
Proceedings of COLING 2012: Technical Papers, pages 3171–3186,
COLING 2012, Mumbai, December 2012.

Exploiting Lexical Dependencies from Large-Scale Data for
Better Shift-Reduce Constituency Parsing

Muhua ZHU Jing bo ZHU Huizhen WANG
Natural Language Processing Laboratory

Northeastern University, China
zhumuhua@gmail.com, {zhujingbo,wanghuizhen}@mail.neu.edu.cn

Abstract
This paper proposes a method to improve shift-reduce constituency parsing by using lexical de-
pendencies. The lexical dependency information is obtained from a large amount of auto-parsed
data that is generated by a baseline shift-reduce parser on unlabeled data. We then incorporate
a set of novel features defined on this information into the shift-reduce parsing model. The fea-
tures can help to disambiguate action conflicts during decoding. Experimental results show that
the new features achieve absolute improvements over a strong baseline by0.9% and1.1% on En-
glish and Chinese respectively. Moreover, the improved parser outperforms all previously reported
shift-reduce constituency parsers.

Title and Abstract in Chinese

利利利用用用大大大规规规模模模数数数据据据词词词汇汇汇依依依存存存关关关系系系改改改进进进移移移进进进－－－归归归约约约成成成分分分句句句法法法分分分析析析

本文提出了一种利用词汇依存关系改进移进－归约成分句法分析的方法。首先，我们利用

基准系统在大规模无标注数据上进行自动句法分析并从分析结果中抽取词汇依存关系。其

后，我们在词汇依存信息的基础上定义了一组新特征并将这些特征整合到移进－归约句法

分析模型中。新特征用于帮助消除移进－归约过程中的动作歧义。实验结果表明，新特征

在英文和中文数据上分别取得了0.9%和1.1%的性能改进。最终得到的句法分析器的性能
优于相关研究工作中所报告的移进－归约句法分析器的性能。

Keywords:Shift-reduce Constituency Parsing, Lexical Dependencies, Large-scale Data.

Keywords in Chinese:移进－归约成分句法分析，词汇依存，大规模数据.

3171

1 Introduction

Due to the simplicity and running efficiency, shift-reduce parsing has been studied extensively
for a variety of grammars, ranging from constituency parsing (Sagae and Lavie, 2005, 2006;
Zhang and Clark, 2009) through dependency parsing (Nivre, 2004; Yamada and Matsumoto, 2003;
Zhang and Clark, 2008) to CCG parsing (Zhang and Clark, 2011). In dependency and CCG
parsing, shift-reduce parsing is among the best-performing algorithms (Huang and Sagae, 2010;
Zhang and Clark, 2011). However, compared to commonly-usedstatistical parsers available on the
web such as Charniak-Johnson (Charniak and Johnson, 2005) and Petrov-Klein (Petrov and Klein,
2007), shift-reduce constituency parsers still have room left for further improvements on parsing
accuracy.

There exist at least two major directions to advance shift-reduce constituency parsing. One direc-
tion is to design better training and decoding algorithms. For example, in the respect of decod-
ing, Sagae and Lavie (2006) proposed a best-first search strategy to expand the search space. In the
respect of training, Zhang and Clark (2009) replaced local classifiers with a global learning algo-
rithm. The other direction is to enrich feature representations for better shift-reduce constituency
parsing, which will be the focus of this paper. In this direction, previous work has extensively
studied a variety of features, all in the framework of supervised learning (Sagae and Lavie, 2005,
2006; Wang et al., 2006; Zhang and Clark, 2009).

How to further enrich feature representations for better shift-reduce constituency parsing becomes
a very challenging problem. In this paper, we solve this issue by using the information of lexi-
cal head-modifier1 relations (a.k.a. lexical dependencies) (Collins, 1996).Previous work on other
constituency parsers have shown the effectiveness of lexical dependency information on disam-
biguating syntactic structures (Collins, 1996, 1997; Eisner and Satta, 1999). But in shift-reduce
constituency parsing, such information is not fully used. For instance, Zhang and Clark (2009)
completely neglected lexical dependency information. Sagae and Lavie (2005) and Wang et al.
(2006) only incorporated as features the most recently recognized (left and right) modifiers of some
designated words. Unlike previous work on shift-reduce constituency parsing, this paper aims to
incorporate features that encode the information of whether words in an input sentence tend to have
head-modifier relations. In addition, although it is feasible to get lexical dependency information
from human-labeled treebank data by using head-finding rules (Collins, 1999), we find that lexical
dependencies obtained from this source suffer from data sparseness (Section 5.1). We propose to
solve this problem by utilizing additional large-scale unlabeled data.

The basic idea of our approach is to provide shift-reduce parsers with lexical dependency infor-
mation that is obtained from large-scale auto-parsed data.To this end, we first parse unlabeled
data with a baseline parser and afterwards extract bigram and trigram lexical dependencies from
automatically parsed trees. Based on the extracted lexicaldependencies, we finally design a set
of features to enhance the baseline parser. The experimentsin Section 5 show that new features
can improve a strong baseline parser by0.9% and1.1% on English and Chinese data sets respec-
tively. Moreover, our parser outperforms previously reported shift-reduce constituency parsers
while maintaining efficiency.

Specifically, we make the following contributions in this paper:

• We propose a set of novel features for better shift-reduce constituency parsing that is based
on lexical dependencies obtained from large-scale auto-parsed data;

1By ‘head-modifier’ we mean the linguistic notion that a word (modifier) modifies another word (head).

