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Abstract

This paper proposes a method to improve shift-reduce ¢oestly parsing by using lexical de-
pendencies. The lexical dependency information is obtefrem a large amount of auto-parsed
data that is generated by a baseline shift-reduce parsenlabaled data. We then incorporate
a set of novel features defined on this information into th&-sbduce parsing model. The fea-
tures can help to disambiguate action conflicts during degodExperimental results show that
the new features achieve absolute improvements over agshaseline by.9% and1.1% on En-
glish and Chinese respectively. Moreover, the improvederasutperforms all previously reported
shift-reduce constituency parsers.
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1 Introduction

Due to the simplicity and running efficiency, shift-reducarging has been studied extensively
for a variety of grammars, ranging from constituency pays{Sagae and Lavie, 2005, 2006;
Zhang and Clark, 2009) through dependency parsing (Ni@@42Yamada and Matsumoto, 2003;
Zhang and Clark, 2008) to CCG parsing (Zhang and Clark, 201lt) dependency and CCG

parsing, shift-reduce parsing is among the best-perfagralgorithms (Huang and Sagae, 2010
Zhang and Clark, 2011). However, compared to commonly-sisgistical parsers available on the
web such as Charniak-Johnson (Charniak and Johnson, 200%5)edrov-Klein (Petrov and Klein,

2007), shift-reduce constituency parsers still have roefirifor further improvements on parsing
accuracy.

There exist at least two major directions to advance shiftice constituency parsing. One direc
tion is to design better training and decoding algorithmer &ample, in the respect of decod-
ing, Sagae and Lavie (2006) proposed a best-first sear¢bgtri@m expand the search space. In th
respect of training, Zhang and Clark (2009) replaced lotzsifiers with a global learning algo-
rithm. The other direction is to enrich feature represématfor better shift-reduce constituency
parsing, which will be the focus of this paper. In this difent previous work has extensively
studied a variety of features, all in the framework of sufssd learning (Sagae and Lavie, 2005
2006; Wang et al., 2006; Zhang and Clark, 2009).

How to further enrich feature representations for bettédt-sbduce constituency parsing becomes
a very challenging problem. In this paper, we solve thisésBy using the information of lexi-
cal head-modifiérrelations (a.k.a. lexical dependencies) (Collins, 1988pvious work on other
constituency parsers have shown the effectiveness ofdedi@pendency information on disam-
biguating syntactic structures (Collins, 1996, 1997; Eisand Satta, 1999). But in shift-reduce
constituency parsing, such information is not fully usear mstance, Zhang and Clark (2009)
completely neglected lexical dependency information. a®aand Lavie (2005) and Wang et al.
(2006) only incorporated as features the most recentlygrized (left and right) modifiers of some
designated words. Unlike previous work on shift-reducestituency parsing, this paper aims to
incorporate features that encode the information of whetloeds in an input sentence tend to have
head-modifier relations. In addition, although it is fedesito get lexical dependency information
from human-labeled treebank data by using head-finding (@ellins, 1999), we find that lexical
dependencies obtained from this source suffer from datsspeass (Section 5.1). We propose tc
solve this problem by utilizing additional large-scalealréled data.

The basic idea of our approach is to provide shift-reducegrarwith lexical dependency infor-
mation that is obtained from large-scale auto-parsed ditethis end, we first parse unlabeled
data with a baseline parser and afterwards extract bigratragram lexical dependencies from
automatically parsed trees. Based on the extracted led@@éndencies, we finally design a se’
of features to enhance the baseline parser. The experifime8ection 5 show that new features
can improve a strong baseline parsertb3% and1.1% on English and Chinese data sets respe
tively. Moreover, our parser outperforms previously reégedrshift-reduce constituency parsers
while maintaining efficiency.

Specifically, we make the following contributions in thigpea:

o \We propose a set of novel features for better shift-redunstiéaency parsing that is based
on lexical dependencies obtained from large-scale auteepalata;

1By ‘head-modifier’ we mean the linguistic notion that a womdogifie) modifies another worchgad.
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e We empirically compare two different sources for obtainiexical dependencies: human-
labeled treebank data and large-scale auto-parsed dp&ctiegly, and show the superiority
of using auto-parsed data (Section 5.1);

o We empirically analyze major sources of shift-reduce parsirrors (Section 3.1) and verify
the effectiveness of new features in resolving shift-redaction conflicts (Section 5.6.2);

2 BasdineParser

We use the beam-search shift-reduce parser (Zhang and 2008) as the baseline system in this
paper? In what follows, we describe the parser in brief.

