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ABSTRACT 

Recognizing TimeML events and identifying their attributes, are important tasks in natural 
language processing (NLP). Several NLP applications like question answering, information 
retrieval, summarization, and temporal information extraction need to have some knowledge 
about events of the input documents. Existing methods developed for this task are restricted to 
limited number of languages, and for many other languages including Persian, there has not been 
any effort yet. In this paper, we introduce two different approaches for automatic event 
recognition and classification in Persian. For this purpose, a corpus of events has been built based 
on a specific version of ISO-TimeML for Persian. We present the specification of this corpus 
together with the results of applying mentioned approaches to the corpus. Considering these 
methods are the first effort towards Persian event extraction, the results are comparable to that of 
successful methods in English.  

TITLE AND ABSTRACT IN PERSIAN 

   ISO-TimeMLبنا بر تعريف متون فارسی از  استخراج رويدادھا

. است ی پردازش زبان ھای طبيعی مھم در حوزهمسائل يکی از  TimeMLبر اساس ھای آنھا  و ويژگیرويدادھا  يافتن

ھای پرسش و پاسخ، استخراج اط2عات، خ2صه سازی و   ھای طبيعی مانند سامانه بسياری از کاربردھای پردازش زبان
ھايی که  داشته باشند. روش ورودیمتون موجود در رويدادھای دانشی درباره استخراج اط2عات زمانی نياز دارند تا 

زبان فارسی،  از جملهھا  است و در بسياری از زبانخاص ، محدود به چند زبان مسئله ايجاد شدهتاکنون در مورد اين 
 است. در اين مقاله، ما دو روش مختلف برای استخراج رويدادھا در زبان فارسیدر اين رابطه انجام نشده تاکنون کاری 

. ما ی خاص فارسی آن، ساخته شد خهالبته نس، ISO-TimeMLای مطابق با  اين کار، پيکره برای دھيم. ارائه می

، به عنوان در اين مقاله شده ھای ارائه . نتايج روشدھيم می مشخصات اين پيکره و نتايج حاصل بر روی آن، را نشان
  روش ھای موفق در زبان انگليسی قابل مقايسه است.سازی شده بر روی زبان فارسی، با  ھای پياده اولين روش

KEYWORDS : Event Mention, Temporal Information Extraction, Classification, Annotation 
Scheme, TimeBank, ISO-TimeML, Persian Language. 
KEYWORDS IN PERSIAN : بانک، تايم گذاری، برچسب شمای بندی، رده زمانی، اط�عات استخراج ،رويداد ذکر 

فارسی زبان ال، ام تايم استاندارد  
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1 Introduction 

Event extraction is a demanding task in natural language processing (NLP). Several applications 
like question answering (QA), information retrieval (IR), summarization, and temporal 
information extraction need to have some knowledge about events for better operation. This task 
remains a challenging task. Recognizing the various forms in which an event may be expressed 
(verbs, nouns, adjectives and prepositions), distinguishing events of different classes, and finding 
the features of an event are all difficult task (Verhagen et al., 2010). 

In this paper, the events are defined based on TimeML view. In TimeML, events are “situations 
that occur or happen, or predicates that describe states or circumstances in which something 
obtains or holds the truth” (Pustejovsky et al., 2003). The task of event extraction includes two 
major stages that are introduced by TimeML: 1) detection and annotation of a text span (i.e., 
verbs, nouns, predicative constructions, prepositional phrases, and adjectival phrases) that is an 
event, and 2) determining the semantic class of events (i.e., Reporting, Perception, I_Action, 
I_State, State, Occurrence, and Aspectual). 

Performing these two tasks (event mention detection and classification) in any language requires 
a corpus of annotated events, at least for measuring the accuracy of the algorithm. Currently, 
there are no such corpora for many languages including Persian,  which is the native natural 
language of Iran, Afghanistan and Tajikistan. We have developed a corpus of annotated events in 
order to extract events from Persian texts. This corpus contains 4237 events. The annotation 
process has been based on an adapted version of ISO-TimeML guidelines. We have applied some 
changes to event attributes, the value of these attributes, annotation rules, and event extents. 