3172

• We empirically compare two different sources for obtaininglexical dependencies: human-
labeled treebank data and large-scale auto-parsed data respectively, and show the superiority
of using auto-parsed data (Section 5.1);

• We empirically analyze major sources of shift-reduce parsing errors (Section 3.1) and verify
the effectiveness of new features in resolving shift-reduce action conflicts (Section 5.6.2);

2 Baseline Parser
We use the beam-search shift-reduce parser (Zhang and Clark, 2009) as the baseline system in this
paper.2 In what follows, we describe the parser in brief.

2.1 The Shift-Reduce Parsing Process
The shift-reduce process in the baseline parser assumes binary-branching trees, so binariza-
tion and debinarization are required for transforming training data and parsing output, respec-
tively (Zhang and Clark, 2009). Given an input sentence (words and POS tags), any possible parse
tree yielding the sentence correspondsexactlyto one sequence of states. Formally, each state in the
sequence is denoted by a tuple〈S,Q〉, whereS is a stack containing partial parses andQ is a queue
of word-POS pairs that remain unprocessed. In particular, the initial state is〈φ, w1 . . . wn〉 where
S is empty andQ contains the entire input sentence. The final state is〈S,φ〉 whereS contains a
single parse tree with a pre-designated root label andQ is empty. Thus, the shift-reduce parsing
process is a transition process from the initial state to thefinal state by performing a sequence of
the following actions.

1. shift, which moves a pair of word and POS tag from the head ofthe queue to the stack. Here
the queue is required to be non-empty.

2. reduce-unary-X, which extends the top item on the stack byapplying a unary rule and then
replaces the top item with the newly generated constituent.Here X represents a treebank
phrase label, such asNP, which is to be used as the root label of the new constituent.

3. reduce-binary-{L/R}-X, which moves top two items out of the stack and pushes a new item
onto the stack. The new item has X as its root label and consists of two children with the first
popped item becoming the right child and the second popped item becoming the left child.
The switch L/R indicates whether the left (L) or the right (R)child becomes the head child.

4. terminate, which pops the root node off the stack and ends parsing. This action is applicable
only when the stack contains a single parse and the queue is empty.

2.2 Beam Search Extension
The shift-reduce parsing process described above can be extended with beam search, as presented
in Algorithm 1. The algorithm starts by initializing a beam of sizeK with the initial state. In each
iteration after the initialization, states are popped in turn out of the beam. For each popped state, all
applicable actions are then evaluated with respect to the state. Scored action-state pairs are sorted in
a temporary priority queue. When the beam gets empty, topK highest-scored action-state pairs are
fetched from the priority queue and next states corresponding to the action-state pairs are inserted
back into the beam. If the highest-scored state in the beam isa final state, it will be returned as the
parsing result; else the iteration continues. The algorithm has time complexity ofO(nK), wheren
is the sentence length andK is the beam size.

2www.cl.cam.ac.uk/~yz360/zpar.html

3173

Algorithm 1 Beam-search shift-reduce parsing
Input: a POS-tagged word sequencew1 . . . wn

beam sizeK andaction set

1: B← {〈φ, w1 . . . wn〉} // initialize beam
2: loop
3: priority queueP = []
4: while B not emptydo
5: state← pop(B)
6: for all act ∈ act ion set do
7: score← evaluateact for state
8: P·insert (〈score, act, state〉)
9: for i = 0 to K do

10: 〈score, act, state〉← Pop-Top (P)
11: nex t← applyact to state
12: insertnex t to B
13: best← highest-scored state inB
14: if best is completethen
15: returnbest

2.3 Model and Learning Algorithm

To score an actionA with respect to a stateY = 〈S,Q〉, we use a linear model as defined by

Score(〈A, Y 〉) = −→w ·Φ(〈A, Y 〉) =
∑

i

λi fi(〈A, Y 〉)

where fi(〈A, Y 〉) are features extracted jointly from the actionA and stateY . To learn parameters
λi , we use the generalized perceptron algorithm proposed in Collins (2002).

Generalized perceptron is an online learning algorithm that learns one instance at a time. The
basic procedure is to use the beam-search parsing algorithm(Algorithm 1) to parse the yield of
a gold parse tree. Whenever the gold partial parse is pruned from the beam, parameters will be
updated immediately and the learner moves to the next training instance. Such a strategy is known
as “early-update” (Collins and Roark, 2004). Finally, model parameters are set to be an average of
the weight vectors obtained during the online learning.

2.4 Baseline Features

Features used in the baseline parser are similar as those used in Zhang and Clark (2009). For
convenience of reference, we repeat the features in Table 1,where the symbolSi represents theith
item from the top of the stack S and the symbolQi denotes theith item from the front end of the
queueQ. The symbolw represents the lexical head for an item;c represents the label for an item;
and t denotes POS of a lexical head. Note that Zhang and Clark (2009) also used bracket-related
and separator features for Chinese parsing, which have beenremoved in the latest release of their
parser. So in this article we choose to ignore such language specific features.

