RelationListwise for query-focused multi-document
summarization

Wenpeng Yin Lifu Huang Yulong Pei Lian’en Huang
The Shenzhen Key Lab for Cloud Computing Technology & Applications (SPCCTA)
Shenzhen Graduate School
Peking University, Shenzhen 518055, PR. China
{mr.yinwenpeng,warrior.fu,paul.yulong.pei}@gmail.com, hle@net.pku.edu.cn

ABSTRACT

Most existing learning to rank based summarization methods only used content relevance
of sentences with respect to queries to rank or estimate sentences, while neglecting sentence
relationships. In our work, we propose a novel model, RelationListwise, by integrating relation
information among all the estimated sentences into listMLE-Top K, a basic listwise learning to
rank model, to improve the quality of top-ranked sentences. In addition, we present some
unique sentence features as well as a novel measure of sentence semantic relation, aiming to
enhance the performance of training model. Experimental results on DUC2005-2007 standard
summarization data sets demonstrate the effectiveness of our proposed method.
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1 Introduction

In this paper, we focus on the task of producing extraction-based query-focused multi-
document summaries given a collection of documents, which is usually considered as a sen-
tence ranking problem. Typically, ranking methods calculate the combinational effects of var-
ious features which are designed to identify the different aspects of sentences and/or their
relevance to queries. Yet so far not much attention has been paid to it. Most commonly, the
features are simply combined by a linear function in which the weights are assigned manu-
ally or tuned experimentally. In the past, machine learning approaches have been successfully
applied in extractive summarization (Ouyang et al., 2007; Shen and Li, 2011), and a new re-
search branch named “learning to rank" has emerged. Its objective is to explore how the
optimal weights can be obtained automatically by developing learning strategies. However,
previous work mainly considered the content relevance of sentences with respect to certain
query while ignoring the relationships among sentences. In this paper, we try to study how to
use sentence relatedness to improve the performance of a ranking model. Further, we notice
that many learning to rank algorithms have been proposed in recent literature, and these algo-
rithms can be categorized into three types: pointwise, pairwise, and listwise approaches. The
pointwise and pairwise approaches transform ranking problem into regression or classification
on single object and object pairs respectively, while neglecting the fact that ranking is a predic-
tion task on a list of objects. In listwise approach, object lists instead of object pairs are used
as instances in learning, and the major task is how to construct a listwise loss function, rep-
resenting the difference between the ranking list output by a ranking model and the ranking
list given as ground truth. Experimental results showed that listwise approach usually outper-
forms pointwise and pariwise approaches (Cao et al., 2007; Qin et al., 2008). Accordingly, we
mainly concentrate on developing listwise learning to rank in our summarization task.

More exactly, taking into account the specific scenario of summarization, it’s better to base
our work on a variant of basic listwise training model: ListMLE Top-K presented in (Xia et al.,
2009). It’s because that we usually only need to select a small amount of sentences to construct
a summary. ListMLE Top-K , a modification of basic listwise algorithm for more suitability in
many real ranking problems where the correct ranking of the entire permutation is not needed,
could help us to improve the ranking accuracies of top-K sentences. Based on that, our novel
RelationListwise function, having absorbed sentence affinity information, is formed to learn
the optimal feature weights.

Apparently, how to design appropriate sentence features and measure sentence similarity mat-
ter greatly in influencing the system performance. In most existing approaches about feature
design, the authors tended to only consider factors that were supposed to reflect the bias of
sentences towards a query while neglecting such a possibility: overestimating the relationship
with a query might lead to the competitiveness among relevant sentences, which would even-
tually do harm to the summary quality. For this reason, some extra processing was usually
conducted during sentence selection because some top-ranked sentences usually can not be
used to construct a high-quality summary directly. For example, (Shen and Li, 2011) defined
a total of 20 sentence features for its ranking SVM model. Whereas, those features were pro-
duced by paying no attention to avoiding similar sentences to get close scores. Therefore, in
order to keep low information redundancy in the finally generated summary, those authors
had to apply diversity penalty algorithm to update the sentence orders which resulted from
the training function directly. Namely, some previous work had to take two steps to con-
struct a high-quality summary, including initial sentence ranking coming from ranking model
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and sentence order adjustment. Hence, a strong motivation comes to our mind: designing
sentence features considering the query-biased factors as well as the competitiveness coming
from similar sentences, aiming to produce a high-quality summary through directly selecting
some top-ranked sentences.