In this paper, we also propose a system for automatic event recognition. In the system, various 
morphological, syntactic, and semantic features have been used. The syntactic features are in the 
form of dependency parse trees. Semantic features are taken from a Persian version of WordNet. 
For identification of event mentions and classifying them, the system uses these features in two 
different methods: a rule-based and a learning-based method. In the rule-based method, we 
proposed several rules for different types of events. In the learning-based method, a classification 
technique has been used for identification of events. We have used different models for different 
forms of events (i.e., verb, noun, and adjective). Our experiments show that the proposed 
methods, which are the first attempt in Persian event extraction, are quite effective. 

The remainder of this paper is organized as follows: section 2 is about ISO-TimeML adaptation 
for Persian. Section 3 explains previous work in event extraction. Our event extraction system is 
proposed in section 4. The experimental results of the system are presented in section 5. Finally, 
the last section of the paper includes conclusion and some possible future work. 

2 Adapting ISO-TimeML Event Guidelines for Persian 

To apply ISO-TimeML as an annotation scheme to a new language, the language specific issues 
should be considered carefully. Accordingly, some aspects of scheme must be modified and 
some others must be restated for target language. The adapted schema may go through various 
changes regarding event attributes, event attribute values, event annotation rules and event extent 
rules according to the target language structure.  
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A number of languages including Korean (Im et al., 2009), Italian (Caselli et al., 2011),  French 
(Bittar et al., 2011) have already adapted TimeML and ISO-TimeML guidelines to their needs. In 
the following subsections, we present the adapted version of ISO-TimeML for Persian (let us call 
it PersTimeML) in three main categories: event annotation, event extent and event attributes. 

2.1 Event Annotation 

Event annotation in PersTimeML is mostly based on ISO-TimeML. Generally, for simplicity it is 
assumed in current version of PersTimeML that generic events must be annotated. Also there 
have been special cases that have been tailored particularly for the specific properties of Persian. 
Here, we only discuss these cases disregarding common situations with ISO-TimeML.  

2.1.1 Nouns 

In Persian, gerund phrases, known as “esm-e masdar”, must always be annotated as events, even 
when they represent generic events. These are built by affixing a particular Persian letter, i.e. 
“nôn”, to the verb stem. There are also some categories of nouns that function like gerund 
phrases but do not have any lexical mark. These nouns were named predicative nouns and 
defined as nouns that inherit some verb and some noun characteristics (Karimi-Doostan, 2011). 
In Persian sentences, these nouns are usually the starting point of an NP or a PP. We always 
annotate these nouns as events, too. Following examples are instances of these cases: 

a. Barresê-e (Review) maqâle-hâ (papers) chand (a few) rôz (day) tôl mikeshad (takes).  
Translation: Reviewing of the papers takes a few days. 

b. Ostâd (Instructor) bâ (with) taavêq-e (postpone) emtehân (exam) mokhâlefat kard 
(disagreed).   
Translation: The professor disagreed with postponing the exam.  

c. Alê (Ali) be (to) jostojô (search) dar miân-e (through) sâyt (site) edâme dâd 
(continued).  
Translation: Ali continued to search in the site. 

In examples (a) and (b), “barresêy-e” (review) and “taavêq-e” (postpone) are predicative nouns, 
when have an “e” mark in their end and are linked to their subsequent nouns. In example (c), 
“jostojô” (search) is followed by “be” (in) as a preposition.  