3 Our Approach

3.1 Motivation

We first empirically analyze major sources of shift-reduce parsing errors with the parsing results of
the baseline parser on the English development set. The baseline parser is trained on human-labeled
training data. Regarding the parsing results, we are especially concerned withfirst mistakesthat
the baseline parser makes because future mistakes are oftencaused by previous ones. There are

3174

Description Templates
Unigrams S0 tc, S0wc, S1 tc, S1wc, S2 tc, S2wc, S3 tc, S3wc,

Q0wt, Q1wt, Q2wt, Q3wt,
S0lwc, S0rwc, S0uwc, S1lwc, S1rwc, S1uwc

Bigrams S0wS1w, S0wS1c, S0cS1w, S0cS1c,
S0wQ0w, S0wQ0 t, S0cQ0w, S0cQ0 t,
Q0wQ1w, Q0wQ1 t, Q0 tQ1w, Q0 tQ1 t,
S1wQ0w, S1wQ0 t, S1cQ0w, S1cQ0 t

Trigrams S0cS1cS2c, S0wS1cS2c, S0cS1wQ0 t, S0cS1cS2w,
S0cS1cQ0 t, S0wS1cQ0 t, S0cS1wQ0 t, S0cS1cQ0w

Table 1: A summary of baseline feature templates, whereSi represents theith item in stackS and
Qi denotes theith item in the queueQ from the front end.

ID Mistake Type Ratio (Count)
1 shift vs. red-binary 47.8% (451)
2 shift vs. red-unary 18.1% (171)
3 red-binary vs. red-unary 5.4% (92)
4 red-binary-L/R-{X vs. X∗} 16.5% (156)
5 red-unary-{X1 vs. X2} 5.7% (54)

Table 2: Types and ratios of first mistakes made by the baseline parser on the English development
set with auto-assigned POS.

944 first mistakes in total in the parsing results. Table 2 shows the types and ratios of the top 5
most frequent first mistakes. Cases 1-2 consist of conflicts between shift and reduce actions. Case
3 is comprised of conflicts between reduce-binary and reduce-unary actions. Mistakes in cases 4-5
are caused by wrong choices of labels where the symbols X, X1, and X2 refer to treebank phrase
labels and the symbol X∗ denotes a temporary label which is introduced when a constituent with
labelX is binarized. From the table we notice that action conflicts between shift and reduce-binary
are the largest source of parsing errors, which cover nearlyhalf of first mistakes.

Intuitively, lexical dependency information is beneficialto resolving shift and reduce-binary con-
flicts. In the following, we use a real example to make clear the intuition. Figure 1 illustrates the
shift-reduce parsing process of the baseline parser on a sentence with auto-assigned POS tags. The
baseline parser proceeds correctly until it reaches the state in Figure 1-(a). At that point, there is
a conflict between reduce-binary (Figure 1-(b)) and shift (Figure 1-(c)) actions. We find that the
baseline parser wrongly chooses the reduce-binary action because the wordbore is (incorrectly)
tagged as a verb.3 The baseline parser tends to group the words preceding a verbas a constituent.
However, if the parser is informed that the wordsa andborehave a lexical dependency relationship,
the parser may correct its choice and switch to the shift action. In addition, we find that the human-
labeled data used to train the baseline parser does not contain lexical dependencies betweena and
bore. We can see that extracting lexical dependencies solely from human-labeled training data has
a data sparseness problem. This motivates us to utilize unlabeled data as an additional source for
lexical dependency extraction.

3All the occurrences ofborein the training data of the POS tagger have the POS tagVBD.

3175

Stack Queue

Previous
State

(a)

NP

PRP

He

VBZ

’s

DT

a

VBD

bore

Wrong
State

(b)

NP

PRP

He

SQ

VBZ

’s

DT

a

VBD

bore

Correct
State

(c)

NP

PRP

He

VBZ

’s

DT

a

VBD

bore φ

Figure 1: An example of shift-reduce conflicts, illustrating how lexical dependency information
helps to disambiguate the conflicts.

3.2 Data Preprocessing

Before conducting lexical dependency extraction, we use the baseline parser to generate con-
stituency parse trees from unlabeled data. Since shift-reduce parsers require POS tags as input,
automatical POS tagging should be performed on unlabeled data before performing syntactic pars-
ing. For unspaced languages such as Chinese, automatical word segmentation is also needed. To
simplify the extraction process, we convert automaticallyparsed constituency trees into dependency
trees with Penn2Malt (or other conversion tools).4

3.3 Extraction of Lexical Dependencies

After the tree conversion, the following lexical dependencies are read off from dependency trees.
Here we restrict the dependencies to those between two words(bigram lexical dependencies) and
those between three words (trigram lexical dependencies).

Bigram Lexical Dependencies
If two words are connected by an arc in a dependency tree, we claim these two words maintain a
bigram lexical dependency. For pairs of words that have dependencies, we make a record of the
words as well as their head-modifier relations. Formally, bigram lexical dependencies are denoted
as 〈w1, w2, L/R〉 whereL/R indicates the direction of the dependency arc that connectsw1 and
w2. Moreover, lexical dependencies are word-order sensitive, that is,〈w1, w2, L〉 is regarded to be
different from〈w2, w1,R〉.
Trigram Lexical Dependencies

Trigram lexical dependencies encode a head-modifier relationship among three words. As with
bigram lexical dependencies, trigram lexical dependencies are also word-order sensitive. In this

4http://w3.msi.vxu.se/~nivre/research/Penn2Malt.html

3176

Bigram Dependency Features
fL(s1w, s0w) fL(s1w, s0w)◦s1 t◦s0 t fR(s1w, s0w) fR(s1w, s0w)◦s1 t◦s0 t
fL(s1w, q0w) fL(s1w, q0w)◦s1 t◦q0 t fR(s1w, q0w) fR(s1w, q0w)◦s1 t◦q0 t
fL(s0w, q0w) fL(s0w, q0w)◦s0 t◦q0 t fR(s0w, q0w) fR(s0w, q0w)◦s0 t◦q0 t

