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ABSTRACT 

This paper presents a novel method to extract the collocations of the Persian language using a 

parallel corpus. The method is applicable having a parallel corpus between a target language and 

any other high-resource one. Without the need for an accurate parser for the target side, it aims to 

parse the sentences to capture long distance collocations and to generate more precise results. A 

training data built by bootstrapping is also used to rank the candidates with a log-linear model. The 

method improves the precision and recall of collocation extraction by 5 and 3 percent respectively 

in comparison with the window-based statistical method in terms of being a Persian multi-word 

expression. 
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1 Introduction 

Collocation is usually interpreted as the occurrence of two or more words within a short space in a 

text (Sinclair, 1987). This definition however is not precise, because it is not possible to define a 

short space. It also implies the strategy that all traditional models had. They were looking for co-

occurrences rather than collocations (Seretan, 2011). Consider the following sentence and its 

Persian translation
1
: 

"Lecturer issued a major and also impossible to solve problem." 

 .عنوان کردبزرگ و غیر قابل حل را  مشکلمدرس یک 

 "modarres/"lecturer/"مدرس"

 "yek/"a/"یک"

"مشکل" /moshkel/"problem  "  

   "bozorg/"major/"بزرگ"

 "va/"and/"و"

 "gheyreghabelehal/"impossible to solve/"غیر قابل حل"

 "onvankard/"issued/"عنوان کرد"

This sentence emphasizes the action of "issuing a problem" which is a collocation, because it is a 

common way of saying that someone warned about a problem. Figure 1 shows that a verb-object 

relation between "issued" and "problem" and the alignments between the sentences imply that 

there is a corresponding relation between "مشکل" /moshkel/"problem" and "عنوان کرد"/onvan 

kard/"issued" in the Persian language. 

 

 

FIGURE1 – Example of a collocation: The relation between مشکل and عنوان کرد in the Persian 

sentence corresponds to the relation between issued and problem in English sentence.  

Noticeably, window-based method cannot extract the collocation, because of the vagueness in the 

definition of short space. Moreover, the window cannot be expanded to include the words 

constructing the collocation. It is proved that expanding the window to more than 5 words is 

impractical (Dias, 2003). Besides, another flaw of the classical methods is that many false positive 

samples are mistakenly classified as collocation. This problem occurs especially in pairs having a 

small number of occurrences in the corpus (Seretan, 2011). While the latter problem can be solved 

(Basili et al.,1994), what this paper presents is another strategy which does not insist on classical 

approaches.  

Recent improvements on the accuracy of parsers motivate modern approaches to analyze the 

sentences first (Seretan, 2006). Although that is the case in many languages like English, a lot of 

                                                           
1 Persian uses Arabic script as its writing formalism which is written from right to left direction. 
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efforts have to be done in order to obtain an admissible accuracy in parsing the sentences of under-

resourced languages like Persian.  

This study accepts an alternative definition for collocation: "an expression consisting of two or 

more words that corresponds some conventional way of saying things" (Manning & Schütze, 

1999). This definition does not have the vagueness the window-based method has.  

Collocation has a deep influence on many other tasks of NLP such as MT systems (Orliac & 

Dillinger, 2003) and Text Summarization (Seretan, 2011) which makes it essential to find an 

alternative solution. From the next part of the paper, a process of extracting the collocations of 

Persian language will be presented.  

The parallel corpus used in this study is Tehran English-Persian Parallel Corpus (Pilevar et al., 

2011). The Corpus is comprised of more than 500000 pairs of sentences. The sentences are aligned 

by the IBM model3 using Giza++. In IBM model3 it is possible to have many to many alignments. 

This model is selected because it provides the extraction of collocations including more than two 

words. 