2.1 The Shift-Reduce Parsing Process

The shift-reduce process in the baseline parser assumesyfiranching trees, so binariza-
tion and debinarization are required for transformingnireg data and parsing output, respec
tively (Zhang and Clark, 2009). Given an input sentence @s@nd POS tags), any possible pars:
tree yielding the sentence correspongactlyto one sequence of states. Formally, each state in tl
sequence is denoted by a tugeQ), wheres is a stack containing partial parses & a queue
of word-POS pairs that remain unprocessed. In particliarjritial state ig¢,w; ...w,) where

S is empty andQ contains the entire input sentence. The final sta{s.ig) whereS contains a
single parse tree with a pre-designated root label@islempty. Thus, the shift-reduce parsing
process is a transition process from the initial state tditied state by performing a sequence of
the following actions.

1. shift, which moves a pair of word and POS tag from the hedldefjueue to the stack. Here
the queue is required to be non-empty.

2. reduce-unary-X, which extends the top item on the stackdplying a unary rule and then
replaces the top item with the newly generated constitublere X represents a treebank
phrase label, such &P, which is to be used as the root label of the new constituent.

3. reduce-binanfl/R}-X, which moves top two items out of the stack and pushes a teaw i
onto the stack. The new item has X as its root label and cansisivo children with the first
popped item becoming the right child and the second popped litecoming the left child.
The switch L/R indicates whether the left (L) or the right @Rjld becomes the head child.

4. terminate, which pops the root node off the stack and eadsg. This action is applicable
only when the stack contains a single parse and the queugiy.em

2.2 Beam Search Extension

The shift-reduce parsing process described above can eded with beam search, as presente
in Algorithm 1. The algorithm starts by initializing a bearhsize K with the initial state. In each
iteration after the initialization, states are popped imtout of the beam. For each popped state, a
applicable actions are then evaluated with respect to #e.sbcored action-state pairs are sorted i
a temporary priority queue. When the beam gets emptyKtbjghest-scored action-state pairs are
fetched from the priority queue and next states correspartdi the action-state pairs are insertec
back into the beam. If the highest-scored state in the bearfirigl state, it will be returned as the
parsing result; else the iteration continues. The algoritias time complexity o®(nK), wheren

is the sentence length afdis the beam size.

2www. ¢l . cam ac. uk/ ~yz360/ zpar . ht m
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Algorithm 1 Beam-search shift-reduce parsing

Input: a POS-tagged word sequeneg...w,
beam size& andaction set

1 B {(¢p,wy...w,)} I/ initialize beam

3 priority queueP =]

4 while B not emptydo

5 state < pop@®)

6. for all act € action set do

7 score « evaluateact for state
8 Pinsert (score,act,state))

9 fori=0toK do

10: (score,act,state) «— Pop-Top P)
11 next « applyact tostate
12 insertnext to B

13 best « highest-scored state B
14 if best is completethen

15: returnbest

2.3 Modd and Learning Algorithm
To score an actioa with respect to a stafé = (S,Q), we use a linear model as defined by

Score({A,Y)) =W - ({4, 7)) = infi(m, Y))

wheref;((A,Y)) are features extracted jointly from the actidand stater. To learn parameters
Ai, We use the generalized perceptron algorithm proposedlim€¢2002).

Generalized perceptron is an online learning algorithnt lk&rns one instance at a time. The
basic procedure is to use the beam-search parsing algofitlgarithm 1) to parse the yield of
a gold parse tree. Whenever the gold partial parse is pruoed the beam, parameters will be
updated immediately and the learner moves to the nexttr@ginstance. Such a strategy is knowr
as “early-update” (Collins and Roark, 2004). Finally, miquErameters are set to be an average ¢
the weight vectors obtained during the online learning.

2.4 Baseline Features

Features used in the baseline parser are similar as thodeiru@hang and Clark (2009). For
convenience of reference, we repeat the features in Tabladre the symbdS; represents thg,
item from the top of the stack S and the symtpldenotes thé,, item from the front end of the
queueQ. The symbolv represents the lexical head for an itentepresents the label for an item;
andt denotes POS of a lexical head. Note that Zhang and Clark J2068 used bracket-related
and separator features for Chinese parsing, which havereemved in the latest release of their
parser. So in this article we choose to ignore such languaefic features.