Trigram Dependency Features
fL(s1w, s1rdw, s0w) fL(s1w, s1rdw, s0w)◦s1 t◦s0 t fR(s1w, s0ldw, s0w) fR(s1w, s0 ldw, s0w)◦s1 t◦s0 t
fL(s0w, s0rdw, q0w) fL(s0w, s0rdw, q0w)◦s0 t◦q0 t fR(s0w, NON E, q0w) fR(s0w, NON E, q0w)◦s0 t◦q0 t

Table 3: New features designed on the basis of lexical dependencies. Here the symbolw represents
a word and the symbolt represents a POS tag.

paper, we only consider the type of trigram lexical dependencies that have the first or the last word
be the head and that require the other two words to be siblingsamong all the modifiers of the head.
Such lexical dependencies can be represented formally as〈w1, w2, w3, L/R〉. Here the switchL/R
indicates the head among the three words. Specifically, the symbol L specifiesw1 to be the head
and the symbolR designatesw3 to be the head. In addition, we also consider the special casethat
w2 is NONE, which indicates thatw1 (w3) is the rightmost (leftmost) modifier ofw3 (w1).

3.4 Proposed Features

After extracting all lexical dependencies, we group bigramand trigram lexical dependenciessepa-
rately into three categories according to their frequencies. Specifically, if a dependency relation is
among top-10% most frequent records, then it receives the group tagHigh Frequency (HF); else if
it is in top-20%, then we use the tagMiddle Frequency (MF); else we use the tagLow Frequency
(LF). Although such a grouping strategy is heuristic in some sense, it has been proven effective
in Chen et al. (2009). After the grouping, we finally get two lists, containing bigram and trigram
lexical dependencies respectively.

Based on the bigram and trigram lexical dependency lists, wepropose a set of dependency features
which is described in detail in the following. Heresi denotes theith item from the top of the stack
S, andqi the ith item from the front end of the queueQ. In addition,si w (si t) refers to the head
word (POS) ofsi andqiw (qi t) refers to the word (POS) ofqi .

3.4.1 Bigram Dependency Features

Bigram dependency features have a generic form offL/R(w1, w2) which returns a group tag (HF,
MF, or LF) if the lexical dependency〈w1, w2, L/R〉 is found in the bigram lexical dependency
list; else it returnsNULL. The above feature template is instantiated into three pairs of features:
{ fL(s1w, s0w), fR(s1w, s0w)}, { fL(s0w,q0w), fR(s0w,q0w)}, and { fL(s1w,q0w), fR(s1w,q0w)}.

We also combine the above features with POS tags ofw1 andw2. Thus we have three more pairs
of features in the generic form offL/R(w1, w2)◦ t(w1)◦ t(w2), wheret(wi) represents the POS tag
of the wordwi . All the bigram dependency features are listed in Table 3.

3.4.2 Trigram Dependency Features

Trigram dependency features have the generic form offL/R(w1, w2, w3). In this paper, this feature
template is instantiated into two pairs of features. The feature functionfL(s1w, s1rdw, s0w) returns
a group tag if〈s1w, s1rdw, s0w, L〉 is found in the trigram lexical dependency list, wheres1rdw de-
notes the rightmost modifier ofs1w that has been recognized so far during the shift-reduce parsing
process. Note thats1rdw might beNONE if no right modifiers have been recognized fors1w. The

3177

other trigram dependency features,fR(s1w, s0ldw, s0w), fL(s0w, s0rdw,q0w), and fR(s0w, NONE,
q0w) can be explained in a similar way. As with bigram dependency features, POS tags are com-
bined with above features to obtain richer feature representations. Trigram dependency features
used in the paper are summarized in Table 3.

3.5 Parsing with Proposed Features

To use the proposed dependency features, we only need to update the scoring function defined in
Section 2.3. The new scoring function is shown in the following.

Score′(〈A, Y 〉) =
∑

i

λi fi(〈A, Y 〉) +
∑

j

λd
j f d

j

wherefi(〈A, Y 〉) are the baseline features listed in Table 1 andf d
j refer to the dependency features

defined above.

4 Experimental Setup

4.1 Data Preparation

For English experiments, our labeled data came from the WallStreet Journal (WSJ) corpus of
the Penn Treebank (Marcus et al., 1993). We used the standarddivisions: sections 2-21 were
used as training data, section 24 was used for system development, and section 23 was held out
for performance evaluation. In terms of English unlabeled data, we used the TIPSTER corpus
(LDC93T3A) which contains news articles from various sources, though in this paper we only
used Wall Street Journal articles. In addition, we did not remove the sentences of the WSJ portion
of the Penn Treebank from the TIPSTER corpus.

For Chinese experiments, we used Chinese Treebank (CTB) version 5.1 (Xue et al., 2005) as la-
beled data. Specifically, articles 001-270 and 440-1151 were used as training data, articles 271-300
were held out for performance evaluation, and articles 301-325 were used as development data. In
the respect of Chinese unlabeled data, we utilized the corpus of Chinese Gigaword (LDC2003T09)
after some basic cleanups.