As for sentence similarity, existing literatures have presented various methods to deal with
it. Nevertheless, hard matching of words is commonly a primary obstacle in judging whether
two sentences are semantically related. For example, while wonderful and amazing are
semantically close, they are treated completely different in many existing methods, such as
tf-isf (term frequency and inverse sentence frequency) based cosine measure. Motivated by
that, we utilize Log-Bilinear Document Model, proposed in (Maas et al., 2011), to achieve the
identification of semantically similar words. As a result, sentences with no same words but
similar ones could also be considered having a certain degree of semantic similarity. Extensive
experiments on DUC2005-2007 standard summarization data sets are performed and their
results point out the good performance of RelationListwise in this task.

Since our proposed training model is on the basis of sentence similarity and sentence features,
in following sections, after giving related work in Section 2, we first elaborate how to derive
sentence similarity in Section 3 and biased features in Section 4, respectively. Then, detailed
description of using sentence similarity to improve listMLE top-K is presented in Section 5.
Section 6 shows training data generation. Experiments and results are given in Section 7.

2 Related work

We first introduce some supervised learning approaches applied in query-biased summariza-
tion. Then, some typical work about feature design and sentence similarity follows.

Supervised learning approaches have been successfully applied to query/topic-biased summa-
rization. (Zhao et al., 2005) applied the Conditional Maximum Entropy, a classification model,
on the DUC 2005 query-based summarization task. (Ouyang et al., 2007) used support vector
regression (SVR), a pointwise ranking algorithm, to relate the “true" score of the sentence to
its features. (Jin et al., 2010) presented a systematic study of comparing different learning to
rank algorithms and comparing different selection strategies for multi-document summariza-
tion. Whereas, it focused on the simple comparison of some basic models with no optimization.
(CHALI and HASAN, 2011) had deeply investigated and compared the effects of using differ-
ent automatic annotation techniques on different supervised learning approaches, including
SVMs, HMMs, CRFs, and MaxEnt, in the domain of query-focused multi-document summa-
rization. (Shen and Li, 2011) explored the use of ranking SVM, a pairwise learning to rank
model, for obtaining credible and controllable solutions for feature combinations. Our main
contributions not only lie in our unique design of sentence features and sentence similarity
measure, more importantly, we integrate sentence relationships with listwise to improve the
ranking model while above literatures ignored the relation information among those sentences

With regard to feature design, (Li et al., 2009) treated summarization as a supervised sentence
ranking process, where coverage, balance and novelty properties were incorporated. Whereas,
it focused on generic summarization rather than query-biased situation. (Wan et al., 2007)
gave explicit definitions of biased information richness and novelty, then, it proposed to com-
pute biased information richness using manifold-ranking process (Zhou et al., 2004), and a
modified MMR algorithm was applied to keep low information redundancy in generated sum-
maries. In (Wei et al., 2008), authors proposed query-sensitive sentence similarity. Only the
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overlapping of topic-relevant contents was penalized when applying MMR algorithm. In addi-
tion, clustering techniques were commonly adopted to identify different and novel aspects of
documents (Wan and Yang, 2008). The method presented in (Li et al., 2010) is slightly simi-
lar with our work for it considered novelty, coverage and balance wholly. However, sentence
features of existing literatures were usually acquired asynchronously. For instance, novelty
and balance in (Li et al., 2010) were achieved as an optimization process after authors have
identified part of high-quality sentences through the effects of other features.

Calculating sentence similarity appears in many applications. tf-isf based cosine measure is
widely used to determine the lexical similarity of two sentences. Whereas, high dimension-
ality and high sparsity usually lead to disappointing performance. (Erkan, 2006) proposed
a graph-based sentence ranking model: Biased LexRank, where edge weight or called sen-
tence similarity was acquired using generation probability between two sentences based on a
(unigram) language model. (Islam and Inkpen, 2008) determined sentence similarity by com-
bining string similarity, semantic similarity and common-word order similarity with normal-
ization. The similarity between two short text snippets in (Quan et al., 2010) was calculated
based on their common terms and their distinguishing terms relationship which was discov-
ered by examining their probabilities under each topic. Some literatures opted to first deal
with word similarity calculation, then combine the result with sentence structure information.
For example, (Li et al., 2006) first derived word semantic similarity from a lexical knowledge
base, modeling common human knowledge about words in a natural language, and a corpus,
adapting to the specific application area. Secondly, it considered the impact of word order on
sentence meaning. The derived word order similarity measured the number of different words
as well as the number of word pairs in a different order. In (Zhang et al., 2011), word sim-
ilarity only considered the spellings and ignored the semantic meanings of words. Structure
information considered the orders of words and the distances between words, and it ignored
the syntactic information of sentences. (Yin et al., 2012) used a similar way with (Quan et al.,
2010) to determine word relatedness while its structural similarity of sentences was acquired
via longest common subsequence (LCS), weighted longest common subsequence (WLCS) and
skip-bigram co-occurrence statistics, respectively.