3 Our Approach
3.1 Motivation

We first empirically analyze major sources of shift-reduaespg errors with the parsing results of
the baseline parser on the English development set. Théragarser is trained on human-labelec
training data. Regarding the parsing results, we are ealhecbncerned witHirst mistakeghat

the baseline parser makes because future mistakes arecaftead by previous ones. There are
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Description Templates
Unigrams  Sytc, Sowe, Sy tc, Sywe, Syte, Sawe, Sste, Sswe,
Qowt, Qiwt, Quwt, Qzwt,
Solwe, Syrwe, Spuwe, Sqlwe, S;rwe, Sjuwc
Bigrams SowSiw, SywS;c, SecSiw, SocS;c,
SowQow, SqwQyt, SgcQow, SpcQyt,
QowQw, QuwQyt, QutQw, QptQ,t,
SiwQow, S;wQqt, S1cQow, S1¢cQpt
Trigrams S0€S1¢S5¢, SuwS1¢Sy¢, SocS1wQpt, SpcS1cSyw,
S0cS1cQqt, SywS1cQpt, SocS1wQqt, SpcS1cQow

Table 1: A summary of baseline feature templates, wiierepresents thg; item in stackS and
Q; denotes the,;, item in the queu€ from the front end.

| Mistake Type Ratio (Count)
shift vs. red-binary 47.8% (451)
shift vs. red-unary 18.1% (171)

red-binary vs. red-unary 5.4% (92)
red-binary-L/R-{X vs. X} 16.5% (156)
red-unary-{X vs. X} 5.7% (54)

o alwnr|g

Table 2: Types and ratios of first mistakes made by the basptnser on the English development
set with auto-assigned POS.

944 first mistakes in total in the parsing results. Table 2nshthe types and ratios of the top 5
most frequent first mistakes. Cases 1-2 consist of confletisden shift and reduce actions. Cas¢
3 is comprised of conflicts between reduce-binary and redueey actions. Mistakes in cases 4-5
are caused by wrong choices of labels where the symbols, XaiXd X, refer to treebank phrase
labels and the symbol*Xdenotes a temporary label which is introduced when a coestitwith
labelX is binarized. From the table we notice that action conflietsveen shift and reduce-binary
are the largest source of parsing errors, which cover ndalfyof first mistakes.

Intuitively, lexical dependency information is benefidialresolving shift and reduce-binary con-
flicts. In the following, we use a real example to make clearittiuition. Figure 1 illustrates the
shift-reduce parsing process of the baseline parser ornterssnwith auto-assigned POS tags. Thi
baseline parser proceeds correctly until it reaches the starigure 1-(a). At that point, there is
a conflict between reduce-binary (Figure 1-(b)) and shiigFe 1-(c)) actions. We find that the
baseline parser wrongly chooses the reduce-binary acdoause the worloreis (incorrectly)
tagged as a verbThe baseline parser tends to group the words preceding aaseatzonstituent.
However, if the parser is informed that the woedsndborehave a lexical dependency relationship
the parser may correct its choice and switch to the shifoactn addition, we find that the human-
labeled data used to train the baseline parser does notictexial dependencies betweamand
bore We can see that extracting lexical dependencies solefy framan-labeled training data has
a data sparseness problem. This motivates us to utilizéeleld data as an additional source fol
lexical dependency extraction.

3All the occurrences dborein the training data of the POS tagger have the POY/&0.
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Stack Queue

NP
, |
Previous
State P}‘?P VL",Z D‘T VB‘D
@ He s a bore
NP SQ
VRN
Wrong
State P}‘?P VlTZ D‘T VB‘D
O He 's a bore
NP
|
Correct
State P}‘?P VL‘%Z D‘T VB‘D
© He s a bore )

Figure 1: An example of shift-reduce conflicts, illustratihow lexical dependency information
helps to disambiguate the conflicts.