We conducted necessary preprocessing on English and Chinese unlabeled data before they were
fed to the baseline parser for automatic parsing. Specifically, we applied OpenNLP for English
sentence boundary detection and tokenization.5 For English POS tagging, SVMTool was used
which achieves a per-token accuracy of97.1% on section 23 of the WSJ corpus.6 For the Chinese
unlabeled data, we conducted sentence boundary detection simply according to sentence ending
punctuations, including question marks, full stop marks, and exclamation marks. Raw sentences
were automatically segmented with a CRF-based word segmenter which achieves a segmentation
accuracy of97.2% on the testing data of CTB 5.1. For automatic Chinese POS tagging, we utilized
the Stanford POS tagger.7 We trained the tagger on the CTB 5.1 training data and achieved a
tagging accuracy of95.4% on the CTB 5.1 testing data.

Table 4 contains detailed data statistics of all the above corpora.

5http://incubator.apache.org/opennlp/
6http://www.lsi.upc.edu/~nlp/SVMTool/
7http://nlp.stanford.edu/software/tagger.shtml

3178

Language Statistics Train Dev Test Unlabeled

English
sentences 39.8k 1.7k 2.4k 3,139.1k

words 950.0k 40.1k 56.7k 76,041.4k∗

ave. length 28.9 25.1 25.1 25.22∗

Chinese
sentences 18.1k 350 348 11,810.7k

words 493.8k 8.0k 6.8k 269,057.2k∗

ave. length 27.3 19.5 23.0 22.8∗

Table 4: Data statistics including the number of words and sentences, together with average sen-
tence length.∗ The numbers are approximate due to the use of automatic preprocessing techniques.

English Chinese
Data Source LR LP F1 LR LP F1
Baseline 88.2 88.2 88.2 83.7 84.4 84.0
Human-Labeled 88.5 88.7 88.6 83.8 84.4 84.1
Auto-Parsed 89.1 89.4 89.3 85.2 85.1 85.1
Combined 89.3 89.5 89.4 85.3 85.2 85.2

Table 5: Comparative results on English and Chinese developments sets with lexical dependencies
extracted from diverse sources.

4.2 Performance Scoring

For performance evaluation in all the following experiments, we usedEVALBto provide bracket
scoring as well as complete match scoring.8 For significance tests, we adopted the comparator
developed by Daniel Bikel to computep-value.9

4.3 Running Parameters

We set the beam size to 16 in both training and decoding which maintains a good trade-off between
parsing efficiency and accuracy (Zhang and Clark, 2009). With respect to the iteration number of
perceptron learning, we tuned the parameter on the English and Chinese development sets and
finally set the value to 21 for both English and Chinese experiments.

5 Experimental Results

5.1 Comparison of Different Sources

Table 5 shows the comparative results on English and Chinesedevelopment sets with lexical de-
pendencies obtained from different sources. We experimented with four different settings: no lex-
ical dependency information was used (Baseline), lexical dependencies were solely from human-
labeled training data (Human-Labeled), lexical dependencies were solely from auto-parsed data
(Auto-Parsed), and lexical dependencies were from the combination of human-labeled and auto-
parsed data (Combined). For the latter three settings, all the dependency features listed in Table 3
were incorporated. In the data combination, we simply gave our human-labeled training data a
relative weight of one.

From the results we can see that, although lexical dependency information from human-labeled
training data can improve the performance on both English and Chinese, the improvement on Chi-

8http://nlp.cs.nyu.edu/evalb
9http://www.cis.upenn.edu/~dbikel/download/compare.pl

3179

Sentences with#Words≤ 40
Features LR LP F1 EX
Baseline 90.1 89.8 90.0 41.3

+Bigram Features 90.6 90.5 90.6 42.1
+Trigram Features 90.9 90.9 90.9 42.9

Sentences with Unlimited Words
Features LR LP F1 EX
Baseline 89.6 89.4 89.5 39.0

+Bigram Features 90.1 90.1 90.1 39.7
+Trigram Features 90.4 90.5 90.4 40.7

Table 6: Main results on section 23 of the WSJ corpus, using automatically assigned POS tags and
lexical dependencies extracted from auto-parsed data. Twotypes of dependency features are added
incrementally.

nese is marginal (+0.1% in F1-score). One reason is that lexical dependencies from human-labeled
training data have a data sparseness problem. By contrast, the use of large-scale auto-parsed data
brings on much bigger improvements (+1.1% in F1-score on both English and Chinese). In addi-
tion, we find that data combination has trivial effect on the performance. One possible reason is
that lexical dependencies form human-labeled training data are overwhelmed by those from auto-
parsed data. We will leave further discussions on data combination to our future work and focus
on the setting of obtaining lexical dependencies from auto-parsed data.

5.2 Main Results on English Data

Table 6 shows the main results on the English test set, where the two types of dependency features
were added incrementally to the baseline parser. As the results show, both bigram and trigram
dependency features have positive effect on the parsing accuracy. Specifically, on the whole test
set the overall improvement over the baseline parser is+0.9% in F1-score, where bigram depen-
dency features contribute an absolute0.6% improvement and trigram dependency features further
improve the performance by0.3% over the results of using bigram dependency features. Signifi-
cance tests show that the overall improvement on the whole test set is statistically significant on the
level of p < 10−4.