In this method, by having a parallel aligned corpus and also parsed sentences of the source 

language, dependencies between the words of the target language are extracted initially. Direct 

Projection Algorithm (Hwa et al., 2005) is employed. It uses the alignments between the source 

and target sentences and the dependencies of the source language. In order to rank pairs of words 

by a log-linear classifier, a reasonable training data is then provided using bootstrapping with a 

small initial training set. Afterwards, the log-linear model is trained to sort and classify the 

candidates. Finally, the validation phase is implemented by the means of mutual dependency of 

two constituents to validate them based on their frequency of occurrence in another Persian corpus. 

Figure 2 demonstrates the architecture of this system.  

  

 

FIGURE 2 – Simplified architecture of system. 

Briefly, the contribution of the paper is as follows: 

 Employing the initial syntactical analysis without a parser for target language 

 Using bootstrapping to build up a training data for log-linear classifier 

 Developing the first dependency-based collocation extraction approach for Persian 

language. 

In the next section, previous work related to this study is discussed. Section 3 consists of 4 

separate parts and explains the method. Section 4 reports a comparative evaluation between our 

method and a classical window-based method as a baseline. 
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2 Related work 

In the past decades, many studies regarding the collocation extraction have been undertaken. 

Classically, all approaches are consisted of two parts: Candidate Identification and Candidate 

Ranking. All earliest approaches devoted most of their efforts to find a suitable association 

measure (AM) in order to perform the ranking phase. One of the earliest measures is the z-score 

(Smadja, 1993) which assumes the data to be normally distributed. Log likelihood ratio (LLR) is 

another measure that is used in the recent efforts (Orliac & Dilinger, 2003). Still, the most 

common measure of collocation extraction is Pointwise Mutual Information (Church & Hanks, 

1990). There is not an agreement on the best AM, but recent studies suggest that Mutual 

Information is the best possible measure (Pecina, 2010). 

As mentioned above, the first phase of the architecture is identifying possible candidates. This 

phase is consisted of a linguistic preprocessing of the sentences (Seretan, 2011). The phase could 

be varied from lemmatization to deep parsing. Obviously, collocation deals with lemmas, not with 

word surface. Combining all inflected forms of a unique lemma leads to more competitive results 

(Evert, 2004). POS tagging is another preprocessing attempt to identify the potential candidates 

more precisely. There is a considerable improvement in the results of the system by performing 

POS tagging (Church & Hanks, 1990). 

The common drawback of all these approaches is that they are not able to capture long distance 

dependencies. There is a solution to overcome this problem (Charest et al.,2007; Pecina,2010). 

Although less convenient to apply for under-resourced languages, deep parsing could be used to 

preprocess the text (Lu & Zhou, 2004). 

Using monolingual corpora and word alignment is another recently common approach. In this 

approach, the monolingual corpus is replicated to generate a parallel corpus of the same sentences. 

Then, the aligned words are ranked, and pairs with higher scores are extracted as collocation (Liu 

et al., 2011). Another option is to use a multilingual parser to obtain more accurate results (Seretan 

& Wehrli, 2006). It is also unavailable in under-resourced languages. 

The classical approaches do not lead to the competitive results, and recent approaches are based on 

accurate parsers. This paper introduces a novel method that not only eliminates the drawbacks of 

classical approaches, but also employs the syntactical analysis of the corpus without the need for a 

parser for the Persian (target side) or any other under-resourced language. 

3 Methodology 

This section introduces the novel method of extraction of the collocations of the Persian language. 

The method is divided into four steps: dependency projection, candidate generation, candidate 

ranking, and validation. Each step is explained in the following parts. 

3.1 Dependency projection 

Having a parsed English corpus, a list of relations between pairs of words is provided. In this 

method Dependency Parsing is used. It provides the relations between pairs of constituents. An 

algorithm is needed to transfer these relations to the target language. 
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Direct Projection Algorithm (Hwa et al., 2005) is employed in this step. This algorithm needs a list 

of the alignments between source and target words. Having a pair of sentences formed by an 

arbitrary number of words named e1 through eN in the source language and f1 through fM in the 

target language and also alignments between the words, five different scenarios are possible: 

1. one to one: if two words of the source sentence named ei and ej are aligned to unique words fi 

and fj in the target language, relation (ei,ej) results in a new relation between fi and fj in the 

target language. 

