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ABSTRACT

Parse trees are indispensable to the existingoeed translation models. However, there exi:
two major challenges in utilizing parse trees: 1) Fmst language pairs, it is hard to get pars
trees due to the lack of syntactic resouréms training. 2) Numeros parse trees are not
compatible with word alignment which is generdégrned by GIZA++. Therefore, a number of
useful translation rules are often excluded.overcome these two problems, in this paper w
make a great effort to bypass the parse teeekinduce effective unsupervised trees for tre
based translation models. Our unsupervised trees depend only on the word alignment w
utilizing any syntactic resource or linguistic parsHence, they are very beneficial for the
translation between resource-poor languages. Our experimental results have shown th
string-to-tree translation system using our unsupervised trees significantly outperestrnty
to-tree system using parse trees.
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1 Introduction

Recently tree-based models' have been widely studied in statistical machine translation (SM*
The existing tree-based models inclutiéng-to-tree models (Galley et al., 2006; Marcu et al.,
2006; Shen et al., 2008)ge-to-string models (Quirk et al., 2005; Liu et al., 2006; Huang et al.
2006;), andree-to-tree models (Eisner, 2003; Ding and Palmer, 2005; Cowan et al., 2006; Zhe
et al., 2008; Liu et al., 2009). Due to the effective use of syntactic information, tree-based m
have achieved comparable (Liu et al., 2088l even better performance over phrase-bas
models (Marcu et al., 2006).
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FIGURE 1 — Rule extraction for string-to-tree translation model: (a) using parse trees versu
using our unsupervised trees.

In the existing tree-based translation models, gpémses are essential to extracting translatic
rules.FIGURE 1(a) illustrates the rule extraction processstifng-to-tree translation model. The
parse tree is usually generated by a linguistisgrawhich is trained on a manually annotate
corpus, such as Treebank. However, the manually annotated corpus is always too inaoleq
fully display the strengths of tree-based modelgarticular, traditional tree-based systems ca
not work at all for language pairs without any syntactic resource, which has greatly restr
their application.

FromFIGURE 1(a), we can also discover that syntactic parsing is completely independent of \
alignment. The separation of parser and alignment leads to a severe incompatibility prc
between them. Together with the widely existagsing errors, numerous useful translation rule
are excluded during rule extraction.

To overcome the above two problems of current tree-based models, in this paper, we gi
using parse trees and induce better alternatives for tree-based translation models. The alte
tree structures depend only on the word alignirwithout utilizing any syntactic resource or
linguistic parser (se€IGURE 1(b) for illustration). Specificallythe entire process of inducing
such tree structures for tree-based tgtitsh models is summarized as follows:

1. Based on a word aligned parallel corpus, w& fransform those aligned bilingual sentenc
pairs into packed forests.

1The translation models using parse trees on one side or both sides are defined as tree-based models here.

3038



2. Based on the obtained packed forests, we design an EM algorithm to learn an effe
synchronous tree substitution grammar (STS@Y then acquire Viterbi tree structures
according to the achieved STSG.

In step 1, in order to create a packed forest for a bilingual sentence pair, we first segme
sentence pair into several shorter ones tiuce the huge generation space of tree structur:
Then, according térontier node assumptionve compress all the tregwsttures with the largest
number of frontier nodes into a packed forest. We will detail the process of constructing pe
forest in Sectior8. After all packed forests are generated, we exploit an EM algorithm in ste
to learn an STSG and then generate Viterbe tstructures for translation. The adopted EP
algorithm will be elaborated in Sectidn

Obviously, the above process of inducing tree structures is unsupervised. The syntactic res
and linguistic parsers are noecessary. Hence, comparing with parse trees, the propo
unsupervised trees can be applied to build translation models for more language
Furthermore, by maximizing the number of frontides, the unsuperviséges are compatible
with word alignment and thus could achieve a better rule coverage for translation.

Since the existing tree-based translation modets usually restricted by parse trees, usin
unsupervised trees would be a promising direction for these models. To our best knowiedg
paper is the first effort to introduce effee unsupervised tree structures for tree-base
translation models. The most significant contribution of this paper lies in this point. In orde
achieve this goal, a series of useful technicaresemployed innovatiweland meaningfully in
the paper. Moreover, the experimental ressliew that our unsupervised trees significantl
outperform the parse trees in the statehefdrt string-to-tree translation system.