5.3 Comparative Results on English

Table 7 shows the comparison of our parser with a large body ofrepresentative related work.
For fair comparison, here we disregarded parsers that are based on combination methods such
as Petrov (2010) and Zhang et al. (2009). Following the taxonomy adopted in Huang et al. (2010),
we grouped the related work into single parsers (SINGLE), discriminative reranking approaches
(RE), and self-training (SELF). Note that our parser belongs to the category of self-training. From
the results we can see that our parser outperforms all the single parsers listed in the table except
Carreras et al. (2008). However, compared with Carreras et al. (2008), our parser has much smaller
time-complexity:O(nK) vs. O(n3G), whereK is the beam size used in our parser andG is a gram-
mar constant in Carreras et al. (2008). Compared with reranking and self-training parsers, our
parser has relatively low parsing accuracy. But the reranking technique is actually complementary
with our approach, so we might enhance our parser with this technique in the future.

3180

Type Parser LR LP F1

S
IN

G
L

E

Ratnaparkhi (1997) 86.3 87.5 86.9
Collins (1999) 88.1 88.3 88.2
Charniak (2000) 89.5 89.9 89.5
Sagae and Lavie (2005)∗ 86.1 86.0 86.0
Sagae and Lavie (2006)∗ 87.8 88.1 87.9
Petrov and Klein (2007) 90.1 90.2 90.1
Carreras et al. (2008) 90.7 91.4 91.1

R
E Charniak and Johnson (2005) 91.2 91.8 91.0

Huang (2008) 92.2 91.2 91.7
S

E
L

F Huang and Harper (2009) 91.1 91.6 91.3
McClosky et al. (2006) 92.1 92.5 92.3
Huang et al. (2010)† 91.4 91.8 91.7

This Paper
Baseline 89.6 89.4 89.5
Auto-Parsed 90.4 90.5 90.4

Table 7: Comparison with related work on section 23 of the WSJcorpus with automatically as-
signed POS tags.∗ The parsers based on shift-reduce parsing.† The results of self-training with a
single latent annotation grammar.

Sentences with#Words≤ 40
Features LR LP F1 EX
Baseline 82.9 83.6 83.2 32.8

+Bi-lexical Features 84.3 85.1 84.7 32.8
+Tri-lexical Features 84.7 85.9 85.3 34.1

Sentences with Unlimited Words
Features LR LP F1 EX
Baseline 79.5 80.7 80.1 28.2

+Bi-lexical Features 80.3 81.6 80.9 28.2
+Tri-lexical Features 80.6 81.9 81.2 29.3

Table 8: Main results on the CTB 5.1 test set, using automatically assigned POS tags and lexi-
cal dependencies extracted from auto-parsed data. Two types of dependency features are added
incrementally.

5.4 Main Results on Chinese Data

In parallel to the results on the English test set, Table 8 shows the main results on the Chinese test
set, using auto-assigned POS tags and lexical dependenciesextracted from auto-parsed data. From
the results on the whole test set we can see that dependency features contribute a bigger absolute
improvement on Chinese than that on English (+1.1% vs. +0.9%). One possible reason is that
the size of Chinese unlabeled data used in the paper is much bigger. Significance tests show that
the overall improvement induced by bigram and trigram dependency features on the whole test is
statistically significant on the level ofp < 10−3. These results indicate that the new features are
very effective.

5.5 Comparative Results on Chinese

Comparing Chinese constituency parsers is difficult in the sense that previously reported results
were achieved frequently on different versions of CTB and/or with different data split standards.
Zhang and Clark (2009) presented a detailed comparison between the baseline parser of this pa-
per and a large body of related work on CTB 2.0. Here we only compared our parser with the
parsers available on the web for Chinese parsing, as shown inTable 9. From the results we can see

3181

Type Parser LP LR F1

S
IN

G
L

E Charniak (2000)∗ 79.6 82.1 80.8
Bikel (2004)† 79.3 82.0 80.6
Petrov and Klein (2007) 81.9 84.8 83.3

R
E Charniak and Johnson (2005)∗ 80.8 83.8 82.3

This Paper
Baseline 79.5 80.7 80.1
Auto-Parsed 80.6 81.9 81.2

Table 9: Comparison with related work on the test set of CTB 5.1 with automatically assigned POS
tags. ∗ Huang (2009) adapted the parsers to Chinese parsing on CTB 5.1. † We run the parser on
CTB 5.1 to get the results.

that, on Chinese parsing our parser outperforms Bikel (2004) and Charniak (2000) by0.6% and
0.4%, respectively. However, our parser lags behind Petrov and Klein (2007) and the reranking
parser (Charniak and Johnson, 2005).

5.6 Additional Analysis

We performed several types of analysis, focusing on English, to investigate the effect of differ-
ent sizes of human-labeled training data and auto-parsed data, as well as how lexical dependency
information changes the distribution of first mistakes madeby the baseline parser.

5.6.1 Effect of Different Sizes of Labeled and Unlabeled Data

We studied the effect of varying sizes of human-labeled training data by a randomly sampling
from sections 2-21. Meanwhile, we always used the whole set of auto-parsed data. The results
are depicted in Figure 2-(a). As the results show, auto-parsed data improves parsing accuracy
even when the human-labeled training data is small in size. In addition, by using our approach, a
fraction of sections 2-21 plus the whole set of auto-parsed data is sufficient to achieve the F1-scores
obtained by the parser trained solely on the whole sections 2-21.