2. unaligned: if there is no corresponding word for ei, a new null node is created. Relations 

including the unaligned word form relations having that null node in one part of the relation 

in the target language. 

3. one to many: if more than one word i.e. fx ,…, fy are aligned to a unique word in the source 

language, a new node as the parent of these words is created and the alignment is modified to 

form a one to one alignment. 

4. many to one: if ei ,…, ej are all aligned to a single word in the target language, all the 

alignments between them and the unique target word is eliminated except for the alignment 

containing the head of these words (which could be extracted from the set of the 

dependencies). 

5. many to many: in this case, first one to many and then many to one scenario happen. 

Importantly, in order to extract the collocations with more than two words, many to many 

alignments are necessary. The next step is generation of the candidates. 

3.2 Candidate generation 

In this step, a list of the potential collocations is generated. Dependency parser provides the 

relations between pairs of the constituents and their directions. Dependencies listed in Table 1 are 

primary candidates to construct collocation if they satisfy the following conditions: 

1. not having a proper noun in one of its two parts. 

2. not containing a null node created by Direct Projection. 

3. not being an erroneous dependency e.g. dependency between a verb and an object without 

having any verbs at the both sides of the relation. 

4. not including an auxiliary or modal verb. 

5. not including uncommon constituents between the source and target languages. An example is 

a dependency having "را"/ra/ in the Persian language. This word indicates that there is an 

object right before it, while there is no such word in the English language. 

Type Example 

Verb - Adverb Sleep – Deeply 

Verb - Object Issue – Problem 

Verb - Subject Shine – Gold 

Noun - Adjective Game – Full 

Adjective - Adverb Fully – Optimistic 

TABLE 1 – List of types of collocations accepted in this paper and their corresponding examples. 
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After identifying potential pairs, candidate ranking is performed. The next part describes the 

method of sorting the candidates. 

3.3 Candidate ranking 

In this phase the method of ranking the candidates is introduced. This ranking is based on a set of 

features and a log linear model. As mentioned earlier, sorting the pairs depends on some set of 

features. Importantly, the type of the dependency and two phrases are not the only information 

used to perform the ranking. It is crucial to include the results of Direct Projection Algorithm to 

better define discriminative features. 

Following is the list of the features: 

 Length of the target sentence 

 Difference between the length of two sentences 

 Total number of null nodes created by Direct Projection Algorithm in the sentence 

 Type of the dependency 

 Relation-specific features. An example is whether the verb imposes an object in a verb-

object relation 

Having these features, a training data is needed. This is provided by bootstrapping. This is 

obtained by having only a small initial training data. In each step of the algorithm best decisions 

made by the algorithm are selected and are added to the initial training data. This process results in 

a large training data which is necessary to train the log-linear model. The most important 

requirement of this phase is to have a measure to evaluate each decision made by the algorithm in 

all iterations.  

It is now possible to build up a log linear model and estimate the weights for each one of the 

features form the training data derived from bootstrapping. Equation 1 denotes the possibility of 

each class. 

 ( | )  
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   ) 

   

   (1) 

Here, p(c|x) denotes the probability of constructing a collocation for every pairs of words   or 

belonging to other class. In the next step the validation phase is discussed. 

3.4 Validation 

In order to exclude outliers and noisy samples that remained in the list after the two previous 

sections, validation is essential. We should note that this step is equally applied to the window-

based method which is selected as the baseline for collocation extraction. For validation, an 

association measure (AM) is needed. AM is interpreted as a formula that computes an association 

score in a pair type's contingency table (Evert, 2004).Among many measures defined to test the 

dependency between pairs of words or more generally pairs of constituents of a sentence, mutual 

dependency (MD) is used. As a notification, the measure is defined as equation 2.  

