experiments on the candidates generated through the re-ranked edit distance processing

explained in Section 3 with varying candidate cut-off limits. We test the normal candidates using

the SRILM disambig tool and the split words using ngram tool.

As Table 3 shows, the best score achieved for the automatic correction is 82.86 % using the

bigram language model with a candidate cut-off limit of 3, and with the split words added. Table

3 shows that when there are too many candidates (above 10 candidates) the n-gram language

model performs poorly and with too few candidates (2 candidates) the performance also

deteriorates considerably. Therefore a reasonable range for the number of candidates for the n-

gram language model is between 7 and 3, with optimal performance at 3.

Comparing the two data sets which are comparable in size, the AFP and Al-Jazeera, we find that

the best score achieved with the AFP data is 73.93 % that is 7.04 % absolute less than the best

score achieved with the Al-Jazeera data (80.97 %). The quality of the data is a crucial factor here.

The Al-Jazeera data is relatively clean while the AFP data is full of noise and misspellings. This

emphasizes the point in language modelling that clean data is better than noisy data when they

are comparable in size.

Table 3 also shows that the extremely large corpus ameliorates the effect of the noise and

produces the best results among all the data sets. The best score achieved for the language model

trained on the Gigaword corpus is 82.86 %, which is 1.89 % absolute better than the score for Al-

Jazeera (80.97 %). This could be a further indication in favour of the argument that more data is

better than clean data. However, we must notice that the Gigaword data is one order of magnitude

larger than the Al-Jazeera data, and in some applications, for efficiency reasons, it could be better

to work with the language model trained on Al-Jazeera. We notice that the addition of the split

word component has a positive effect on all test results.

Compared to other spelling error detection and correction systems we notice that our best

accuracy score (82.86 %) is significantly higher than that for Google Docs (9.32 %), Ayaspell for

OpenOffice (41.86 %) and Microsoft Word 2010 (57.15 %).

Conclusion

We have developed methods for improving the main three components in a spelling error

correction application: the dictionary (or word list), the error model and the language model.

These three components are highly interconnected and interrelated. Without the dictionary being

an exhaustive and accurate representation of the language words space, without an error model

being able to generate a plausible and compact list of candidates, and without a language model

being trained on either clean data or an extremely large amount of data, no high quality

correction results can be expected. Our spelling correction methodology significantly

outperforms the three industrial applications of Ayaspell, MS Word, and Google Docs in first

order ranking of candidates.

Acknowledgments

This research is funded by the Irish Research Council for Science Engineering and Technology

(IRCSET), the UAE National Research Foundation (NRF) (Grant No. 0514/2011), the Czech

Science Foundation (grant no. P103/12/G084), and the Science Foundation Ireland (Grant No.

07/CE/I1142) as part of the Centre for Next Generation Localisation (www.cngl.ie) at Dublin

City University.

110

References

Attia, Mohammed, Pavel Pecina, Lamia Tounsi, Antonio Toral, Josef van Genabith. (2011). An

Open-Source Finite State Morphological Transducer for Modern Standard Arabic.

International Workshop on Finite State Methods and Natural Language Processing

(FSMNLP). Blois, France.

Beesley, K. R., and Karttunen, L. (2003). Finite State Morphology: CSLI studies in

computational linguistics. Stanford, Calif.: CSLI.

Ben Othmane Zribi C. and Ben Ahmed M. (2003). Efficient Automatic Correction of Misspelled

Arabic Words Based on Contextual Information, Lecture Notes in Computer Science,

Springer, 2003, Vol. 2773, pp.770–777.

Brill, Eric and Robert C. Moore. (2000). An improved error model for noisy channel spelling

correction. ACL '00 Proceedings of the 38th Annual Meeting on Association for

Computational Linguistics.

Brown, P. F., V. J. Della Pietra, P. V. deSouza, J. C. Lai and R. L. Mercer. (1992). Class-Based

n-gram Models of Natural Language, ' Computational Linguistics 18(4), 467-479.

Buckwalter, T. (2004). Buckwalter Arabic Morphological Analyzer (BAMA) Version 2.0.