2  Related Work

Our work focuses on inducingffective unsupervised tree sttures, and meanwhile, resolving
the incompatibility problem between tree structaed word alignment for tree-based translatio

Several researchers have studied unsupervisedstructure induction fadifferent objectives.
Blunsom et al. (2008, 2009020) utilized Bayesian methods learn synchronous context free
grammar (SCFG) from a parallel corpus. The obtained SCFG grammar is further used
phrase-based and hierarchical phrase-baseensy&hiang, 2007). Denero and Uszkoreit (2011
adopted a parallel parsing model to induce uriéab&ee structures for syntactic pre-reordering
Different from above works, we concentrate on producing effective and labeled unsuper
trees for tree-based translation models. Moreairce most of the curretree-based translation
models are based on synchronous tree substitgtiammar (STSG), our unsupervised trees a
thus learned according to STSG, rather than SCFG.

On relieving the incompatibility problem between tree structures and word alignment
translation, previous works mainly focus on two directions:

One direction is to adapt the parsee structure. Wang et al., (2007) binarized the parse trees
adopted an EM algorithm to select the best binag from their paralldbinarization forest. Mi
et al., (2008b) and Liu et al., (2009) compressed thousands of parse trees into packed f
Zhang et al. (2011a) applied a CKY binarization method on parse trees to get binary fores
forest-to-string model. Burkett and Klein (2012) adopted a transformation-based neeteacht
a sequence of monolinguabe transformations for translation. They differ from our work in thi
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they were all based on parse trees. Comparedthéth, we construct effective unsupervised tre
structures according to the word alignand do not need any syntactic resource.

The other direction is to integrate the alignment information into parsing. Burkett and K
(2008) and Burkett et al. (2010) made effortsldgjoint parsing and alignment. They utilized the
bilingual Treebank to train a joint model and achieved better results on both parsing and
alignment. Liu et al. (2012) re-trained the linguistic parsers bilingually based on word alignn
Our work is different from theirs in that wage pursuing better unsupervised tree structures 1
better translation performance.

As a whole, compared with previous works, our unsupervised trees are generated fully depe
on word alignment. Therefore, by using owetistructures, the incompatibility problem betwee
tree structures and word atignent can be well resolved.

3 Packed Forest Generation

In this section, we introduce how to compreistte reasonable tree structures into a packe
forest for the given flat sentence. Packedeso is a compact representation of many tre
structures. Generally, it is a paiV, E> where V is the set dbrestnodesand E is the set of
hyperedgesEach hyperedgec E is a pair<h(e), t(8 > whereh(e) is its head node arife)
denotes the vector of its tail nodessURE 2 illustrates a packed forethtat encodes two different
tree structures.

0

Today we

jin-‘tian wo-men zai-ci jian-mian
AR Hedl (ERN D i

FIGURE 2 — An example of packed forest that encodes two different tree structures. iaURE, F
shaded nodes denote frontier nodes

3.1 Space Reduction

Basically, there are an exponential number of possible tree structures for a given sentence.
tree structures result in a very huge packed forest. For example, considering a sentence of
L, there will be0.5L(L+1) non-leaf nodes in the forest (each span corresponds to one node
addition, a forest node covering (m>=2) words emitsm-1 binary hyperedgés leading to

O(L®) hyperedgem total’. Consequently, there would be an exponentiallmum er of parame

2 In our forest, the binary structure serves as the basic unit, which will be demonstrated later.

L
3 There are a total of L+ Z(L —-i+)x(-1)= %(L3 +5L) edges, including the edges linking to the leaf nodes.
i=2
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for the STSG achieved from the forests. Suetmy parameters would cause a difficult estimatio
problem, especially for the EM algorithm adopted in this paper. Therefore, to reduce the
generation space of trestructures, we first segment théirgual sentence pair into several
shorter ones and then impdsentier node assumptiaio construct the packed forest.