3 New measure of sentence similarity

Hard matching between words has long been an obstacle in determine the relatedness of two
sentences. For example, considering following two sentences:

s; : employee enjoy happy holiday s, : employee enjoy happy vacation

where words holiday and vacation would be treated with no relation in traditional VSM
based cosine measure. Whereas, they are semantically related very much in the real context.
Hence, in our perspective, before computing sentence similarity, we should first solve this
problem: identifying the semantic relatedness of words.

3.1 Capturing semantic similarities of words

Authors in (Maas et al., 2011) presented an algorithm to acquire word semantic similarity
through learning word vectors via an unsupervised probabilistic model of documents. While
it is common to represent words as indices in a vocabulary, but this fails to capture the rich
relational structure of the lexicon. Vector-based models do much better in this regard. They
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encode continuous similarities between words as distance or angle between word vectors in a
high-dimensional space. Next, we briefly introduce that algorithm.

For a document (e.g., d), a probabilistic model is constructed using a continuous mixture dis-
tribution over words indexed by a multi-dimensional random variable 6, then the probability
of d is determined using a joint distribution over d and 6. As many common treatments did,
the algorithm also puts an assumption of independence for words given 6. The probability of
a document d is as follows

N
p(d) = jp(d,e)de = fp(e)]_[p(wilé)dG e
i=1

where N is the number of words in d and w; is the i*" word. 6 has a Gaussian prior.

Then define the conditional distribution p(w;|0) using a log-bilinear model (Maas and Ng,
2010) with parameters R and b. R is virtually a word representation matrix R € R#*IVD where
the -dimensional vector representation of each word w in vocabulary V corresponds to that
word’s column in R, i.e., ¢,, =R,,. The random variable 6 is also a §-dimensional vector (6 €
R#), indicating the weights of the f dimensions of words’ representation vectors. In addition,
a bias b,, is introduced for each word to capture differences in overall word frequencies. The
energy assigned to a word w, given these model parameters, is

E(W7 9)¢W’ bw):_gTd)w_bw (2)
After normalization, we obtain the distribution p(w|6),

exp(_E(Wa 9’ ¢W! bw))
Zw’ev EXP(—E(W/, 95 d)w/: bw’))
>evexp(0T e, + b,)
Apparently, for a given 6, a word w’s occurrence probability is related to how closely its repre-
sentation vector ¢,, matches the scaling direction of 6. Finally, maximum likelihood learning
is exploited for this model when given a set of unlabeled documents D. In maximum likelihood

learning we maximize the probability of the observed data given the model parameters. Here,
we omit the learning details’.

p(w|6;R,b) =
(3

Having obtained vector representations of words, we could determine the semantic relatedness
(SR for short) of two terms (e.g., w; and w,):

SR(WI’WZ) = ¢w1 . ¢w2 4

3.2 Sentence similarity identification

Based on word relatedness, we construct a word connectivity graph, and use PageRank al-
gorithm, with normalized words’ term frequencies as prior distribution, to determine words’
importance, e.g., the importance score of word w is denoted as imp(w), and importance score

of sentence s is: Imp(s) = ZWES imp(w) - v ¢,(w), where ¢,(w) is the times of w occurring in

1For more details, please refer to (Maas et al., 2011)

2965



s. Note that we have filtered out stop words. We use m to reduce the influence of repeated
words instead of using sentence length to divide the aggregate score of a sentence, because we
believe that a sentence with more important words deserves high importance. Based on our
algorithm, a sentence with lots of unimportant words will not get a high importance score.

Given two sentences such as s; and s,, our next step is to find for each word a in one sen-
tence the corresponding word a*, in the other sentence, that maximizes their mutual semantic
relatedness (e.g., a in s;, a* in s, and vice versa).

a* = argmaxSR(a, b) 5)

bes,

Then, we average the semantic relevance scores from all terms in sentence s;, with reference
to their best matches in sentence s,, as shown in Equation 6.