2.1.2 Adjectives 

In addition to TimeML guidelines for annotating adjectives, we must also consider objective 

deverbal adjectives in PersTimeML. These are adjectives that derived from passive modes of 
verbs (Lesani, 2003). Two examples are “neveshte shode” (written) and “gerefte shode” (taken). 
Objective deverbal adjectives translate to the past participle form of the verbs in English. These 
adjectives always must be annotated as events because they are implying verbal events that have 
occurred in the past. For example, in the following sentence the “neveshte shode” (written) is an 
objective deverbal adjective that must be tagged as an event.  

a. Ô (He) dastân-e (story) neveshte shode (written) dar (in) ân (that) rôzname (newspaper) 
râ bâvar nakard (didn’t believe). 
Translation: He didn’t believe the written story in that newspaper. 
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2.2 Event Extents 

According to the new paradigm in ISO-TimeML about the stand-off annotation instead of in-line 
annotation (Pustejovsky et al., 2010), we can annotate multiple tokens in an event tag even 
though the tokens are not located consecutively in the sentence. This new approach simplifies the 
handling of compound words (e.g. compound verbs in Persian) by tagging all the associated 
tokens as just one event. The majority of the Persian verbs are compound. Persian compound 
verbs consist of a light verb and a number of non-verbal elements. For example, “barkhord 
kardan” (to hit) is a compound verb including the light verb of “kardan” (do) and the non-verbal 
element of “barkhord” (hit) (Rasooli et al., 2011).  

Since there is not a fixed list of compound verbs, recognizing them in the sentences is difficult. 
Besides, detecting all parts of compound verbs can be challenging for an annotator because they 
may be located separately with long distances. The following examples show how we annotate 
compound verbs with event tags.  

a. Bârân (Rain) be (to) mantaq-e (area) sadame-e (damage) zyâdê (large) khâhad zad 

(will do). 
Translation: The rain will largely damage the area. 
- Part of PersTimeML output will be: 

<Event xml:id=”e1” target=”#token3#token5” text= “sadame-e khâhad zad”… /> 
b. Bâ (with) oo (he) sohbat (talk) kardam (did). 

Translation: I talked with him. 
- Part of PersTimeML output will be: 

<Event xml:id=”e1” target=”#token2#token3” text=” sohbat kardam”… /> 

Segmentation of Persian verbs is another difficulty regarding annotation of verbs (Shamsfard, 
2011). For tackling this problem, we need to pre-process the sentences to merge all 
Tense/Aspect/Mood (TMA) mark tokens with their verbal head. Therefore, in example (a) above, 
in the pre-processing, the whole “khâhad zad” (will do) will be merged as one token by inserting 
short space between the verb parts.  

2.3 Event Attributes 

Persian, as a natural language has its own specific aspects in event attributes. As we currently 
know, in Persian TMAs are not separated. However, we can map the TMA values to tense, 
aspect and mood appropriately to follow the ISO-TimeML guideline. According to this mapping, 
the possible values for each of these attributes will be: tense: “past”, “present”, “future”, “none”, 
aspect: “perfective”, “progressive”, “imperfective_perfective”, “imperfective”, “none” and 
mood: “subjunctive”, “imperative”, “indicative”, “none”. 

3 Automatic Event Extraction Methods  

There are many ongoing researches on event extraction according to TimeML specification 
language. Almost all detection systems act in three following stages: 1) pre-processing; 2) event 
mention detection; and 3) event attributes detection. Existing methods can be divided into rule-
based, statistical, and combined approaches, which are explained in more details in the next 
following subsections. 
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3.1 Rule-based Methods 

One of the first event recognition systems in French used a rule-based method (Bittar, 2009). The 
system utilizes specific hand-made dictionaries for event detection and classification. Besides, a 
number of rules were used to reduce the errors. In other words, event recognition in this system 
includes two types of processing: lexical, using specific dictionaries and contextual, using a 
number of rules. 

The first system on Italian also used a rule-based approach that utilized dependency parse trees of 
the input sentences (Robaldo et al., 2011). The rules of this system have designed based on both 
syntactic and lexical information using a number of keywords. Some extra resources like 
WordNet (Fellbaum, 1998) plus a list of specific words were used to build a comprehensive 
keyword list. To identify the class of events, in addition to dependency structure of sentences, a 
list of Italian verbs with three different semantic categories (state, process, and movement) has 
been also utilized.  