3.1.1  Bilingual Sentence Segmentation

Bilingual sentence segmentation is to segmesergence pair into several short sub-senten
pairs whose source sub-sentence and target sub-sentence are translations to eact
Theoretically, in a sub-sentengeir, all included words cannadlign to words outside it.
However, since many words are wrongly aligned via the automatic word alignment, nume
correct aligned sub-sentence pairs are often excluded under this restriction. Therefore, tc
the restriction, we adopt the following constrains after analyzing the erroneous alighrtants
the bidirectional length ratios of a sub-sentence ipaist be all smaller than 1:3; (b) as a suk
sentence pair, it must contain more than 4 wordeach side; (c) in a sub-sentence pair, mo
than 30% words on each side must be aligteedts counterparts;d] considering all the
alignment links emitted by a btsentence, the erroneous ones (align to words outside the ¢
sentence pair) account for at most 30% of all links.

To guarantee the segmentatiaccuracy, we only extract split point candidates based on -
punctuationd which always denote the boundary of sub-sentences. Complying with the al
constraints, we traverse allettsplit point candidates to searfdhr the optimalsplit point with
minimum number of wrongly aligned words (i.e.,nimizing the number of words that align to
words outside the sub-sente pair). Then we segment the seice pair into two shorter ones al
that split point. We reasively segment the newhcquired subentence pairs uihno split point
candidate is leffrIGURE 3(a) shows the segmentation result of an example sentence pair.

After bilingual sentenceegmentation, only the aps inside the sub-sentenpairs are used in
the forest. Under this condition, a large amount of useless spans are discarded and the fi
effectively simplified. For example, iRIGURE 3(b), the span “meet again, but” in the Englist
sentence is discarded because it does not belong to any sub-sentence pair.

Note that the method of bilingual sentencgymsentation we use here is only a simple
segmentation strategy. It can also be substitoyeahy other segmentation methods. Additionall
after sentence segmentation, we realign words based on the sub-sentence pairs to get
alignment where all words ia sub-sentence pair aligmthe words inside it.

3.1.2  Frontier Node Assumption

Bilingual sentence segmentation leads to a gneate reduction for constting packed forests.
However, even after sentence segmentation, the generation space of tree structures would
very large, especially when the sub-sentenaeiig long. In order tdurther simplify the space,
we take advantage of the following assumption during forest construction:

Frontier Node Assumption: The more frontier nodes the tree structure has, the more reasonz
it is for translation.

4The heuristic values in the constraints are chosen by a series of survey and experiments on a well-aligned corpus.
SWeuse{, , : ; ? !}and{ ,:; ? !}assplitanchors for Chinese and English, respectively. We take the
position before and after the punctuations as split point candidates.
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Frontier nodes aretilized to factor a tree structure inseveral fragments for rule extraction
(Galley et al., 2004). Formally, a frontier nodeaisiode that meets thellaing constraint: the
span of the node and its dominasgehn at the other side are consistent with word aligrimer
For example, ifFIGURE 2, nodePRP...RBs span is {we meet again} and it dominates spa {
7 AKX g7} at the other side. These two spans are istergt with word ignment. Therefore,
nodePRP...RBs a frontier node.

Our frontier node assumptiomakes sense in tree-based trarmmtamodel. This is because with
the purpose of achieving better rule coverage, we te extract small minimal rules as many a
possible and generate larger rules by compasiag. Maximizing the number of frontier nodes
supports this goal, while producing many interior (non-frontier) nodes hinders it (DeNero
Klein, 2007). Hence, in the forest constructor, we follow this assumption and only conside
tree structures with the largest number of frontier nodes.

Denero and Uszkoreit (2011) utilized a similar heuristic to construct their unlabeled trees.

required that all span their trees must align continudyigo the other side. Unlike their

heuristic, ouffrontier node assumptioonly maximizes the number of frontier nodes. The interic
nodes are also permitted in theee structure, which is morBexible and appropriate for

constructing forests.

Today we meet again but the situation is quite different

jin-lfan wo-men  zai-ci jian-mian ; qing:{ing yi da bu xiang-tong le

sl iR R m Bl
(@)
RQOT
NN....

s CC..JJ .