3.2 DataPreprocessing

Before conducting lexical dependency extraction, we usehtiiseline parser to generate con
stituency parse trees from unlabeled data. Since shitteegarsers require POS tags as inpu
automatical POS tagging should be performed on unlabeledugdiore performing syntactic pars-
ing. For unspaced languages such as Chinese, automatichbegmentation is also needed. Tc
simplify the extraction process, we convert automatigaélysed constituency trees into dependenc
trees with Penn2Malt (or other conversion todis).

3.3 Extraction of Lexical Dependencies

After the tree conversion, the following lexical dependesa@re read off from dependency trees
Here we restrict the dependencies to those between two Woigtem lexical dependencies) and
those between three words (trigram lexical dependencies).

Bigram L exical Dependencies

If two words are connected by an arc in a dependency tree, ai these two words maintain a
bigram lexical dependency. For pairs of words that have miégecies, we make a record of the
words as well as their head-modifier relations. Formallgrduin lexical dependencies are denotel
as (wy,w,, L/R) whereL /R indicates the direction of the dependency arc that connectsnd
w,. Moreover, lexical dependencies are word-order sensifia is,(w;, w,, L) is regarded to be
different from(w,, w,R).

Trigram Lexical Dependencies

Trigram lexical dependencies encode a head-modifier oalstiip among three words. As with
bigram lexical dependencies, trigram lexical dependenaie also word-order sensitive. In this

4http: //wa. msi . vxu. se/ ~ni vre/ resear ch/ Penn2Mal t . ht n
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Bigram Dependency Features

fr(syw,sow) fr(syw,sow)osytosgt fr(s1w,sow) fr(syw,sow)osytosgt
frs1w,qow) fr(s1w,gow)os;toget frls1w,qow) fr(s1w,gow)os; togot
f1(sow,qow) f1(sow,gow)osptoget fr(sow,qow) fr(sow, gow)osptogot
Trigram Dependency Features
fr(syw,syrdw,sow)  fr(syw,s;rdw,sow)os; tosyt fr(syw,soldw,sow) fr(syw, soldw, sow)osytosyt

fr(sow,sordw,qow)  fi(sow,sordw,gow)osotogot  frlsow, NONE,qow)  fr(sow, NONE,qow)osotogot

Table 3: New features designed on the basis of lexical degreniels. Here the symbwai represents
a word and the symbalrepresents a POS tag.

paper, we only consider the type of trigram lexical depewcgerthat have the first or the last word
be the head and that require the other two words to be sibdimgmg all the modifiers of the head.
Such lexical dependencies can be represented formally g®/,, ws, L/R). Here the switch. /R
indicates the head among the three words. Specifically,yimbsl L specifiesw; to be the head
and the symbaR designates/; to be the head. In addition, we also consider the specialtbase
w,, IS NONE, which indicates thaw, (w5) is the rightmost (leftmost) modifier of; (w;).

3.4 Proposed Features

After extracting all lexical dependencies, we group bigeard trigram lexical dependencisspa-
rately into three categories according to their frequencies. Bpalty, if a dependency relation is
among topt0% most frequent records, then it receives the grougHii Frequency (HF)else if

it is in top-20%, then we use the talgliddle Frequency (MF)else we use the tagow Frequency
(LF). Although such a grouping strategy is heuristic in some esei$as been proven effective
in Chen et al. (2009). After the grouping, we finally get twatdi containing bigram and trigram
lexical dependencies respectively.

Based on the bigram and trigram lexical dependency listprepose a set of dependency feature
which is described in detail in the following. Hesedenotes thé,; item from the top of the stack
S, andq; thei,;, item from the front end of the quew@ In addition,s;w (s;t) refers to the head
word (POS) of; andg;w (g;t) refers to the word (POS) af.

3.4.1 Bigram Dependency Features

Bigram dependency features have a generic forrf gf(w,, w,) which returns a group tag (HF,
MF, or LF) if the lexical dependenc{w,,w,, L/R) is found in the bigram lexical dependency
list; else it returnavuLL. The above feature template is instantiated into threes pdifeatures:
{fi(s1w,sqw), fr(s1w, 50w} { fL(sow, qow), fr(Sow, qow)}, and {f; (syw, qow), fr(s1w, qow)}-

We also combine the above features with POS tags,aindw,. Thus we have three more pairs
of features in the generic form gf r(wq, w,) o t(wq) o t(w,), wheret(w;) represents the POS tag
of the wordw;. All the bigram dependency features are listed in Table 3.