D, imp(w;) - SR(wi, w))

4(51532): Z lmp(W)

(6

We do the same for the opposite direction (i.e., from the words of s, to the words of s;) to
cover the cases where the two sentences are not equally important or they receive different
similarities from each other. Finally, we derive the similarity between sentences s; and s, as:

sim(s,,s,) = Imp(sy) - {(s1,55) + Imp(s,) - {(s5,51) %)
v Imp(s,) + Imp(sy)

4 Feature design

In the case of query-sensitive summarization, we conclude that qualified summary sentences
should mainly meet the following typical demands: query-biased relevance (Shen and Li,
2011; Otterbacher et al., 2005), biased information richness (Wan et al., 2007) and biased
novelty (Wan et al., 2007). Query-biased relevance requires that the sentences in the summary
must overlap with the query in terms of topical content. Query-biased information richness
denotes the information degree of a sentence with respect to both the sentence collection and
the query. Query-biased information novelty is used to measure the content uniqueness of a
sentence based on that sentence’s capability in differentiating itself from other sentences as
well as responding to the demands of the query. According to above definitions, we design
multiple sentence features corresponding to them, respectively.

4.1 Four kinds of relevance

Given a sentence s, we exploit following information available in the DUC2005-2007 datasets:
t,: Title of the document containing sentence s.

d,: The document containing sentence s.

c

.. The document cluster containing sentence s.
q,: Query of the document collection containing sentence s.

Noting that we do not conduct sentence segmentation if the query consists of more than one

question, instead we treat it as a single, long sentence. Consequently, we calculate the follow-
ing four sentence features using similarity measure discussed in Section 3:
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r.s: Relevance between sentence s and the title of the document to which s belongs.
r4s: Relevance between sentence s and the document to which s belongs.

r.s: Relevance between sentence s and the document cluster to which s belongs.
r4s: Relevance between sentence s and query q.

4.2 Biased information richness (BIR)

Given a sentence collection and a query ¢, the BIR of sentence s is used to indicate the infor-
mation degree of s with regard to both the sentence set and g, i.e., the richness of information
contained in the sentence s biased towards q.

This feature score for each sentence is obtained via a variant version of the manifold-ranking
process proposed in (Zhou et al., 2004). Points {sg,s;, - - ,S,} denote the query statement (sy)
and all the sentences in the document collection ({s;|]1 < i < n}) in a manifold space. The
ranking function is denoted by f = [f, f1,..., fo]. (Wan et al., 2007) hypothesized that all the
sentences had blank prior knowledge so their initial scores were all set to zero. Whereas in
this study, it is rational to treat the query-sentence relevance discussed in Section 4.1 as prior
knowledge of sentences. Since s, denotes the query description, the initial score vector of these
sentences is y =[yg, ¥1,..-, ¥nl, Where y, = 1 and y; = sim(s;, so) (1< i< n). The manifold
ranking can be performed iteratively using the following equation:

flk+ D) =aSf(k)+(1—a)y ©))

where S is the symmetrically normalized similarity/relevance matrix as for {sq,s1,**,8,},
trade-off parameter a is set to 0.6, and k indicates the k™ iteration. Obviously, modified
initial scores will exert a greater influence to sentence scores than the settings in (Wan et al.,
2007) at each step of the iteration process. After convergence, let f;* denotes the limit of the
sequence {f;(t)}, then the BIR of sentence s; is:

BIR(s)=f (1<i<n) ©

4.3 Biased information novelty (BIN)

In our perspective, those sentences, owning relative high BINs and picked out to generate
summary, must have information redundancy as low as possible meanwhile meet the user’s
information need, expressed by a query, as much as possible. Satisfaction of only one of them
will certainly be off the original intention of biased novelty. Hence, we employ DivRank, pro-
posed in (Mei et al., 2010), to acquire this sentence property. DivRank uses a vertex-reinforced
random walk model to rank graph nodes based on a diversity based centrality. The basic as-
sumption in DivRank is that the transition probability from a node to another is reinforced
by the number of previous visits to the target node. Let p;(u,v) be the transition probability
from any state u to any state v at time T. We can define a family of time-variant random walk
processes in which p;(u, v) satisfies

po(uﬁ V) : NT(V)
Dr(w)

where Dp(u) = Zvevpo(u,v)NT(v). Here, N;(v) is the number of times that node v has
been visited up to time T and p*(v) is a distribution which represents the prior preference of

prw,v)=(1—=2)-p"(V)+ A- (10)
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visiting vertex v. In our task, p*(v) is set to the normalized similarity between sentence v and
the query q, i.e., p*(v) = sim(v,q). p,(u,v) is the organic transition probability prior to any
reinforcement, which can be estimated in a regular time-homogenous random walk, such as

sim(u,v) ifu # Ve

= v degree(u) 11
Pot:V) { 1—y otherwise an

If the network is ergodic, after a sufficiently large T, the reinforced random walk defined by
Equation 10 also converges to a stationary distribution 7t(v). That is

n(v)= Zpt(u,v)n(u), Vt>T (12)

uev
7(v) is then used to denote the BIN of sentence v. In experiments, A = 0.9 and y = 0.25.

