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ABSTRACT
Automatic error correction systems for English as a Second Language(ESL) speakers often rely
on the use of a confusion set to limit the choices of possible correction candidates. Typically,
the confusion sets are either manually constructed or extracted from a corpus of manually
corrected ESL writings. Both options require the involvement of English teachers. This paper
proposes a method to automatically construct confusion sets for commonly used prepositions
from non-ESL corpus without manual intervention. The proposed method simulates how ESL
learners learn both the intensions and extensions of English words from standard English text.
Our experimental results suggest that the automatically constructed confusion sets based on the
similarities between the learned words’ intensions is competitive with those directly learned
from an ESL corpus containing about 150K preposition usages.

TITLE AND ABSTRACT IN ANOTHER LANGUAGE, L2 (OPTIONAL, AND ON SAME PAGE)

通通通过过过分分分析析析单单单词词词的的的内内内涵涵涵和和和外外外延延延来来来对对对用用用词词词混混混淆淆淆建建建模模模

针对把英语作为第二语言的人群的自动语法纠错系统，通常会需要使用“混淆集”
来限制系统纠错的种类。一般来说，这些混淆集或者是由专家总结经验得出，或者是从被
专家纠错过的文字当中提取的。这两种方法都需要英语专家的介入。在这篇论文当中，我

们提出了一种无需专家介入，自动建立常用介词混淆集的方法。在此方法中，我们对英语
单词的内涵和外延建模，并且模拟了英语学习者们学习单词内涵和外延的过程。实验表
明，使用单词内涵之间的相似度来创建的混淆集，与从含15万介词的标注语料当中提取的
混淆集质量是相当的。
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为第二语言、第二语言学习.
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1 Introduction

A large portion of the English text (e.g., on the web) is written by people whose native language
is not English. Many English as a Second Language (ESL) writers, even those with a high level
of proficiency, make common grammatical mistakes. Researchers working on Grammar Error
Correction (GEC) try to analyze the patterns of these mistakes in order to understand the
underlying reasons for their occurrence and to build tools that help ESL writers to correct their
errors (Leacock et al., 2010).

Many recently developed GEC systems (Chodorow et al., 2007; J. R. Tetreault & Chodorow,
2008; Gamon et al., 2009; Liu et al., 2010; Rozovskaya & Roth, 2011; Dahlmeier & Ng, 2011a)
share a similar infrastructure: first, they isolate some specific types of errors (e.g., preposition
errors, article errors, or word choice errors); then, they propose a correction for each instance
by treating it as a classification problem. To cast the correction problem as a classification
problem, the system has to know, a priori, what are the set of possible corrections for an error.
That is, the system needs to pre-define a confusion set for each error type.

Previous work has shown the importance of the role of confusion sets. However, the construction
of confusion sets requires a great deal of human involvement. English teachers are involved
in Liu et al. (2010) to manually filter the initial large verb confusion sets; Rozovskaya & Roth
(2010a) used annotated ESL corpus to limit their confusion sets for prepositions. They have
shown that even for closed word classes such as prepositions, limiting the confusion sets help
simplify the classifiers’ tasks and finally lead to both a better precision and recall.

In this paper, we propose a method to automatically construct confusion sets without manual
intervention or an annotated ESL corpus. Our approach is to model and simulate how ESL
learners might learn words from reading English text. In the process of mastering the language,
the learners are often confused about how to choose between similar words. Our goal in this
work is to build a model that analyzes which words might appear similar to each other to an
ESL learner and then builds up confusion sets with those words. The work presented in this
paper addresses learning frequently used prepositions, but the idea may be generalized to open
word classes.

Our simulation focuses on two main aspects of learning new words: learning their intensions and
extensions. The intension of a word is often implied by its definition and its relations to other
words; the extension of a word is often characterized by its usages1. Ultimately, ESL learners
need to achieve a compatible understanding of both the word’s intensions and extensions; but
before that happens, they may confuse words that have either similar intensions or extensions.
Our proposed model applies an algorithm called Relevance Component Analysis (Bar-Hillel et
al., 2006) to describe how an ESL learner might organize the extensional representations of
words onto an intensional space. We then build up confusion sets with words that have similar
intensions.

We compare our model against two models that simulate how learners obtain words’ intensions
and extensions separately. Under the intensions-only model, word choice confusions are directly
measured by the semantic similarity between words. Under the extensions-only model, word
choice confusions are attributed to the learner not having completely mastered a word’s usages;
it can be seen as a faulty language model. In our experiments, we found that, by considering the

1We use the terms intension and extension following the definitions from from Linguistics literature(see, for example,
Chalmers (2002)).
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interaction of word intensions and extensions, our proposed model produces better confusion
sets than those which consider them separately; moreover, the resulting confusion sets are
competitive with those directly learned from an error-annotated ESL corpus containing 150K
preposition usages.

2 Background

The mistakes made by ESL writers are not random. In their studies, Rozovskaya & Roth (2011)
find that those who share the same native language tend to make similar types of mistakes.
The natural question that arises is: what are the underlying causes for the mistakes? In the
frame of computational linguistics research, the question might be rephrased as: Can we build
a mathematical model that simulates ESL writing mistakes?