3.4.2 Trigram Dependency Features

Trigram dependency features have the generic forfy g{w,, w,, w3). In this paper, this feature
template is instantiated into two pairs of features. Théuiegfunctionf; (s;w,s;rdw,s,w) returns
a group tag if(s,w, s, rdw,sow, L) is found in the trigram lexical dependency list, wheredw de-
notes the rightmost modifier efw that has been recognized so far during the shift-reducéngars
process. Note thairdw might beNoNEif no right modifiers have been recognized fpw. The

3177



other trigram dependency featurgg(s,w,soldw,sow), fi(sow,sordw,qow), and fz(sow, NONE
qow) can be explained in a similar way. As with bigram dependereyures, POS tags are com:
bined with above features to obtain richer feature repitesiens. Trigram dependency features
used in the paper are summarized in Table 3.

3.5 Parsing with Proposed Features

To use the proposed dependency features, we only need tteupéascoring function defined in
Section 2.3. The new scoring function is shown in the follogvi

Score'((A,Y)) = > Afi((A V) + D 2¢fd
i J

wheref;((4,Y)) are the baseline features listed in Table lﬁ)ﬁdefer to the dependency features
defined above.

4 Experimental Setup
4.1 DataPreparation

For English experiments, our labeled data came from the Bfafiet Journal (WSJ) corpus of
the Penn Treebank (Marcus et al., 1993). We used the stadilasibns: sections 2-21 were
used as training data, section 24 was used for system deweftpand section 23 was held out
for performance evaluation. In terms of English unlabelathdwe used the TIPSTER corpus
(LDC93T3A) which contains news articles from various s@stcthough in this paper we only
used Wall Street Journal articles. In addition, we did notaee the sentences of the WSJ portior
of the Penn Treebank from the TIPSTER corpus.

For Chinese experiments, we used Chinese Treebank (CTBipues.1 (Xue et al., 2005) as la-
beled data. Specifically, articles 001-270 and 440-115&wsed as training data, articles 271-30(
were held out for performance evaluation, and articles 328 were used as development data. I
the respect of Chinese unlabeled data, we utilized the sapGhinese Gigaword (LDC2003T09)
after some basic cleanups.

We conducted necessary preprocessing on English and @himésbeled data before they were
fed to the baseline parser for automatic parsing. Spedifiaak applied OpenNLP for English
sentence boundary detection and tokenizatiofor English POS tagging, SVMTool was used
which achieves a per-token accuracyp®f1% on section 23 of the WSJ corpbisor the Chinese
unlabeled data, we conducted sentence boundary deteatiplysaccording to sentence ending
punctuations, including question marks, full stop marks] exclamation marks. Raw sentences
were automatically segmented with a CRF-based word segmemhich achieves a segmentation
accuracy 0b7.2% on the testing data of CTB 5.1. For automatic Chinese POSrtggge utilized
the Stanford POS tagger. We trained the tagger on the CTB 5.1 training data and actiiave
tagging accuracy 095.4% on the CTB 5.1 testing data.

Table 4 contains detailed data statistics of all the aboveara.

Shttp://i ncubat or. apache. or g/ opennl p/
Shtt p: // www. | si . upc. edu/ ~nl p/ SVMrool /
“http://nlp.stanford. edu/ sof t war e/ t agger . sht ni
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Language Statistics Train Dev  Test Unlabeled
# sentences 39.8k 1.7k 2.4k 3,139.1k
English # words 950.0k 40.1k 56.7k 76,0414k
# ave. length 28.9 25.1 25.1 25122
# sentences 18.1k 350 348 11,810.7k
Chinese # words 493.8k 8.0k 6.8k  269,057:2k
# ave. length 27.3 19.5 23.0 22.8

Table 4: Data statistics including the number of words amdesees, together with average sen
tence length* The numbers are approximate due to the use of automaticqoessing techniques.

English Chinese
Data Source LR LP F1 LR LP F1
Baseline 88.2 88.2 882 837 844 840

Human-Labeled| 88.5 88.7 88.6| 83.8 84.4 84.1
Auto-Parsed 89.1 89.4 89.3] 852 851 851
Combined 89.3 895 89.4| 8.3 852 852

Table 5: Comparative results on English and Chinese derredaps sets with lexical dependencies
extracted from diverse sources.