D(w1,w2) =     
 (     ) 

 (  )  (  )
        (2) 

The measure is maximized for the pairs that are dependent. Note that this measure could be 

replaced by any other measure estimating the probability of co-occurrence within a sentence. Since 
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the candidates that this measure is trying to test their co-occurrence are the result of Min Direct 

Algorithm, unrelated pairs are not verified.  

4 Evaluation 

In order to evaluate this method we performed a comparison between our method and the classical 

baseline for Collocation Extraction which is the window-based method. Our evaluation approach 

obviates the necessity of setting a threshold. To have a better baseline, we performed a part of 

speech tagging to eliminate some noisy pairs from the list of collocations resulted at the end of the 

process. Maximum size of the window is 5 with expansion to 7 words based on part of speech of 

the two outmost words in the rare cases. The final results of both two methods are judged 

manually by three different referees. Every pair not verified by two or three of our referees was not 

counted as a true sample. Table 2 shows the agreement rate for 500 best results. 

 Window method Our method 

Referees 1 and 2 85.0 82.1 

Referees 2 and 3 76.5 77.3 

Referees 1 and 3 89.2 88.5 

Referees 1 and 2 and 3 70.6 69.8 

TABLE 2 – Agreement Rate among referees. 

At each level, N best pairs are picked and the precision is calculated. Every pair is required to be 

validated by two out of the three referees. Table 3 shows the precision of both methods in terms of 

being a sub-part of a Persian MWE.  

N Window Method Our method 

100 77.0 82.0 

200 73.5 76.5 

300 62.3 69.0 

400 61.7 66.5 

500 60.2 64.2 

To compare the recall of these methods, 200 pairs validated by all of our three referees and 500 

pairs validated by two out of the three referees are selected. Table 4 shows the results of the 

comparison. 

 

 

 

TABLE 3 – Precision for N best samples: Each raw shows the precision for N best results of both 

methods. 
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 Window Method Our method 

Accepted by two referees 68.3 71.4 

Accepted by All referees 69.1 72.9 

TABLE 4 – Recall of the methods in each condition. First raw considers the pairs that are accepted 

by minimum of two judges and the second raw shows the recall in pairs accepted by 3 referees. 

Table 5 shows why our method has a better recall in comparison to the window-based method. The 

results are showed for 100 best results picked by our method. The method is able to capture long 

distance dependencies. Hence, a noticeable improvement in the recall of the system is occurred. 

Besides, our method generates less false positive samples. 

Distance between 

pairs 
1 or 2 2 or 3 4 or 5 More than 5 

Total number of 

collocations 
42 35 14 9 

TABLE 5 – 23 out of 100 best pairs are 3 words away from each other and 9 of them more than 5 

which makes it impossible for window-based methods to have a reasonable recall. 

Conclusion 

This paper introduced a method to extract the collocations of the Persian language with a 

preprocessing phase by means of a dependency parser for the English language. The results 

suggested that syntactical analysis makes the method more accurate, even if it is implemented in a 

novel approach. What is important tough is that the accuracy of whole system tightly depends on 

the accuracy of the parser as well as the alignments between words. Having a noisy parser makes it 

impossible to achieve competitive results. In other words, it can diminish the benefits of 

employing the syntactical analysis. 

It was concluded that although it is still impossible to have an accurate parser for many languages 

such as Persian, initial syntactical analysis of corpus is such indispensable that it can lead to a 

better precision and recall in extracting the collocations even in this kind of implementation. 

With no doubt, preprocessing is both essential and beneficial in collocation extraction. Achieving 

more accurate results is not hindered by the fact that many languages such as the Persian language 

are under-resourced. The method presented in this paper simultaneously solved the problem of 

missing long-distance collocations and generation of false positive samples in the earlier methods. 
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