VBP+RB

oNN 1

! FPZ V?P 3 R‘B“ CC DT NN VBZ RB .‘]J
[ I |
Today we meet again , but the situation is  quite different
| | i |
jin-tian wo-men zai-ci  jian-mian, qing-xing i bu xiang-tong Je
AR AT K Wim . R SR N [ I

(b)

FIGURE3 — (a) An example of bilingualentence segmentati (b) The ultimate packed forest of
the example sentence pair in (a).

3.2 Node Labeling

To create packed forests for semesy a problem that must be resalhis how to label the forest
nodes without any syntactic knowledge. Xion@ket(2006) showed that the boundary word of .
phrase is a very effective indicator for phrase reordering. Zollmann and Vogel (2011) lat
hierarchical rules with word classes of bdary words and achieved better translatio

6 A node’s dominated span at the other side refers to the minimum continuous span covering all the words that are
reachable from the node via word alignment. Two spans are consistent with word alignment means that words in
one span only align to words in the other span via word alignment, and vice versa.
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performance. Inspired by their work, we combine word classes of boundary words to label 1
nodes. We divide the non-leaf forest nodés iree groups: one-word node, dominating onl
one word in the sentence,caaccordingly, two-word nodend multi-word node. Naturally, a
one-word node is labeled by the class of itsmmhating word; a two-word node is labeled by
combining the classes ofghltwo words, such a€C1+C2"; a multi-word node, whose leftmost
word’s class iSC1 and rightmost word’s class &n, is labeled with C1...On". In this paper,
POS tags are employed to serve as the word clagses example, ifFIGURE 3(b), the forest
node covering phrase “we meet again” is a multi-word node and is labeledPRiEh .:RB. Our
labeling strategy is similar to @@mann and Vogel 2011). The difference is that we are labeli
our forest nodes, while they labeled hierarchical rules to substitute the original single
terminalX.

3.3 Forest Constructor

In tree-based translation models, the binary sirachas shown its efficiency on improving
translation quality (Wang et al.0@7; Zhang et al., 201}anspired by thiswe take the binary
structure as the basic unit of our forest.

After sentence segmentation, wesfibuild a forest for each sugentence pair. Initially, we create
a POS node for each word and then perform a CKY-style algorithm to construct femste4
illustrates the main process of buildiforest for a sub-sentence pair HGURE 3(a). From
FIGURE4 we can see that, the algoritmontinuously inspects each span a bottom-up manner
and creates forest nodes to represent the spans.

During the above process, wheck every split point in eacpan and generate an elfer that
split point. To comply \th the frontier node assumption, wely preserve th edges maximizing

F[i, j]:
Fli,j]=argmax £ [ k]1+F [k, j1+Froni, jT} (1)

where FJi, j] denotes the number of frontier nodes in the sub-tree whose root node fi§ fpan
ke (i, j) refers to the split point of spdn j]. Fron[i, j] is an indicator function whose value is
1 if the node for spafi,j] is a frontier node and 0 otherwise. Obviously, Equation (.
guarantees that the sub-tree rooted at $pgh carries the largest number of fronter nodes
Consequently, in a bottom-up manner, when we arrive at the node covering the whole sen
we can achieve all the tree structuréthuhe larget number of frontier nodes.

For example, inFIGURE 4(c), span [0,3] (length.=3) has two split poist and thus can be
composed of span [0,1] and span [1,3], or span [0,2] and span [2,3]. HoweverFostreE}(c)
shows, there are only 3 frontier nodes in the former c&$@, 1]+ F[1,3]+ Fron[0,3]= 3, here
Fron[0, 3] = 0 because nod&IN...VBP[0,3 is not a frontier node), while there are 4 frontie

7 Practically, we need a supervised POS tagger, which impairs the unsupervised property of our tree structure to
some extent. Actually, the POS tags can be substituted by any unsupervised word classes here. In future, we also
plan to design an efficient algorithm to learn the node label automatically, rather than using a heuristic like here.

8 Here the “span” is based on the POS nodes. For example in FIGURE4, span 0-2 refers to the span of node sequence
“NN PRP”.