4.2 Performance Scoring

For performance evaluation in all the following experingente usedEVALBto provide bracket
scoring as well as complete match scorindror significance tests, we adopted the comparat
developed by Daniel Bikel to compupevalue®

4.3 Running Parameters

We set the beam size to 16 in both training and decoding whaihtains a good trade-off between
parsing efficiency and accuracy (Zhang and Clark, 2009)h Wispect to the iteration number of
perceptron learning, we tuned the parameter on the EngtidhChinese development sets anc
finally set the value to 21 for both English and Chinese expenis.

5 Experimental Results
5.1 Comparison of Different Sources

Table 5 shows the comparative results on English and Chibegglopment sets with lexical de-
pendencies obtained from different sources. We experiedenith four different settings: no lex-
ical dependency information was used (Baseline), lexieplethdencies were solely from human
labeled training data (Human-Labeled), lexical depenigsnwere solely from auto-parsed data
(Auto-Parsed), and lexical dependencies were from the gmatibn of human-labeled and auto-
parsed data (Combined). For the latter three settinghaliépendency features listed in Table ¢
were incorporated. In the data combination, we simply gauehnman-labeled training data a
relative weight of one.

From the results we can see that, although lexical depegdefarmation from human-labeled
training data can improve the performance on both EnglishGiminese, the improvement on Chi-

8http://nlp.cs.nyu. edu/ eval b
Shttp: // www. ci s. upenn. edu/ ~dbi kel / downl oad/ conpar e. pl
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Sentences witl#Words< 40

Features LR LP F1 EX
Baseline 90.1 | 89.8 | 90.0 | 41.3
+Bigram Features| 90.6 | 90.5 | 90.6 | 42.1
+Trigram Features| 90.9 | 90.9 | 90.9 | 42.9
Sentences with Unlimited Words
Features LR LP F1 EX
Baseline 89.6 | 89.4 | 89.5 | 39.0
+Bigram Features| 90.1 | 90.1 | 90.1 | 39.7
+Trigram Features| 90.4 | 90.5 | 90.4 | 40.7

Table 6: Main results on section 23 of the WSJ corpus, usitgnaatically assigned POS tags and
lexical dependencies extracted from auto-parsed datatyives of dependency features are adde
incrementally.

nese is marginak{0.1% in F1-score). One reason is that lexical dependencies fromah-labeled
training data have a data sparseness problem. By contrasise of large-scale auto-parsed dat
brings on much bigger improvements1.1% in F1-score on both English and Chinese). In add
tion, we find that data combination has trivial effect on tleefprmance. One possible reason is
that lexical dependencies form human-labeled training da¢ overwhelmed by those from auto:
parsed data. We will leave further discussions on data coatibn to our future work and focus
on the setting of obtaining lexical dependencies from qased data.

5.2 Main Resultson English Data

Table 6 shows the main results on the English test set, wherevb types of dependency features
were added incrementally to the baseline parser. As thdtseshow, both bigram and trigram

dependency features have positive effect on the parsinga@cye Specifically, on the whole test
set the overall improvement over the baseline parsei9% in F1-score, where bigram depen-
dency features contribute an absol0t€% improvement and trigram dependency features furthe
improve the performance 3.3% over the results of using bigram dependency features. f8ign
cance tests show that the overallimprovement on the whsilseég is statistically significant on the
level of p < 1074

5.3 Comparative Resultson English

Table 7 shows the comparison of our parser with a large bodepfesentative related work.
For fair comparison, here we disregarded parsers that amdban combination methods such
as Petrov (2010) and Zhang et al. (2009). Following the targnadopted in Huang et al. (2010),
we grouped the related work into single parsers (SINGLEgritninative reranking approaches
(RE), and self-training (SELF). Note that our parser befotagthe category of self-training. From
the results we can see that our parser outperforms all tiggegrarsers listed in the table except
Carreras et al. (2008). However, compared with Carrerals @Q08), our parser has much smaller
time-complexity:0(nK) vs. O(n®G), wherek is the beam size used in our parser &nig a gram-
mar constant in Carreras et al. (2008). Compared with rémgnénd self-training parsers, our
parser has relatively low parsing accuracy. But the reramtéchnique is actually complementary
with our approach, so we might enhance our parser with thieigue in the future.
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Type Parser LR LP F1
Ratnaparkhi (1997) 86.3 875 86.9
w Collins (1999) 88.1 883 882
®  Charniak (2000) 895 89.9 895
z Sagae and Lavie (2005) 86.1 86.0 86.0
¥ sagae and Lavie (2006) 878 881 879
Petrov and Klein (2007) 90.1 90.2 90.1
Carreras et al. (2008) 90.7 914 911
W Charniak and Johnson (2005) 91.2 91.8 91.0
®  Huang (2008) 922 912 917
w Huang and Harper (2009) 91.1 916 913
w McClosky et al. (2006) 921 925 923
?  Huang et al. (2010) 91.4 918 917
This Paper Baseline 89.6 894 895
Auto-Parsed 904 905 90.4