 84

 85

 86

 87

 88

 89

 90

 91

5k 10k 15k 20k 25k 30k all

F
S

co
re

Labeled Training Data Size

Without Unlabeled Data
With Unlabeled Data

 89

 89.5

 90

 90.5

 91

50k 100k 200k 500k 1,000k 2,000k All

F
S

co
re

Unlabeled Training Data Size

Baseline Parser
Our Approach

(a) varying labeled training data (b) varying unlabeled data

Figure 2: Results with varying sizes of human-labeled training data and unlabeled data.

We also examined the effect of varying sizes of unlabeled data. In this experiment, we used sec-
tions 2-21 as human-labeled training data and changed the size of unlabeled data through random
sampling. The results are depicted in Figure 2-(b). From theresults we can see that improvements

3182

achieved by using unlabeled data are enlarged with the increment of the size of unlabeled data until
the performance finally levels off.

5.6.2 Reduction on First Mistakes

The baseline parser made 1,522 first mistakes on the English test set. We analyzed how our ap-
proach changed the first mistakes. We grouped the changes into four cases.No-Change(1,090)
refers to the case that the baseline and our parser make the same first mistakes at the same positions.
In the case ofCorrect(249), first mistakes made by the baseline parser are corrected by our parser.
Wrong (121) means that our parser makes first mistakes earlier thanthe baseline parser. Finally,
Others(47) refers to the case that our parser and the baseline parser make first mistakes of different
types at the same positions. In addition, we are especially interested in how our approach reduces
first mistakes of the typeshift vs. reduce-binary. So we compared the numbers of first mistakes of
this type in theCorrectandWrongcases, which are 168 and 78 respectively.

6 Related Work

Shift-reduce parsing has been widely studied for constituency parsing. Sagae and Lavie (2005) pro-
posed a classifier-based shift-reduce parsing algorithm which was extended with a best-first search
strategy in Sagae and Lavie (2006). Wang et al. (2006) adapted the parser in Sagae and Lavie
(2005) to Chinese parsing and compared some representativeclassifiers. Zhang and Clark
(2009) proposed a global learning algorithm to replace local classifiers. Shift-reduce pars-
ing has also widely applied to parsing with other grammars (Nivre, 2004; Zhang and Clark,
2008; Huang and Sagae, 2010; Zhang and Clark, 2011). In this paper we focus on improving
Zhang and Clark (2009) with a set of novel features defined on lexical dependencies obtained from
auto-parsed data. To the best of our knowledge, semi-supervised approaches to shift-reduce con-
stituency parsing have not been widely studied before.

The approach used in this paper belongs to the category of semi-supervised learning. In the respect
of semi-supervised learning for constituency parsing, self-training has been extensively studied
(McClosky et al., 2006; Huang and Harper, 2009; Huang et al.,2010). The difference is that we
use partial information derived from auto-parsed data instead of entire automatically parsed trees.
Chen et al. (2009) and Noord (2007) exploited lexical dependencies from unlabeled data for depen-
dency and HPSG parsing, respectively. In this paper we for the first time use lexical dependency
information for advancing the state-of-the-art shift-reduce constituency parsers. It is noteworthy
that, although Chen et al. (2009) and our work use the same strategy to extract lexical dependen-
cies, features defined on lexical dependencies are distinct. Specifically, Chen et al. (2009) proposed
features for a graph-based dependency parser while this paper focuses on a transition-based con-
stituency parser. More recently, Bansal and Klein (2011) proposed features for both dependency
and constituency parsing based on Web counts from the Googlen-grams corpus. By contrast, lex-
ical dependency information used in this paper is derived from auto-parsed data. Moreover, Web
counts from the Google n-grams corpus represent surface evidence of lexical affinities while lexical
dependencies are able to encode information on deep syntactic structures.

7 Conclusion

We have presented a method to utilize lexical dependency information to improve shift-reduce con-
stituency parsing. A set of new features was proposed based on the lexical dependency information
and integrated into the shift-reduce parser. Our method well addressed the action conflict prob-
lem. We evaluated the proposed method on English and Chinesedata. The results show that our

3183

new parsers provide comparable accuracies with state-of-the-part parsers while maintaining the
advantage in parsing speed.

Acknowledgments

We would like to thank Wenliang Chen for his help in extracting lexical dependencies and discus-
sions on designing features. This work was supported in partby the National Science Foundation
of China (61073140, 61272376, 61100089, 61003159), Specialized Research Fund for the Doc-
toral Program of Higher Education (20100042110031) and theFundamental Research Funds for
the Central Universities (N110404012).

References

Bansal, M. and Klein, D. (2011). Web-scale features for full-scale parsing. Inthe 49th Annual
Meeting of the Association for Computational Linguistics (ACL 2011), pages 693–702.

Bikel, D. M. (2004). On the parameter space of generative lexicalized statistical parsing models.
In Ph.D. thesis, University of Pennsylvania.

Carreras, X., Collins, M., and Koo, T. (2008). Tag, dynamic programming and the perceptron
for efficient, feature-rich parsing. InConference on Computational Natural Language Learning
(CoNLL 2008), pages 9–16.

Charniak, E. (2000). A maximum-entropy-inspired parser. In Annual Conference of the North
American Chapter of the Association for Computational Linguistics (NAACL 2000), pages 132–
139.

Charniak, E. and Johnson, M. (2005). Coarse-to-fine n-best parsing and maxent discriminative
reranking. Inthe 43rd Annual Meeting of the Association for Computational Linguistics (ACL
2005), pages 173–180.