Linguistic Data Consortium (LDC) catalogue number: LDC2004L02, ISBN1-58563- 324-0

Choudhury, Monojit, Rahul Saraf, Vijit Jain, Animesh Mukherjee, Sudeshna Sarkar and Anupam

Basu. (2007). Investigation and modeling of the structure of texting language. International

Journal on Document Analysis and Recognition. Volume 10, Numbers 3-4, 157-174, DOI:

10.1007/s10032-007-0054-0

Haddad, Bassam and Mustafa Yaseen. (2007). Detection and Correction of Non-Words in

Arabic: A Hybrid Approach. International Journal of Computer Processing of Oriental

Languages. Vol. 20, No. 4

Hajič, J., Smrž, O., Buckwalter, T., and Jin, H. (2005). Feature-Based Tagger of Approximations

of Functional Arabic Morphology. In: The 4th Workshop on Treebanks and Linguistic

Theories (TLT 2005), Barcelona, Spain.

Habash, Nizar and Rambow, Owen. (2005). Arabic Tokenization, Part-of-Speech Tagging and

Morphological Disambiguation in One Fell Swoop. Proceedings of the 43rd Annual Meeting

of the Association for Computational Linguistics (ACL'05), pp. 573—580

Hassan, Ahmed, Sara Noeman and Hany Hassan. (2008). Language Independent Text Correction

using Finite State Automata. IJCNLP. Hyderabad, India

Hulden, Mans. (2009a). Fast Approximate String Matching with Finite Automata. Proceedings of

the 25th Conference of the Spanish Society for Natural Language Processing (SEPLN).

Hulden, Mans. (2009b). Foma: a Finite-state compiler and library. EACL '09 Proceedings of the

12th Conference of the European Chapter of the Association for Computational Linguistics.

Association for Computational Linguistics Stroudsburg, PA, USA

Kernigan, M., Church, K., Gale W. (1990). A Spelling Correction Program Based on a Noisy

Channel Model. AT & T Laboratories, 600 Mountain Ave., Murray Hill, NJ.

111

Kiraz, G. A. (2001). Computational Nonlinear Morphology: With Emphasis on Semitic

Languages. Cambridge University Press.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals.

In: Soviet Physics Doklady, pp. 707-710.

Magdy, Walid and Kareem Darwish. (2006). Arabic OCR error correction using character

segment correction, language modeling, and shallow morphology. EMNLP '06 Proceedings of

the 2006 Conference on Empirical Methods in Natural Language Processing.

Mitton, Roger (1996). English spelling and the computer. Harlow, Essex: Longman Group

Norvig, Peter. (2009). Natural language corpus data. In Beautiful Data, edited by Toby Segaran

and Jeff Hammerbacher, pp. 219–242. Sebastopol, Calif.: O'Reilly

Oflazer, K. (1996) Error-tolerant finite-state recognition with applications to morphological

analysis and spelling correction. Computational Linguistics 22(1): 73-90

Parker, Robert, David Graff, Ke Chen, Junbo Kong, and Kazuaki Maeda. (2011). Arabic

Gigaword Fifth Edition. LDC Catalog No.: LDC2011T11, ISBN: 1-58563-595-2.

Roth, Ryan and Rambow, Owen and Habash, Nizar and Diab, Mona and Rudin, Cynthia. (2008).

Arabic Morphological Tagging, Diacritization, and Lemmatization Using Lexeme Models

and Feature Ranking. Proceedings of ACL-08: HLT, Short Papers, pp. 117--120.

Shaalan, Khaled,Younes Samih, Mohammed Attia, Pavel Pecina, and Josef van Genabith. (2012).

Arabic Word Generation and Modelling for Spell Checking. Language Resources and

Evaluation (LREC). Istanbul, Turkey. Pages: 719-725

Shaalan K., Allam A., Gomah A. (2003). Towards Automatic Spell Checking for Arabic, In

Proceedings of the 4th Conference on Language Engineering, Egyptian Society of Language

Engineering (ELSE), PP. 240-247, Oct. 21-22, Cairo, Egypt.

Stolcke, A., J. Zheng, W. Wang, and V. Abrash, (2011). SRILM at sixteen: Update and outlook.

in Proc. IEEE Automatic Speech Recognition and Understanding Workshop. Waikoloa,

Hawaii.

Watson, J. (2002). The Phonology and Morphology of Arabic, New York: Oxford University

Press.

Wintner, Shuly. (2008). Strengths and weaknesses of finite-state technology: a case study in

morphological grammar development Natural Language Engineering 14(4):457-469, October

2008.

112