Edinburg is another rule-based system that used a named entity recognition system for nominal 
event detection. Special lists, which were extracted from an annotated corpus, in conjunction 
with WordNet were also used for detection of nominal events (Grover et al., 2010). 

3.2 Statistical Methods 

Bethard and Martin proposed a statistical system for event extraction using a multi-class 
classification method (Bethard and Martin, 2006). The system automatically annotated each 
token by "Inside", "Outside", or "Begin" tags. It also determined the semantic class of each 
event. This system used various morphological, syntactic, and semantic features. Their reported 
results have shown an acceptable rate in event detection. 

Another statistical method for event extraction applied a classification algorithm based on 
Support Vector Machines (SVM) in both sentence and word levels (March and Baldwin, 2008). 
First, it filters out the sentences without events. Then, in the remaining sentences, it searches for 
events. This method does not determine the features of events (i.e., the third stage of the event 
extraction task). 

TipSem is one of the most successful TimeML event extraction methods, which has used 
Conditional Random Fields (CRF) classification technique (Llorens et al., 2010). It utilizes 
morphological, syntactic, and semantic features in addition to semantic roles for event extraction. 

3.3 Combined Methods 

Evita is the first system that has been designed for extraction of TimeML events (Sauri et al., 
2005). The system has benefited from both statistical and rule-based techniques. In pre-
processing stage, it extracts part of speech tags, phrase chunks, and lemmas of the sentences' 
tokens using some existing tools. For event detection of nouns, Evita uses WordNet, and in 
ambiguous cases, i.e. nouns that may or may not be an event in sentences, a Bayesian classifier is 
used for disambiguation. This classifier has been trained on the SemCore data. For adjectives, the 
cases that have been annotated in TimeBank are considered as events. The heads of the 
predicative complements are also regarded as events. Evita uses TimeBank information for 
finding the class of events. It simply chooses the majority class for the specific event in the 
corpus. 
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TRIOS is another combined method, which first utilizes the TRIPS semantic parser (UzZaman 
and Allen, 2010). Based on the output of the parser and applying some rules, it detects the events. 
Then, for improving the accuracy, a Markov Logic Network (MLN) classifier is used. This 
classifier is also used for extraction of event features. 

4 Automatic Event Extraction from Persian Text 

As mentioned before, most of the event recognition and classification methods include three 
phases: pre-processing, event mention detection and event attributes extraction. These phases 
also exist in our system for Persian texts. We called this system Persian Event Tagger (PET). In 
pre-processing stage of PET, we convert input documents into the CoNLL-2009 Shared Task 
(CoNLL09) format by using Dadegan tools1. It means that the Dadegan tools extract part of 
speech (POS) tags, dependency labels, and other necessary information from input documents. 
The dependency labels are according to Persian dependency Treebank, which is the first released 
dependency Treebank for Persian. This corpus currently contains 30,000 sentences that were 
manually annotated2. 

We apply our feature extractor subsystem to the converted document to obtain useful and 
meaningful features for recognizing and classifying of events. The outputs are data set files, 
which contain all features for each token in a separate line. We employ these data set files to 
perform event mention detection and event attribute detection stages. A rule-based and a 
statistical learning-based approach are implemented for both of these stages. In event attribute 
detection, we just find class because other attributes like tense, mood, and aspect were previously 
found with Dadegan tools. For other event attributes, we just choose the default values; for 
instance, we set polarity to “Positive”. In section  4.1, the features are discussed. The rule-based 
and learning-based subsystems are explained in sections  4.2 and  4.3, respectively. 

4.1 Features  

The features that have been used in PET can be clustered into three types: lexical, syntactic, and 
semantic. In the following, each type of these features is explained in more details: 

4.1.1 Lexical Features 

Lexical features that we have used in the system are token’s text, coarse-grained POS, fine-
grained POS, word’s stem, word’s postfix (i.e., last three letters of word), and a Boolean feature 
isModAux, which is “true” for modal or auxiliary verbs. For recognizing these features, we rely 
on the raw text, coarse-grained, and fine-grained POS from the pre-processed input file. 