5 RelationListwise ranking function construction

Inspired by the work in (Zhou et al., 2011), which described a general ranking function with
relationship information among objects, we modify that model specifically for our summa-
rization task. Firstly, we define some notations used in this section. Query q is associated
with a sentence collection S = {s,s,,+,5,}, and S is associated with a set of judgments
Y ={y1,¥2, - ,¥n}. Here, n denotes the number of sentences in that collection, and y; is the
relevance judgment of sentence s; with respect to query q. We could also treat y; to be the po-
sition of sentence s; in ranking list. Exactly, each sentence s; is represented as a feature vector
x; = ®(q,s;), where the acquisition of those features is presented in Section 4. In whole, we can
see query q corresponds to a set of sentences S, a set of features vectors X = {X;,X,,**,X,}, a
set of judgements Y, and R, the affinity matrix among sentences in S.

Let g(x;, w) denote the basic ranking function of Listwise method, i.e.,
g(x;, W) =< X;, W>=X; W 13)

where vector w is unknown, and is exactly what we want to learn. In this paper, g(x;,w),
meaning the content relevance of s; with regard to query q, is defined as a linear function,
namely taking the inner product between vector x; and w. Based on this step, we use following
formula to derive the final RelationListwise ranking score of sentence s; (1 < i < n), denoted
as f,,(x;,R), by integrating its initial Listwise ranking score (i.e., g(x;,w)) with its neighbors’
Listwise scores:

fuliR) = (1= ©)gx, W) + T g, ) - RED) (14)
J#

~0 (0.1 . .. .
where RO = % denotes the normalized similarity between sentence s; and s;. The
i

second item of Equation 14 can be interpreted as following: if the relevance score of s; with
query q is high and s; is very related with s; , then the relevance value between s; and q will be
increased significantly, and vice versa. In Equation 14 we can find that the prestige of sentence
s; is decided not only by the content of itself, but its neighbors’ prestige. The coefficient T
is the weight of relation information (the second item of Equation 14). We can change its
value to adjust the contribution of similarity information to the whole ranking value. In our
experiment, we set it to 0.5.
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5.1 RelationListMLE Top-K probability optimization

Before presenting our training algorithm, it’s worth mentioning that a crucial difference be-
tween summarization scenario and most ranking problems is that summarization task casts
more emphasis on the top-ranked sentences in the final list. Because of the length limit of a
summary, most sentences assigned relatively low ranking scores will not be selected to con-
struct a summary. Therefore, the correct ranking of the entire sentence permutation is not
needed, our goal is to improve the ranking accuracies of top-K sentences (here we set K to a
constant on condition that we are confident that K selected sentences satisfy the demand of
summarization task about summary length, e.g., K = 20 in our experiments).

There are many training algorithms to learn listwise ranking function, such as Likelihood loss,
Cosine loss and Cross entropy loss, among which likelihood loss has been proved to have
the most comprehensive properties and its corresponding learning algorithm is called ListMLE
(Xia et al., 2008). Accordingly, we integrate K value with listMLE to learn our proposed Re-
lationListwise ranking function. This kind of solution was indicated by (Xia et al., 2009) to
be more suitable for some real ranking applications where top-K objects are the focus. For
convenience, we name it RelationListMLE Top-K probability optimization.

Our proposed optimization method also uses stochastic gradient descent algorithm to search
the local minimum of loss functions. The stochastic gradient descent algorithm is described as
Algorithm 1.

Algorithm 1: Stochastic Gradient Descent
Input: training data {{X;,Y;,R,}, {X5, Y2,R5}, -+, {Xo, Yo, Ru}}
Parameter: learning rate 1), tolerance rate &
Initialize parameter w
repeat
fori=1tondo
(1)Compute score of each sentence j with current w using Equation 14
(2)Compute the gradient Aw with current w using Equation 15
(3)Update w=w-1 x Aw
end for
Compute likelihood loss:

K ex Xiye, Ry
o Zl l_[ P(fw(Xiye, Ri))
1 2eeee exp(fu(Xiye, Ry))
until change of hkehhood loss is below ¢ times the previous loss
Output: w

In RelationListMLE-Top-K, the gradient of likelihood loss L(f,,(X;,R;),Y;) with respect to w;
can be derived as Equation 15:

Aw; = 1
e ow; 15
fw(x,yr R
K Z[ C[exp(fw(xl_y :R )) ] ﬁfw(xiyu,Rl)
B c=1 Z expfw(xl_y :Ri) aw}
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where

afw(xir’Ri)

- :(1—7:)x{r+r Z x{pﬁ?’m (16)
j

p=Lp#r
J o -th .

and x, is the j*" element in x;,

6 Training data construction

To apply learning to rank in summarization, we should have a labeled training collection in the
form of (x4,y1),,(X,, ¥n), Where x; is a sentence (or sentence feature vector) in sentence
set S and y; is the ranking of the sentences. In addition, the relation information among
sentences must be constructed too. To estimate the ranking score of a sentence s given the
human summary H, we implement manifold-ranking algorithm to achieve our goal, treating
H as a query vertex in graph. The reason for using manifold-ranking algorithm rather than
directly calculating the relevance of a sentence towards the query (i.e., H) lies in that manifold-
ranking process considers the query-sentence relatedness as well as the inter-sentence affinities.
It matches our intention of improving the basic listwise with relationships among sentences.

Whereas, it is worth mentioning that we do not treat the human summary H wholly as a long
sentence to participate in the computing of query-sentence similarities. Instead, we treat H
as a sentence set and our goal is to find a sentence, from H, that has the relatively maximum
similarity with an estimated sentence in S. This is because that if a sentence is similar with a
summary sentence, it is also supposed to have the potential to become a summary sentence
even though it might have no similarity with other sentences in H at all. So, during the
manifold-ranking process, similarity between a pair of sentences is acquired via the method
discussed in Section 3 while H-sentence relevance is obtained as follows:

rel(s,H) = maxsim(s, 1) a7
reH

We name our method for training data generation sent_manifold. Additionally, biased
LexRank (Erkan, 2006) is also a feasible solution to rank sentences for training data construc-
tion. Its primary idea is to generate a prior distribution for the objects in traditional random
walk to reflect the bias degree of objects towards certain query. We will conduct experiments
to compare our approach with some representative alternatives.

7 Experimental study
7.1 Data sets and evaluation metrics

We use the popular query-focused summarization benchmark data sets DUC20052, DUC2006°
and DUC2007* for our experiments. Each of them consists of document sets and refer-
ence/human summaries. For documents, we use the OpenNLP® to detect and tokenize sen-
tences. Stop words are removed and remaining words are stemmed using Porter stemmer®. In
experiments, DUC2005 is used to train the model tested on DUC2006, and DUC2006 is used
to train the model tested on DUC2007. Table 1 gives a short summary of the three data sets.

2http:/ /www-nlpir.nist.gov/projects/duc/duc2005 /tasks.html
3http:/ /www-nlpir.nist.gov/projects/duc/duc2006 /tasks.html
“http:/ /www-nlpir.nist.gov/projects/duc/duc2007 /tasks.html
Shttp://opennlp.sourceforge.net/

Shttp://tartarus.org/ martin/PorterStemmer/
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DUC2005 DUC2006 DUC2007
Cluster number 50 50 45
Documents per cluster 25-50 25 25
Summary length limit 250 words 250 words  250words

Table 1: Summary of datasets

We use ROUGE (Lin, 2004) (version 1.5.5) toolkit’ to measure the summarization perfor-
mance. In experiments, we report three widely adopted F-measure metrics: ROUGE-1, ROUGE-
2 and ROUGE-SU4, among which ROUGE-N means n-gram recall, and ROUGE-SU4 is based
on unigram plus skip-bigram match with maximum skip distance of 4.

7.2 Experimental results

7.2.1 Comparison among some typical supervised summarization systems

First, we compare RelationListwise with some competitive and typical supervised sum-
marization algorithms and three top systems of DUC. (1)Ranking-SVM: applying ranking-
SVM directly; (2) Ranking-SVM-CSL: Ranking-SVM with Cost Sensitive Loss, proposed
in (Shen and Li, 2011) (3)SVR: learning a regression model using SVM, presented in
(Ouyang et al., 2007); (4)Listwise: similar to our RelationListwise while taking no account of
sentence relationship; (5)top three systems with the highest ROUGE scores that participated in
the DUC2006 (S12, S23, S24) and the DUC2007 (S4, S15, S29) for comparison, respectively.