Table 7: Comparison with related work on section 23 of the W&pus with automatically as-
signed POS tags. The parsers based on shift-reduce parsirihe results of self-training with a
single latent annotation grammar.

Sentences with#Words< 40

Features LR LP F1 EX
Baseline 829 | 836 | 83.2 | 328
+Bi-lexical Features| 84.3 | 85.1 | 84.7 | 32.8
+Tri-lexical Features| 84.7 | 85.9 | 85.3 | 34.1
Sentences with Unlimited Words
Features LR LP F1 EX
Baseline 79.5| 80.7 | 80.1 | 28.2
+Bi-lexical Features| 80.3 | 81.6 | 80.9 | 28.2
+Tri-lexical Features| 80.6 | 81.9 [ 81.2 [ 29.3

Table 8: Main results on the CTB 5.1 test set, using automlfitiassigned POS tags and lexi-
cal dependencies extracted from auto-parsed data. Twe tyfpgependency features are addes
incrementally.

5.4 Main Resultson Chinese Data

In parallel to the results on the English test set, Table 8vstthe main results on the Chinese tes
set, using auto-assigned POS tags and lexical dependentiasted from auto-parsed data. Fron
the results on the whole test set we can see that dependexrtayefe contribute a bigger absolute
improvement on Chinese than that on Englisti (1% vs. +0.9%). One possible reason is that
the size of Chinese unlabeled data used in the paper is mggkmiSignificance tests show that
the overall improvement induced by bigram and trigram depeny features on the whole test is
statistically significant on the level of < 107°. These results indicate that the new features a
very effective.

5.5 Comparative Results on Chinese

Comparing Chinese constituency parsers is difficult in #rese that previously reported results
were achieved frequently on different versions of CTB anaith different data split standards.
Zhang and Clark (2009) presented a detailed comparisoneketthe baseline parser of this pa
per and a large body of related work on CTB 2.0. Here we onlypamed our parser with the

parsers available on the web for Chinese parsing, as showabie 9. From the results we can see
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Type Parser LP LR F1
=] Charniak (2000) 79.6 821 808
LZ° Bikel (2004) 793 82.0 80.6
0 Petrov and Klein (2007) 819 848 833
& Charniak and Johnson (2005) 80.8 83.8 82.3
This Paper Baseline 795 80.7 80.1
Auto-Parsed 80.6 819 812

Table 9: Comparison with related work on the test set of CTIBAith automatically assigned POS
tags.* Huang (2009) adapted the parsers to Chinese parsing on CITB B/e run the parser on
CTB 5.1 to get the results.

that, on Chinese parsing our parser outperforms Bikel (&84 Charniak (2000) b9.6% and
0.4%, respectively. However, our parser lags behind Petrov dashK2007) and the reranking
parser (Charniak and Johnson, 2005).

5.6 Additional Analysis

We performed several types of analysis, focusing on Engtstinvestigate the effect of differ-
ent sizes of human-labeled training data and auto-parded aawell as how lexical dependency
information changes the distribution of first mistakes miagéhe baseline parser.