4.1.2 Syntactic Features 

In some event tagging situations, PET requires deeper knowledge about sentences. Dependency 
parsing is a new and effective approach for obtaining this knowledge. We can extract various 
syntactic features from dependency labels of the input sentences. 

The extracted syntactic features, for each candidate, include: dependency label, lemma of the 
head token, text of the head token, POS of the head token, dependency label of the head token, 
governing verb text, governing verb lemma, governing noun text, and governing noun lemma. 

                                                             
1 Freely abailable for download at http://dadegan.ir/en/tools 
2 Freely available for download at http://dadegan.ir/en/persiandependencytreebank  

2936



Other extracted syntactic features are isPartOfCompoundVerb and isPartOfCompoundNoun, 
which indicate that candidate word is part of a compound verb or noun, respectively. These 
features can be assigned by searching the dependency parse tree of the input sentence.  

4.1.3 Semantic Features 

A number of semantic features are required for recognizing nominal events. They are also needed 
for classification of both nominal and verbal events. These features can be obtained from 
resources like WordNet by searching through word senses and checking their hypernyms. In 
Persian, we have two resources that are similar to WordNet.  One of them is FarsNet, which has 
been developed semi-automatically with 9,266 synsets and 13,155 words (Shamsfard et al., 
2010). Another resource, which we call it PersianWN, has been developed automatically. This 
resource, has covered 29,716 Persian phrases with reported precision 82.6% (Montazery and 
Faili, 2010).  

To recognize nominal events, a number of Boolean features are extracted from both FarsNet and 
PersianWN. We consider several synsets including: “event”, “human_action”, “human_activity”, 
“act”, “phenomenon”, and “action” to be eventive. Thus, when hypernyms of a sense fall into 
these synsets, we will consider this sense to be eventive. In this way, we can extract following 
features for each noun according to its senses: isAllSensesEvent, isAllSensesState, 
isMainSenseEvent (i.e., “true” when more than 1/3 of senses are eventive), isOneSenseEvent, 
isOneSenseState.  

To classify events, some other features are extracted. For each event class, a list of phrases is 
created. These lists are initially filled by sample phrases that have been mentioned in the ISO-
TimeML guideline. Then, we augment these lists by adding their synonyms taken from FarsNet. 
After creating and enriching these lists, we set a number of features (i.e., isReporting, 
isAspectual, isPerception, isI_Action, isI_State, isState, and IsOccurance) for each input phrase. 
We search a phrase in each list and if it is successfully found, the corresponding feature, which is 
related to that list, will be assigned to “true”. For instance, when verb lemma exists in the 
aspectual phrase list, the isAspectual feature will be set to “true”. 

It must be noted that there is a difficulty in searching compound nouns/verbs in a list, lexicon, or 
dictionary. In these cases, the system has to combine all parts of the noun/verb before starting to 
look up. These parts can be obtained and then combined using related labels. For example, in 
sentence (a) we must look up the whole text “bazgoo kard” (restate) in dictionaries or lexicons.   

a. Ô (He) moshkelât (problems) râ (-) bâzgô (restate) kard (did).  
 Translation: He restated the problems. 

4.2 Rule-based Method 

For event mention detection, we apply PersTimeML guidelines to the input text by utilizing the 
previously mentioned features. Besides, a number of lists including special phrases like aspectual 
and causative signal words are used for event tagging. Therefore, for each candidate word, we 
apply a number of if-then-else rules, which are based on one or more features. These rules are 
explained in the following subsections. 