A model that builds a table of confusion sets whose distributions correlate well with the
mistakes made by ESL writers is an important component in simulating ESL writing. For
instance, Brockett et al. (2006) simulates an ESL corpus according to a set of manually
constructed rules, which would not be available until confusion sets are established.

In addition to aiding our understanding of the underlying causes of ESL writing mistakes, con-
fusion sets also have useful practical applications. Generally speaking, reducing the confusion
set helps lead the classifiers in the GEC system to a better performance by prohibiting them
from considering the outcomes that are both unlikely and misleading. For example, although
ESL learners normally would not confuse within with in, classifiers may have difficulties telling
them apart. Therefore, eliminating within from in’s confusion set may help the classifier. Gen-
erally speaking, by reducing the confusion set’s size to rule out these outcomes, although the
systems will be disabled from correcting certain types of mistakes, they will often increase the
accuracies on more prevalent error types and finally lead to a better overall performance. In
the past, Rozovskaya & Roth (2010a) showed that by limiting the size of the confusion set for
prepositions, their GEC system’s performance improved.

One challenge in building a model of confusion sets is that automatic methods typically generate
huge lists of words, given the many possible factors that contribute to confound ESL writers.
For instance, Dahlmeier & Ng (2011a) observed that ESL collocation errors may be due to
similarities of the words’ spellings, pronunciations, synonyms, and paraphrases in the writer’s
native language (L1). However, by including all words that are similar according to any of
these factors, one would end up with a large confusion set which introduces difficulties for the
classification tasks down the GEC pipeline.

A possible solution is to ask human experts using their knowledge about ESL mistakes to restrict
the confusion set. This is the approach taken by Liu et al. (2010) for their GEC system for
verb selection. Another alternative is to make use of an ESL corpus in which the mistakes
have been corrected by an English teacher; in this case, the confusion sets can be tabulated
from the annotations (Rozovskaya & Roth, 2010a; Dahlmeier & Ng, 2011a). A benefit of the
corpus-driven approach is that the resulting confusion sets provide a reliable estimation of the
distributions of the underlying error patterns. However, this type of annotated corpora take
time and effort to develop. Moreover, even when an ESL student makes many mistakes, the
proportion of the writing that contains no error is still much greater. For example, in the NUS
Corpus of Learner English (NUCLE) corpus (Dahlmeier & Ng, 2011b), there are a total of 3,302
preposition mistakes out of a total of 147,087 prepositions. Therefore, to build confusion sets
for open class words such as verbs, one would need a very large annotated corpus.
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To address the challenge without relying on extensive human involvement, this paper proposes
methods to construct confusion sets directly from standard English corpora (Section 3). We
conjecture that standard English corpora contain enough information for us to infer ESL learners
confusions. This is because learners’ confusions are mainly caused by learners’ understandings
of word similarities, which is developed while studying standard English texts.

What knowledge do ESL learners learn about words? There are mainly two views. One view is
that learning words mean understanding the words’ meanings and their relations to one another.
Another view is that learning words mainly means understanding which word to choose under
which conditions.

In lexical semantics, people hold the first view. In this area, researchers try to find how and what
words mean, denote, and their relations/similarities. This view tends to explain the cause of
confusions to be the similarities between words. Dahlmeier & Ng (2011a); Liu et al. (2010)
take this view in confusion set construction. They build confusion sets containing the words
that are similar in semantic meanings.

In language modeling, people hold the second view. People consider the ability of choosing the
appropriate word under each context to imply the mastery of the language, which include the
understandings of the words in the language. This view tends to explain the cause of confusions
to be the learners’ incapability to completely manage how to use words.

3 Automatic Confusion Sets Construction
ESL writers are more likely to confuse words that they find to be similar during their language
learning. In this section we present three models that simulates how ESL learners might learn
words. In the first two subsections, we describe models of separately learning words’ intensions
and extensions, respectively. In the last subsection, we introduce a model that is optimized
for learning the intensions and extensions of words all together. Within each subsection, we
also develop the reason of ESL writers’ confusions, and propose the corresponding way to
automatically construct confusion sets.

3.1 Learning Words’ Intensions – Distributional Models
Under an intension based perspective, a learner’s primary goal is to understand word meanings,
and it is the similarities between words’intensions that cause word choice confusions. How-
ever, this is not to say that learners ignore word usages. Indeed, although dictionary entries
contain direct definitions of words, researches in the past showed that learners do not learn by
memorizing dictionary entries; instead, they infer words’meaning/function from the context,
and then connecting the new words to the words they are already feel familiar(Fischer, 1990).
Under this perspective, learning the extensions of words is not explicit, it is a means to achieve
the primary goal of understanding word meanings.