9 As each split point corresponds to two adjacent smaller spans, we generate an edge to link these two spans.
Therefore, each edge we create here contains a head node and only two tail nodes.
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nodes in the latter one~(0, 2]+ F[2, 3]+ Fron[0,3]= 4). Therefore, we only preserve the edgt
maximizing F[0,3] for nodeNN...VBP[Q3], i.e., the edge composedspfan [0,2] and span [2,3].

In most cases, a forest node could emit moam thne edge with the same largest number
frontier nodes. For example, IGURE 4(d), nodeNN...RB [0,4](lengthL=4) emits two edges
with 7 frontier nodes. One links not&N[0,1] andPRP...RBJ[1,4] The other one connects node
NN+PRP[0,2] andVPB+RB[2,4] We preserve both of these two edges for ridde .RB [0,4]
Finally, we achieve the packed forest the example sub-sentence pairFGURE 4(d). In
addition, during the forest camngction process, the lower nodasd edges not chosen to creat:
upper level nodes will be sttarded, suchs nodeNN...VBP[0,3]in FIGURE4(d).

After we create a forest for each sub-sentence pair (hamed as sub-forest), we combine the
forests together to generate a final binary gbfer the whole sentence pair. The combination
also performed by a similar CKY-style algorithithe only difference is #t the span in this
CKY algorithm is based on the root node of sute$ts. Then we add a goal root node labele
“ROQT to the forest which will be used ithe EM algorithm. As an examplE|GURE 3(b)
illustrates the final packed forest of the example sentence gagure 3(a).

0 1 2

3 4

NN[O1] ! PRP[L2] VBP[23] ® RB[34] NN¥PRP[0}2] PRP+VBP [13] |[VBP¥RBI[24]
| | =
Today we ain
jin'tian wo-men i O N1 'prPin2) 2 vep3l * RB@A4?
AR Al
L=1 L=2
Floq =1 F[12]=1 F021=FIO1 +F[12]+1=3
F23]=1 Fi34]=1 F[1,3] = F[1,2] + F[2,3] +0=2 \/
(@ F[2,4] = F[2,3] + F[34] +1=3 \/
(b)
NN...RB [0,4] ﬂ
~—__ NN..VBP [0,3] PRP..RB [1,4]

7 N
/ NN...VBP [0,3] PRP...RB [1,4] \\ N
\
II " | (== |
P _ \ NN¥PRP[02]l| PRP+VEP [13]| [VBPHRBI24]
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. NN ! PRP[12] VBP[2,3] RB [34]
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L=4 F[0,3] = F[0,1] + F[1,3]+0=3 X
FI04] = FI0,1] + F[L4] +1=7 F03I=Flozi+F23l +0=4
FI041=F[02] + F24] +1=7 P =Pz s ERae1-s
FI04] = FI03]+ FBA +1=6 X F[L4] = F[13] + F34] +1=4 X
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FIGURE 4 — The main process of building forest with the CKY-style algorithm. Here, shac
nodes denote frontier noddsrefers to the length of span. F[i,j] denotes the number of front
nodes in the sub-tree whose root node is span [i,j]. For example, the sub-tree that roots ¢
[1,4] in (c) contains 5 frontier nodeEhis is because F[1,2] = 1 for noB&P[1,2], and F[2,4] =

3 for nodeVBP+RB[2,4] and nodé’RP...RB [1,4]s also a frontier node.
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4  Learning Viterbi Tree via EM Algorithm

In this section, we desigan EM algorithm to learn anfettive synchronasi tree substitution
grammar (STSG) and then acquire Viterbi tstrictures based on the STSG. Denero ar
Uszkoreit (2011) mentioned that their unlabeled tree structures can also be obtained by a ¢
method. However, their method is based on SCR@.v@rk is different from theirs in that the
EM algorithm is based on STSG. We use STSG here because most of the current tree
translation models are based on STSG.