4.2.1 Recognizing Verbal Events 

According to PersTimeML, we annotate all verbs as events except for modals, auxiliary verbs, 
and verb “to be”. We can easily find these verbs by checking the Boolean feature isModAux. 
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Furthermore, for each verb, we search the sentence for its probable non-verbal elements. If any 
such elements are found, they will be combined with the verb. These searches can be performed 
using related syntactic features, i.e., isPartOfCompoundVerb and position of the head token.  

4.2.2 Recognizing Nominal Events 

Recognizing nominal events is more challenging than other forms of events and requires a deeper 
analysis of input sentences. Some PersTimeML rules can be applied to the nouns by utilizing the 
mentioned syntactic features. In current version of PET, we apply causative and aspectual rules. 
This means that a noun when appears in a specific position in an aspectual or a causative 
structure is tagged as an event. These aspectual and causative structures are found by searching 
the context of the noun for occurrence of an aspectual or a causative signal word.  

For instance, in sentence (a) below, there is a causative structure and therefore according to the 
PersTimeML, we must annotate all of “bârân-e” (rain), “seyl” (flooding), and “môjeb-e” (cause) 
as separate events. With dependency labels, we can determine the subject of a causative sentence. 
Then, if the subject is a phenomenal noun, we will annotate it as an event. Furthermore, “seyl” 
(flooding) can be recognized by annotating the head of the noun phrase that immediately appear 
after the signal word “môjeb-e” (cause).  

Sentence (b), has an aspectual structure, which is triggered when encountering the verb “âghâz 
shod” (has started). We must annotate the subject of this structure, i.e., “marg” (death), as an 
event. In other structures, when an aspectual or a causative signal word is triggered, we can apply 
similar rules for finding the events.  

a. [Bârân-e] (Rain) zyâd (heavy) [môjeb-e] (cause) [seyl] (flooding) shod (become).  
Translation: The heavy rain caused flooding. 

b. [Marg-e] (Death) khôkhây-e (pigs) âghâz shod (has started).  
Translation: The death of pigs has started. 

For other nouns, we first disregard each noun that have isPartOfCompoundVerb feature with 
value of “true”, because in fact, it is part of a compound verb in the sentence. Besides, if a noun 
is part of another noun, i.e., has value of “true” for isPartOfCompoundNoun feature, it will be 
annotated in conjunction with its governing noun as an event tag.  

Finally, for remaining nouns, our rule-based module can only use the semantic features, because 
currently there is not any acceptable Word Sense Disambiguation (WSD) system or even a 
semantic tagged corpus for Persian. In the module, we only use the feature isAllSensesEvent. 
When value of this feature is “true” for a noun, the noun will be annotated as an event. Another 
solution for improving the result of event recognition for nouns is creating a list of all predicative 

nouns. This is discussed in the evaluation section in more detail.  

4.2.3 Recognizing Adjective Events 

To recognize adjective events, the system first checks to see if the adjective is a predicative 
complement in the sentence. It can be performed by using the both dependency label and 
governing verb of the adjective. The adjective will be regarded as an event, if its dependency 
label is “MOS” (i.e., the adjective is predicate in the sentence) and its governing verb exists in a 
list of special predicate verbs such as “shodan” (become) and “kardan” (do).  
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A second rule is employed for recognizing objective deverbal adjectives by watching the postfix 
feature. When the value of this feature equals to “shode”, we will annotate the adjective as an 
event. 

4.2.4 Identifying the Class of Events 

To determine class of events, we rely only on event class features (e.g., isAspectual, 

isPerception, isI_State and so on). For instance, if the value of isReporting feature is equal to 
“true”, we will assign the “Reporting” value to class attribute. For those events, not having any 
of these features with value of “true”, we consider the default values (i.e., ”occurrence” for nouns 
and verbs and “state” for adjectives) 

4.3 Learning-based Method 

By applying the TempEval 2010 format to the developed corpus and using the previously 
mentioned features, a learning model can be trained. The whole relevant processes including data 
loading, data pre-processing, creating and applying a model, and the evaluation can be performed 
using an open source software called RapidMiner3.  