Systems ROUGE-1 ROUGE-2 ROUGE-SU4
SVR 0.41813 0.09492 0.15116
Ranking-SVM 0.42014 0.09713 0.15326
Ranking-SVM-CSL  0.42179 0.10332 0.15377

S23 0.40973 0.09785 0.14562
S12 0.41053 0.09633 0.15074
S24 0.41081 0.09857 0.15248
Listwise 0.42716 0.10387 0.16008

RelationListwise 0.43066 0.10852 0.16324

Table 2: F-measure comparison on DUC2006

Systems ROUGE-1 ROUGE-2 ROUGE-SU4
SVR 0.43821 0.11997 0.16508
Ranking-SVM 0.44514 0.12213 0.17326
Ranking-SVM-CSL  0.44839 0.12332 0.17377

S4 0.43603 0.11785 0.17162
S29 0.43159 0.12048 0.17374
S15 0.44481 0.12907 0.17748
Listwise 0.45283 0.12667 0.17549

RelationListwise 0.45852  0.13091 0.17824

Table 3: F-measure comparison on DUC2007

Tables 2 and 3 present the performance of these systems with the metrics ROUGE-1, ROUGE-2,
and ROUGE-SU4. From the results we can observe that in this task, listwise based methods

7http:/ /www.isi.edu/licensed-sw/see/rouge/
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(RelationListwise and Listwise) generally outperform pairwise methods (Ranking-SVM and
Ranking-SVM-CSL), and the latter outperforms SVR, a pointwise learning to ranking. Even
through (Shen and Li, 2011) developed cost sensitive loss to improve basic ranking SVV], its
results are still inferior to that of Listwise based methods, which indicates the correctness
of our choosing Listwise learning to rank as basic training model. More importantly, taking
into account the sentence relatedness indeed improves the performance of Listwise. As the
statistics show, RelationListwise outperforms Listwise over all three metrics.

7.2.2 Validation of feature design

Further, in order to investigate the effectiveness of combining our designed features, we com-
pare our method RelationListwise with some baselines which mainly consider individual fea-
tures: (1)Rel: a method considering only the sentence relevance towards a query and choosing
the most relevant sentences to produce summary until length limit is reached. (2)Rel+MMR:
similar with (1) except that we use MMR algorithm to control redundancy. It denotes a system
considering query-biased relevance as well as information novelty. (3)Coverage: a baseline
clustering-based method. It clusters sentences and selects the most relevant sentences from
different clusters. Note that the clustering operation is carried to select sentences that have
low degree of information overlap. So this baseline is similar with (2) for considering both
relevance and novelty. (4)Manifold: ranking the sentences according to the manifold ranking
scores and select top-ranked sentences to construct summary directly, where the parameter
a = 0.5. It corresponds to feature BIR. (5)Manifold+MMR: similar with (4) except to re-
duce redundancy via MMR algorithm (Wan et al., 2007). (4)Diversity: selecting sentences
according to their query-biased diversity scores acquired using DivRank (Mei et al., 2010). It
represents the feature: BIN. Tables 4 and 5 show their comparison results.

Systems ROUGE-1 ROUGE-2 ROUGE-SU4
Rel 0.36775 0.07092 0.12777
Rel+MMR 0.37328 0.07109 0.12884
Manifold 0.38827 0.08028 0.13349
Coverage 0.39004 0.08394 0.13705
Diversity 0.39052 0.08814 0.13721

Manifold+MMR  0.39116 0.08741 0.13729
RelationListwise  0.43066  0.10852 0.16324

Table 4: Comparison results of feature design on DUC2006

Systems ROUGE-1 ROUGE-2 ROUGE-SU4
Rel 0.38985 0.10075 0.13108
Rel+MMR 0.39938 0.1033 0.14501
Manifold 0.40214 0.10131 0.14833
Coverage 0.41243 0.11196 0.15537
Diversity 0.41440 0.11261 0.15502

Manifold+MMR  0.42015 0.11327 0.15936
RelationListwise ~ 0.45852 0.13091 0.17824

Table 5: Comparison results of feature design on DUC2007

Obviously, the statistics point out the improvement of our approach combining multiple task-
specific features over those baselines. While some reference systems involve more than one
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information aspect, such as Rel+MMR and Manifold+MMR, their performances are still limited.