Given a parallel corpus withsentence pairs, and the corresponding packed forest for each te
sentencee, we aim to search for a series of tr¢ste,...ten) that maximize the likelihood of
the whole corpu,, f ,a) 10 which is formulated as follows:

(taterten) = argmax[ [ pta. fha)

(ter:teps - ten) i=1

The probability of triple(t,, f;,a) is further computed by aggregating the rule probabilitie
p(r) in each derivatiod in the set of all derivatiori3. That is

plty, fioa)=> T p(r)

red

To get the derivation sdd, we employ the algorithm of Mi et al., (2008a) to transform ot
induced packed forests into synchronous derivation forests. Practically, in order to reduc
complexity of the derivation forest, we only w#i the minimal STSG translation rules extracte
by the method of Galley et al., (2004) and Mi et al., (2008b) to construct derivation'forests

Using the synchronous derivation forests, thke probabilities are estimated by the inside
outside algorithm (Graehl and Knight, 2004). Here, t¢adhd rootf) denote the leaf non-
terminals and root node of ruterespectively. The inside amalitside probabilities of forest node
N are defined as follows,

pMﬁZhwﬂnmﬂ
)

reR(N N, e leaf(r)

MN=Z{M%MWW~H m@

r:Neleaf (r) N, < leaf(n—{ Nt

where R(N) denotes the set of matched rules rooted at hodEherefore, the process of EM
algorithm is &own as follows:

10 In the triple, te refers to the target tree structures, f denotes the source language sentences, and a is the word
alignment between them.
11 We follow the highest attachment strategy in (Galley et al., 2006) to deal with unaligned words.

3045



E-step: the expected count for each occurrence ofriteea derivation forest is computed as:

p(r)- pOUT(rOOt(r)) * H pIN(NI)

N e leaf(r)

M-step: the expected counts of rulegr), are used to update the probabilities of rules:

)
PO =—5""<m)

ryroot (ry)=root(r)

After the EM algorithm, we traverse the detion forest to obtain the Viterbi derivatiah and
its corresponding best tree structure. Thendbguired tree structures can be applied to ar
traditional tree-based translation system.

5  Experiments

5.1 Experimental Setup

In order to verify the effectiveness of our upswised tree structures, we compare them wi
linguistic parse trees based on string-to-tremdiation. Here we experiment on Chinese-tc
English translation, for which English parse trees can be easily obtained. Our training data
FBIS corpus containing about 7.1 million Chinese words and 9.2 million English words.
generate the final symmetric word alignment using GIZA++ andthw-diag-final-andbalance
strategy. We train a 5-gram language model @nténget part of the training corpus and th
Xinhua portion of English Gigaword corpus. Wee the NIST MT 2003 evaluation data as th
development set, and adopt NIST MTand MTO5 as the test séhe final translation quality is
evaluated in terms of case-insensitive BLEU-#thwshortest length penalty. The statistica
significance test is performed using tte-sampling approach (Koehn, 2004).

Our baseline system is an in-house string-to-tree system (r2ihéased on Galley et al. (2006
and Marcu et al. (2006). The English side of the training corpus is parsed with Berkeley p
(Petrov et al., 2006). We extract the minimal K rules (Galley et al., 2004) and the rules o
SPMT Model 1 (Marcu et al., 2006) with phrases up to lehgfhon the source side. Then we
extract the composed rules by composing twthae adjacent minimal GHKM rules (Galley et
al., 2006). The beam size of the decoder is set as 500. We further implement head binariza
the English parse trees and apply the achiehiedry trees to another string-to-tree syster
(abbreviated as2t-hb) with the same settings &2t. In addition we also run the state-of-the-art
hierarchical phrase-based system dag(ii et al., 2009) for comparison.

For inducing our unsupervised tree structures, we use Uthieeget the POS ¢ of the English
corpus. Just as we described in sec8dhl we reuse GIZA++ and thgrow-diag-final-and
strategy to re-align words based on the sub-sentence pairs and then combine the alignmer
together to get a new word alignment for theolehsentence pair. We perform the EM algorithn
to capture the final tree structures by 20 iteratidiieen we build a string-to-tree system usin(
our induced unsupervised tree structures (abbreviatesPtdd). Different from the above
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baseline system, the beam size of sitfl T system is set as 300 to get a comparable translati
speed to the baseline system.

Besides, using the new giment, we also run the2t ands2t-hb system with the same settings a:
the abovementionest ands2t-hb systems (We mark the systems using the new word alignm
asre-align systems).

5.2 Experimental Results

The translation results of different systems are showrmTABLE 1. As we can see, the
performance of the baseline string-to-tree aystsignificantly outperforms the hierarchical
phrase-based systelnshua which verifies the superiority of our baselstsystem.