By RapidMiner GUI, we can easily design our learning process and obtain various desired 
evaluations. Therefore, our learning-based module identifies event mentions and determines the 
class of them using RapidMiner processes. We utilize a feature selection process based on a 
naïve Bayesian classifier in this module. The process detects optimized subsets of features for 
each classification task individually. The classification cases are expressed in the evaluation 
section.  

5 Evaluation 

For evaluating both PersTimeML and PET, we built a suitable corpus with annotated events. The 
corpus is in fact the first and a preliminary Persian version of well-known English corpus, 
TimeBank. We called this corpus PTB. An iterative incremental process has been used to create 
PersTimeML, PTB, and PET.  

The input documents have been taken from Peykareh, also known as Bijankhan corpus. Peykareh 
is currently the most popular Persian corpus, which contains more than seven million tokens 
(Bijankhan et al., 2010). We selected a number of documents from diverse topics including 
political, economic, sport news, stories, etc. Then, we pre-processed these selected documents 
with Dadegan tools for tokenizing and converting to the conll09 format. We had extracted 
sentence texts from Conll09 files because of the necessary tokenization pre-processing that input 
sentences had required. Then, we applied the rule-based PET to primarily annotate events, 
followed by a manual correction of the system output. The manual correction was performed 
using the MAE (Multi-purpose Annotation Environment) annotation tool4. The MAE output files 
then converted into the TempEval 2010 data format for simplifying the evaluations.  

We annotated 43 documents from Peykareh. This contained 26,949 tokens and 4,237 events. 
Statistics about frequency of events for each POS tag and also, frequency of events in each event 
class are shown in TABLE 1. 

                                                             
3 Freely available at: http://rapid-i.com/ 
4 Freely available at: http://pages.cs.brandeis.edu/~astubbs/mae.html 

2939



 

 

 

 

 

 

 

TABLE 1 – Some statistics about PTB 

To evaluate the PET, the corpus was split into a development set, a training set, and an 
evaluation set. The evaluation was performed token by token even for multi token events. It 
means that the scorer programs took each token individually and then calculated the value of 
each performance property like recall, precision and f-measure. The training and evaluation sets 
were both used in evaluating the rule-based method. We used a five-fold cross-validation with a 
stratified sampling over the training and evaluation sets for evaluating the learning-based 
method.  

The results of the PET in event mention detection for both rule-based and learning-based 
methods are shown in TABLE 2. In order to calculate the results for each event category, we only 
considered tokens in that category in evaluations. In the learning-based method, this led to an 
individual model for each individual event category. It should also be noted that the learning-
based method assigns each individual token to either an event class or a non-event one.    

 

 

 

TABLE 2 – Evaluation results for PET for event recognition 

In the evaluation for all categories, the both modules showed high precisions, while for recall the 
learning-based method is 15% better than the rule-based one. This weaker recall for the rule-
based method is due to the lower recall for nouns and adjectives. Therefore, it showed that 
although the existing rules have gained a satisfactory precision, we should add extra rules or 
modify the lexicons for finding more event tokens.  

For nouns, the most effective features that have been used in the PET are semantic features. 
These features had been extracted from special dictionaries and lexicons. An experiment on six 
random documents of the PTB showed that 60.7% of nominal events were predicative nouns. As 
we said before, predicative nouns in Persian when function as gerunds, are events. Therefore, it 
must be noted that the quality of these resources for finding eventive nouns or having a list of all 
predicative nouns immensely affects the performance of the event tagger systems.  