Chen, W., Kazama, J., Uchimoto, K., and Torisawa, K. (2009).Improving dependency parsing
with subtrees from auto-parsed data. Inthe 2009 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2009), pages 570–579.

Collins, M. (1996). A new statistical parser based on bigramlexical dependencies. Inthe 34th
Annual Meeting of the Association for Computational Linguistics (ACL 1996).

Collins, M. (1997). Three generative, lexicalised models for statistical parsing. Inthe 35th Annual
Meeting of the Association for Computational Linguistics (ACL 1997).

Collins, M. (1999). Head-driven statistical models for natural language parsing. InPh.D. thesis,
University of Pennsylvania.

Collins, M. (2002). Discriminative training methods for hidden markov models: theory and
experiemnts with perceptron algorithm. Inthe 2002 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2002), pages 1–8.

Collins, M. and Roark, B. (2004). Incremental parsing with the perceptron algorithm. Inthe 32rd
Annual Meeting of the Association for Computational Linguistics (ACL 2004).

Eisner, J. and Satta, G. (1999). Efficient parsing for bilexical context-free grammars and head au-
tomaton grammars. Inthe 37th Annual Meeting of the Association for Computational Linguistics
(ACL 1999).

3184

Huang, L. and Sagae, K. (2010). Dynamic programming for linear-time incremental parsing. In
the 48th Annual Meeting of the Association for Computational Linguistics (ACL 2010), pages
1077–1086.

Huang, L.-Y. (2009). Improve Chinese parsing with Max-Ent reranking parser. InMaster Project
Report, Brown University.

Huang, Z. and Harper, M. (2009). Self-training PCFG grammars with latent annotations across
languages. Inthe 2009 Conference on Empirical Methods in Natural Language Processing
(EMNLP 2009), pages 832–841.

Huang, Z., Harper, M., and Petrov, S. (2010). Self-trainingwith products of latent variable gram-
mars. Inthe 2010 Conference on Empirical Methods in Natural Language Processing (EMNLP
2010), pages 12–22.

Marcus, M. P., Santorini, B., and Marcinkiewiz, M. A. (1993). Building a large annotated corpus
of English. InComputational Linguistics, 19(2), pages 313–330.

McClosky, D., Charniak, E., and Johnson, M. (2006). Reranking and self-training for parser
adaptation. Inthe 44th Annual Meeting of the Association for Computational Linguistics and 21st
International Conference on Computational Linguistics (ACL-COLING 2006), pages 337–344.

Nivre, J. (2004). Incrementality in deterministic dependency parsing. InIncremental Parsing:
Bringing Engineering and Cognition Together: Workshop at ACL 2004.

Noord, G. (2007). Using self-trained bilexical preferences to improve disambiguation accuracy.
In the 10th International Conference on Parsing Technologies(IWPT 2007).

Petrov, S. (2010). Products of random latent variable grammars. InHuman Language Tech-
nologies: The 11th Annual Conference of the North American Chapter of the Association for
Computational Linguistics (HLT-NAACL 2010), pages 19–27.

Petrov, S. and Klein, D. (2007). Improved inference for unlexicalized parsing. InAnnual Confer-
ence of the North American Chapter of the Association for Computational Linguistics (NAACL
2007), pages 404–411.

Ratnaparkhi, A. (1997). A linear observed time statisticalparser based on maximum entropy
models. Inthe 1997 Conference on Empirical Methods in Natural Language Processing (EMNLP
1997).

Sagae, K. and Lavie, A. (2005). A classifier-based parser with linear run-time complexity. Inthe
9th International Conference on Parsing Technologies (IWPT 2005), pages 125–132.

Sagae, K. and Lavie, A. (2006). A best-first probabilistic shift-reduce parser. Inthe 44th Annual
Meeting of the Association for Computational Linguistics and 21st International Conference on
Computational Linguistics (ACL-COLING 2006), pages 691–698.

Wang, M., Sagae, K., and Mitamura, T. (2006). A fast, accurate deterministic parser for Chinese.
In the 44th Annual Meeting of the Association for Computational Linguistics and 21st INterna-
tional Conference on Computational Linguistics (ACL-COLING 2006), pages 25–32.

Xue, N., Xia, F., dong Chiou, F., and Palmer, M. (2005). The Penn Chinese treebank: phrase
structure annotation of a large corpus. InNatural Language Engineering, 11(2), pages 207–238.

3185

Yamada, H. and Matsumoto, Y. (2003). Statistical dependency analysis with support vector ma-
chines. Inthe 8th International Conference on Parsing Technologies (IWPT 2003), pages 195–
206.

Zhang, H., Zhang, M., Tan, C. L., and Li, H. (2009). K-best combination of syntactic parsers.
In the 2009 Conference on Empirical Methods in Natural Language Processing (EMNLP 2009),
pages 1552–1560.

Zhang, Y. and Clark, S. (2008). A tale of two parsers: investigating and combining graph-based
and transition-based dependency parsing. Inthe 2008 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP 2008), pages 562–571.

Zhang, Y. and Clark, S. (2009). Transition-based parsing ofthe Chinese treebank using a global
discriminative model. Inthe 11th International Conference on Parsing Technologies(IWPT 2009),
pages 162–171.

Zhang, Y. and Clark, S. (2011). Shift-reduce CCG parsing. Inthe 49th Annual Meeting of the
Association for Computational Linguistics (ACL 2011), pages 683–692.

3186