System MTO04| MTO5 All

Joshua 30.71 | 27.86| 29.59
s2t (baseline) 33.73* | 30.25*| 32.75*

s2t-hb 34.09 | 30.99%| 32.92

s2t 33.53 | 29.30| 32.29
re-align s2t-hb | 33.88 | 30.49* 32.61
S2t-1T | 34.71# | 31.55# | 33.53#

Number of sentences | 1788 1082 2870

TABLE 1 — Results (in case-insenséi\BLEU-4 scores) of differérsystems. The “*" and “#"
denote that the result are significantly bettemntithe adjacent above system and all the oth
systems respectively (p<0.01).

TaBLE 1 also demonstrates the effectiveness of binary structures. It can be clearly seei
whether we do re-alignment or not, the head binarization approach can always help to im
thes2tsystem (lines 2-5). Besides, as we can see Tiegne 1, the performances of thie-align
s2t and s2t-hb system are slightly worse than th2t and s2t-hb system. It indicates that the
sentence segmentation method might be hartofthe traditional translation system. We will
explore the reason in the next section.

The system using our induced unsupervised tre2isIT) achieves the best performance amon
all the systems. It signifantly outperforms the baseline2tsystem by 0.98 and 1.3 BLEU points
on MTO04 and MTO5 respectively. Furthermore, as showifABLE 1, even using the head
binarization approach, the performance of the b2shbsystem is still lower than that of our
s2t-IT system by 0.61 BLEU points on the combined test set. Obviously, the above compar
strongly demonstrate that our induced unsupervisesss are much more appropriate than par:
trees for the string-to-tree translation model.

5.3  Analysis and Discussion

The improvement of translation performance Isa®ngly verified the effectiveness of our
induced unsupervised tree structures. We furtbedact a series of deep analysis on the result.

We first adoptFIGURE 5, which depicts an example of our unsupervised tree structure ar
traditional parse tree structure, to explain the superiority of our unsupervised trees. Comg
these two structures, we can see that our unsupervised tree structure carries more frontiel
and thus can be factored into more small sub-structures. Consequently, the resulted minime
tend to be more general and smaller. For examplBGIBRE 5, rule (c) and (d) are the minimal
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rules extracted from the unsupervised tree structure and the parse tree structure respecti
translate Chinese phrases™#/F (you-li-yu)”. Obviously, rule (c) is much smaller and can b
utilized without any limit while rule (d) cannot, smrule (d) requires that the translation after
conducive tdbmust be dominated by ars" node. Additionally, we can further acquire many bic
rules by composing several small minimal rules. On the above basis, our induced unsupe
trees are much more conducive to extracting both general enough rules and specific enougt
which leads to a better rule coage and translation quality.

VP
A

DIP
m—— e
/ VBG...NN ]
AT ﬂ..NN Ye
/J}\»To VBG+TO mNN e
VBZ JJ/\TO /\TO DT Jl/ \NN 22
VBG
T P S A S K o -
is  conducive to adhering to the correct  direction /'\
~1— L 7 VBZ W10 VBG TO DT [ NN
youliyu jian-chi zheng-que  dao-xiang | | | | | | | |
HHRT I 44 i Y is conducive to adhering  to the correct  direction
you-li-yu jian-chi zheng-que  dao-xiang
HHT L.253 I i)
(@) (b)
VP ( VBZ (is)
VBZ..TO ( VBZ (is) ) you-li-yu ADIP (1) (conducive) .
J3-TO (17 (conducive) <— 7 < youli-yu x0
£ R)T PP ( TO (to) N
TO(t0) ) ) X0:8) ) ) HFIT
rule (c) rule(d)

FIGURe 5 — Different tree structures and extracted example rules: (a) the unsupervised
structures (b) the binary tree structures produced by berkeley parser (The node “NP-COMN
created by the head binarization approach). The shaded nodes isuRedenote frontier nodes.
(c) and (d) are the minimal rules extracted from the structures in (a) and (b) respectively.