Some coverage tests of the lexical databases were performed for the nouns of the PTB corpus. 
From 11,942 nouns of PTB, 7,625 nouns were found in FarsNet (63.8%) and 7,934 nouns were 
found in PersianWN (66.4%). Although the PersianWN has had greater coverage, it suffers from 

POS of Event Frequency  Event Class Frequency 
Noun 1,960  Occurrence 2,488 
Verb 1,875  State 623 
Adjective 312  Reporting 433 
Preposition 51  I_Action 276 
None 39  I_State 218 
   Aspectual 133 
   Perception 66 

 Rule-based Learning-based 
Category Precision Recall F Precision Recall F 
All 78.9 72.5 75.6 79.2 87.5 83.1 
Verb 96.5 99.3 97.9 97.1 99.5 98.3 
Noun 66.3 64.4 65.3 82.1 81.8 82.0 
Adjective 88.5 55.8 68.4 78.3 76.4 77.3 
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lower accuracy because as we mentioned in  4.1, it was developed in a fully automatic process 
with 82.6% accuracy. On the other hand, the FarsNet was manually validated and therefore, has 
had high accuracy. When we experimented with PersianWN for recognizing noun events, we 
gained a low recall (35.1%) but a high precision (80.0%) that is a sign for its incorrect senses or 
hypernyms relationship between synsets. 

 Rule-based Learning-based 
Category Correct Incorrect Accuracy (%) Accuracy (%) 

All 1,946 819 70.3 74.9 
Verb 475 353 57.4 73.5 
Noun 1,301 398 76.5 82.3 

Adjective 147 79 65.0 78.8 

TABLE 3 – Evaluation results for event class detection 

The evaluation results represented in TABLE 3 show the accuracy for detection the class of 
events. In the learning-based method, one model is created for each POS category and one 
classification per event is performed to assign the proper class to each event. The high F-measure 
of the rule-based approach (70.3%) is just achieved by using event class lists. One reason is that 
the majority of events have “occurrence” value in their class attribute. According to TABLE 2, 
2,488 out of 4,237 events (i.e., 58.7% of events) have class attribute with value of “occurrence”. 
Thus, a baseline system that assign “occurrence” to all events, will achieve 58.7% accuracy. By 
this baseline, the accuracy of 74.9% by learning-based module is both acceptable and 
remarkable.  

 

 

 

 

 

 

TABLE 4 – Evaluation results for each event class 

Evaluation results for the various event classes in the learning-based method are shown in TABLE 
4. The worst results are in “state”, “I_Action” and “perception” classes. “Perception” is scarcely 
occurred in the corpus and therefore, had low result. “State” and “I_Action” classes occurred in 
more distinct phrases in comparison with “reporting” and “aspectual” classes and thus, had lower 
accuracies.  

Conclusion and Perspectives 

In this paper, we have addressed the problem of event recognition and classification, which has 
been a challenging task since early days of statistical natural language processing. More 
specifically, we focused on ISO-TimeML event annotation for Persian. Since there have not been 
any suitably tagged corpus in Persian, we have developed an annotated corpus. In the annotation 
process, we adapted the ISO-TimeML standard for Persian. We have also proposed two different 
methods for automatic identifying event mentions and their corresponding attributes as part of a 

 Learning-based event class detection  
Classes Precision Recall F 

Occurrence 73.8 91.5 81.7 
State 72.2 30.7 43.1 

I_State 58.2 61.5 59.8 
I_Action 67.8 35.2 46.3 

Reporting 92.9 86.7 89.7 
Perception 75.0 46.1 57.1 
Aspectual 86.2 60.1 70.9 
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Persian event tagger system. The first was utilized a rule-based approach with different rules. 
The second was a statistical learning-based approach, which used a classification technique for 
tackling the problem. Our experimental results show an acceptable accuracy, considering our 
system as being the first effort for event recognition in Persian. 

Currently, we are working on finding ways for further improvement of our system, PET, and at 
the same time annotating more documents for increasing the size of the corpus. It seems that 
using cross-lingual techniques can further improve the accuracy of existing methods for Persian 
(and languages that currently lack rich resources for NLP applications). Other possible future 
work includes employing richer learning models such as Conditional Random Fields (CRFs) for 
event recognition and classification. It is also the case that PTB should be retagged by other 
annotators to meet the inter-annotator agreement criterion. PTB can also be further improved by 
annotating other ISO-TimeML tags such as time expressions and temporal relations.  
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