7.2.3 Competitiveness of our similarity measure

In Section 7.2.1, experimental results have validated our proposal that exploiting sentence
relation to improve the overall training model. Nevertheless, they could not point out the su-
periority of our designed measure of sentence similarity. Hence, we keep consistency for our
algorithm framework except to replace the part of calculating sentence similarity. Since there
are lots of existing sentence similarity measures, and it’s hard to compare qualities of them
all, we just select following typical alternatives: (1)cosine measure; (2)wordSimi_sentStruct:
The measure proposed in (Yin et al., 2012), which determined words semantic similarity by
computing the cosine value of the words’ distribution representations over latent topics, and
identified sentence structure similarity using LCS and etc.; (3)geneProb: Generation proba-
bility method presented in (Erkan, 2006). Note that generation probability is not necessarily
symmetric, we just average the mutual generation probabilities of two sentences as their final
similarity value in experiments. We provide their comparison statistics in Tables 6-7.

Systems ROUGE-1 ROUGE-2 ROUGE-SU4
Listwise 0.42716 0.10387 0.16008
cosine measure 0.42906 0.10659 0.16239
geneProb 0.42923 0.10671 0.16246

wordSimi_sentStruct  0.43004  0.10726 0.16307
RelationListwise 0.43066 0.10852 0.16324

Table 6: Comparison results of sentence similarity measures on DUC2006

Systems ROUGE-1 ROUGE-2 ROUGE-SU4

Listwise 0.45283 0.12667 0.17549
cosine measure 0.45626 0.12819 0.17634

geneProb 0.45693 0.12873 0.17616

wordSimi_sentStruct  0.45793 0.12956 0.17833
RelationListwise 0.45852  0.13091 0.17824

Table 7: Comparison results of sentence similarity measures on DUC2007

The two tables demonstrate the influence of different sentence similarity measures on our ap-
proach. Among the four kinds of measures, geneProb is close with cosine with slight improve-
ment while wordSimi_sentStruct is more competitive to our proposed similarity measure.
Except that wordSimi_sentStruct performs slightly better than RelationListwise in ROUGE-
SU4 over DUC2007, our proposed measure is more superior in other metrics. Note that we
also put method Listwise in the tables, and yet its performance is relatively poor compared
with ones involving inter-sentence impacts. It further validates that sentence relatedness is
worth considering when dealing with sentence ranking problem.

7.2.4 Training data generation comparison

In this section, we empirically investigate the effects of different strategies for training data
generation. In Section 6, we have given the reason why choose to compute the similarity of an
estimated sentence towards one sentence in H instead of the whole H. Additionally, we also
come up with a novel approach for measuring sentence similarity in Section 3. In general, we
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could treat reference summary H as (1): a long and single sentence (labeled as summ), or (2):
a sentence set (labeled as sent); meanwhile, ranking methods could be classified into (1): man-
ifold, (2): biased LexRank, and (3)simi: computing the similarities of estimated sentences to-
wards the summary directly. So, we can combine them into 6 kinds of pairs: summ_manif old,
summ_biasedLexRank, summ_simi, sent_manifold, sent_biased LexRank and sent_simi.
Remember that sent_manif old is our proposed method for training data construction.

0.47

0.46

045 -
® summ_manifold
0.4 -  summ_biasedLexRank

043 -  summ_simi

ROUGE-1

042 B sent_manifold

Bk  sent biasedLexRank

 sent simi

DUC2006 DUC2007

Figure 1: Performance comparison of methods about training data generation.

The comparison results are shown in Figure 1. From the comparison, we observe that:(1)graph-
based methods, including {-} manifold and {-} biasedLexRank, both outperform {-} simi
methods which rank sentences by computing sentences’ similarities towards the reference sum-
mary directly. It might result from that {-}_simi solution is too simple to take into consider-
ation the prestige of sentences in documents. (2) Using a sentence as the reference is much
better than using the whole summary. As the figure shows, all sent_{-} methods outperform
summ_{-}. This may due to the fact that in constructing training data, we aim to judge the
ability of a sentence to be a summary sentence, and it’s best to be treated as the ability for the
estimated sentence to replace certain sentence in H. Therefore, it is more rational to compare
our estimated sentence with the sentences in H one by one rather than with the whole H.
For example, if a sentence in H (e.g., h;) has a high similarity (e.g., 0.9) with an estimated
sentence s, then s is supposed to be able to replace h; as a summary sentence. Whereas, if a
long sentence s’ is also very relevant to the whole H while having very low similarities with
sentences in H, it is still not considered to be a good summary sentence.

Conclusion and perspectives

In this work, we propose a novel model named RelationListwise for query-biased multi-
document summarization task. More specifically, through defining some unique sentence fea-
tures and designing a creative measure for sentence relatedness, we integrate sentence relation
information with listwise learning to rank to automatically learn feature weights. Experimen-
tal results suggest that our modification of basic listwise is considerably in favor of generating
high-quality summaries. In future work, we will use more complex features and try some new
summarization tasks.
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