To further demonstrate the above analyBigLE 2 shows the average number of frontier node
per tree structure (#Aver-Frontier-Nodes) anel ghammar size (#RULES) of different systems
As we can see, the string-to-tree systems using parse trees benefit from the head binar
approach which helps to recall frontier nodes (from 33.9 to 40.g2t@ystem and 32.0 to 38.6
for the re-aligned2tsystem).

System #Aver-Frontier-Nodels #RULES
2t (basdline) 33.9 15.5M
s2t-hb 40.4 28.1M
2t 32.0 13.8M
re-align | s2t-hb 38.6 26.2M
2t-IT 47.4 51.9M

TABLE 2 — Average number of frontier nodes and grammar size for different string-to-i
systems.

Furthermore, using our induced upsrvised trees, it accounts for.4frontier nodes on average
while there are only 33.9 frontier nodes at most in the traditional linguistic parse trees. Obvit
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this comparison indicates that our unsupsgdi trees are more compatible with the wor
alignment and are beneficial to extracting margeful translation #as. Just as column
“#RULES” shows, ous2t-IT system obtains a total 64..9M rules while the baselirg2t system
only gets 15.5M rules at most.

We have found that the sentence segmeamtathethod might do harm to the traditiona
translation system iTABLE 1. TABLE 2 gives a faithful explanation on this phenomenon. A
indicated byTABLE 2, after we do re-alignment, the number of frontier nodes decreases (f
33.9 to 32.0 fors2f) and the grammar size is reduced at the same time. We believe tha
reduced grammar leads toethworse performance of thee-align s2t and s2t-hb system.
Intuitively, the deterioration caused byngEnce segmentation would also affect sRirIT system.
However, ours2t-IT system still significantly outperforms the basels®t system. More work
would be devoted to alleviate th#luence of sentence segmentation.

We further investigate the used tags of tree nodes in our unsupervised trees. According
statistics, there are a total @862 tags for the non-leaf nodes in the final corpus of o
unsupervised trees. With such many tags, a natural question is that does the grammar ex
from these tree structures suffesm a data sparseness problefaBLE 3 answers this question
in detail. In the RBLE, for example, line 2 denotes that the most frequent 143 tags (5% of all
account for 76.5% ofllafrontier nodes and 82% of all tree nodes. As illustrated TmBLE 3,
87.0% frontier nodes and 90.3% tree nodes are labeled with the most frequent 286 tags (1
all tags), indicating that the vast majority @fir translation rules are composed of these tac
Compared with the 70 taljsused in the linguistic parse trees, we believe our employed tags
both specific enough for distinguishing different rules and general enough for avoiding the
sparseness problem.

#tag num | #percentage of frontier nodes #percentage of tree hodes
85(3%) 68.0% 75.8%

143(5%) 76.5% 82.4%

228(8%) 83.6% 87.7%

286(10%) 87.0% 90.3%

429(15%) 92.3% 94.2%

572(20%) 95.2% 96.4%

TABLE 3 — The proportion of frequently appearing tags in our induced tree structures.
Conclusion and Perspectives

In this paper, we propose eftive unsupervised trees to difige parse trees for tree-basec
translation models. Since current tree-based &tiosl models are all driven by parse trees, th
work creates a brand-new direction for them. We first roughly group the words into several
sentence pairs by a bilinguaéntence segmentation methodteffthat, we compress all the
reasonable tree structures of sentence pairs into packed forestdrontier node assumption
Finally, we design an EM algorithm to learn affective STSG and then select a best tre
structure for each sentence pair.

The unsupervised tree structures are construdgeending on the word alignment. Therefore
they are naturally compatiblevith word alignment and & to a better rule coverage.

13 There are 44 POS tags, 5 clausal tags and 21 phrasal tags for labeling the linguistic parse trees.
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Experiments on string-to-tree tidation system show that our unsupervised trees significan
outperform the parse trees. We believe that ouhaceis quite beneficial for the translation
between resource-poor languages.

In the future, we plan to conduct more experiments on other tree-based models, such as t
string model and tree-to-tree model. Furthermorealse plan to develop unsupervised methoc
to jointly induce the tree struge and word alignment for tree-based translation models. T
issue is more difficult since the search spacmigh larger and we plan to employ Bayesia
methods with sampling approach to fulfil this task.
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