5.6.1 Effect of Different Sizes of Labeled and Unlabeled Data

We studied the effect of varying sizes of human-labeledingi data by a randomly sampling
from sections 2-21. Meanwhile, we always used the whole Batito-parsed data. The results
are depicted in Figure 2-(a). As the results show, autogohdata improves parsing accuracy
even when the human-labeled training data is small in sizadtlition, by using our approach, a
fraction of sections 2-21 plus the whole set of auto-parsed id sufficient to achieve the F1-scores
obtained by the parser trained solely on the whole sectie?is. 2

91

o1

Without Unlabeled Data —+— Baseline Parser —+—
With Unlabeled Data ----+-.. Our Approach ---x.---

F Score

84

. . . . . 89 . . . . .
5k 10k 15k 20k 25k 30k all 50k 100k 200k 500k 1,000k 2,000k Al
Labeled Training Data Size Unlabeled Training Data Size

(a) varying labeled training data (b) varying unlabeledcadat

Figure 2: Results with varying sizes of human-labeled tnginlata and unlabeled data.
We also examined the effect of varying sizes of unlabeled.det this experiment, we used sec-

tions 2-21 as human-labeled training data and changedzbegunlabeled data through random
sampling. The results are depicted in Figure 2-(b). Fronreékalts we can see that improvements
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achieved by using unlabeled data are enlarged with therimemeof the size of unlabeled data until
the performance finally levels off.

5.6.2 Reduction on First Mistakes

The baseline parser made 1,522 first mistakes on the Engbsise¢t. We analyzed how our ap-
proach changed the first mistakes. We grouped the changefint cases.No-Changg1,090)
refers to the case that the baseline and our parser maketiedisst mistakes at the same positions
In the case o€orrect(249), first mistakes made by the baseline parser are cedegtour parser.
Wrong(121) means that our parser makes first mistakes earlierttigahaseline parser. Finally,
Others(47) refers to the case that our parser and the baseline paage first mistakes of different
types at the same positions. In addition, we are especigtydsted in how our approach reduce:
first mistakes of the typshift vs. reduce-binarySo we compared the numbers of first mistakes ¢
this type in theCorrectandWrongcases, which are 168 and 78 respectively.

6 Related Work

Shift-reduce parsing has been widely studied for constity@arsing. Sagae and Lavie (2005) pro
posed a classifier-based shift-reduce parsing algorithiohwhas extended with a best-first searck
strategy in Sagae and Lavie (2006). Wang et al. (2006) adapte parser in Sagae and Lavie
(2005) to Chinese parsing and compared some representdsigsifiers. Zhang and Clark
(2009) proposed a global learning algorithm to replace ll@tassifiers. Shift-reduce pars-
ing has also widely applied to parsing with other grammara/r@\ 2004; Zhang and Clark,

2008; Huang and Sagae, 2010; Zhang and Clark, 2011). In #psrpwe focus on improving

Zhang and Clark (2009) with a set of novel features define@xisdl dependencies obtained from
auto-parsed data. To the best of our knowledge, semi-siggerapproaches to shift-reduce con
stituency parsing have not been widely studied before.

The approach used in this paper belongs to the category éfserarvised learning. In the respect
of semi-supervised learning for constituency parsingf-tsaining has been extensively studied
(McClosky et al., 2006; Huang and Harper, 2009; Huang e28l10). The difference is that we
use partial information derived from auto-parsed dateeedtof entire automatically parsed trees
Chen et al. (2009) and Noord (2007) exploited lexical depaoiks from unlabeled data for depen
dency and HPSG parsing, respectively. In this paper we ffitht time use lexical dependency
information for advancing the state-of-the-art shiftueed constituency parsers. It is noteworthy
that, although Chen et al. (2009) and our work use the sarategyrto extract lexical dependen-
cies, features defined on lexical dependencies are dis8petifically, Chen et al. (2009) proposed
features for a graph-based dependency parser while ther f@guses on a transition-based con
stituency parser. More recently, Bansal and Klein (201dppsed features for both dependenc
and constituency parsing based on Web counts from the Goegitams corpus. By contrast, lex-
ical dependency information used in this paper is derivethfauto-parsed data. Moreover, Weh
counts from the Google n-grams corpus represent surfaderss of lexical affinities while lexical
dependencies are able to encode information on deep sgrgfactures.

7 Conclusion

We have presented a method to utilize lexical dependenoyriretion to improve shift-reduce con-
stituency parsing. A set of new features was proposed bastdexical dependency information
and integrated into the shift-reduce parser. Our method agelressed the action conflict prob-
lem. We evaluated the proposed method on English and Chitsae The results show that our
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new parsers provide comparable accuracies with stathespart parsers while maintaining the
advantage in parsing speed.
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