To simulates an intension based learner, we build a model of word similarity metrics from
processing standard English text. Specifically, we build distributional models in which the
similarities of words are calculated from a comparison of the contexts they appear in (Pereira et
al., 1993; Lin, 1998; Lee, 1999). Then, to fill in a word’s confusion set, we pick the words that
are most similar according to the metric. Pantel & Lin (2002) showed this method is able to
yield similarities that correlate well with the similarities of words’ intensions.

In our work, we calculate the words’ intension similarity by using a distributional model (Pereira
et al., 1993; Lee, 1999), in which each preposition is represented as a distributional vector of its
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context features. Examples of usage contexts that have been shown to be relevant for the task
of preposition selection in previous work (De Felice, 2008; J. Tetreault et al., 2010; Dahlmeier
& Ng, 2011a) include:

Gov: the syntactic dependency governors of the preposition

Obj: the dependency objects of the preposition

GovTag, ObjTag: the part-of-speech tags of the dependency governors and objects

L1-Trans: L1 translations of the preposition

We employ Gov, Obj, GovTag, ObjTag features to capture the grammatical context of the
preposition selection. We also employ L1-Trans to capture both the intended semantic meaning
of the preposition and the L1 background information which was shown to be relevant to
confusions(Rozovskaya & Roth, 2010a; Dahlmeier & Ng, 2011a).

The distribution of each preposition’s usage context can be estimated from a standard English
corpus. Then the similarity between any pair of preposition vectors can be computed using
common distance metrics such as: KL-Divergence, Euclidean distance, and cosine similarity.

This approach, however, may not be appropriate for our problem for the following two reasons:

Firstly, under a distributional model, two prepositions are considered similar only if the distribu-
tion of all their usages are similar. This is a strong restriction in the sense that two prepositions
might only be similar under certain specific usage contexts but are not generally similar. For
example, the prepositions of and for typically have fairly distinctive usages; however, ESL
writers often confuse the two if the previous word was need.

Secondly, even if two words have similar usages under certain usage context, i.e. have similar
probabilities of being used(e.g. both with 0.2 probability), people still may not be likely to
confuse them with each other – instead, they are more likely to confuse them with a third word
which have higher probabilities(e.g. 0.5). This is because the learner is more likely to pick the
word that seems most plausible in the context, if without further information.

3.2 Learning Words’ Extensions – Preposition Selector

Under an extension-only model, it is assumed that the learners’ main goal is to understand how
to choose words in a given context, and that they learn about such knowledge from standard
English text. Because classifiers can also be trained to choose words, we simulate ESL learners’
learning process as training a classifier for the word selections task(J. R. Tetreault & Chodorow,
2008; J. Tetreault et al., 2010) on standard English text. The trained classifier can be seen as a
type of language model: given a context, it predicts the most likely word in that context.

Under this model, it is expected that the word choice confusions are mainly caused by the
learners’ incapability to completely master the word usages. Therefore, to see what confusions
an ESL learner may have, we then rerun the trained classifier on the training data to collect the
mistakes it makes.
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3.3 Learning Both Intensions and Extensions – RCA

We believe the knowledge of word intensions and extensions build on top of each other while
learners learn English words. Therefore we propose a model that reflects the interactions
between the understandings of words’ intensions and extensions; it works toward making the
intensions and extensions compatible with each other. Similar with the model in section 3.1, in
the end, we build words’ confusion sets by filling them in with words that are most similar in
their intensions.

Our new model describes a two step process when a learner makes word selection choices:
by examining the context, he/she will first think about an intension to convey; then he/she
chooses a word that conveys as similar an intension as possible. We will refer to the first step as
making intension decisions, and the second step as making word choice decisions. The goal of
their learning is to become more comfortable about the word choices in standard English texts.

We formalize the learning process described above mathematically, to facilitate further analysis:

Intension Space We firstly assume that all possible intensions may be embedded in an
Euclidean space S. Two intensions are similar when their locations in S are close to each other.
The n prepositions w1, . . . , wn have corresponding intensions ~v1, . . . ,~vn ∈ S. Because we mainly
focus on these n prepositions, we assume that all intensions during learners’ learning process
can be described by a linear interpolation of the n prepositions’ intension vectors v1, . . . , vn.
That is, the subspace containing all intensions learners consider has at most n dimensions. We
therefore may assume S = Rn, without loss of generality. Further, we denote V = (~v1, . . . ,~vn),
Ii = (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

)T , so that ~vi = V Ii . Because the n prepositions cannot be too similar to

each other, their intensions ~v1, . . . ,~vn cannot clutter. We ensure this by forcing |det(V )| ≥ 12.

Intension Decisions We model the learners’ ability to make intension decisions as a function
~f which maps a context C to a point in the intension space ~f (C) ∈ S, which points to the
intension the learner would like to choose under context C . C is in the format of a set of
relevant contextual features for the preposition choice decisions. Following the discussion in
section 3.1, we consider the relevant contextual features Gov, Obj, GovTag, ObjTag, L1-Trans.

The Uncomfortness of Word Choice Decisions For one word usage sample (C , wi), where
C is the context, and wi is the actual preposition choice, we define the “uncomfortness” of the
ESL learner by ||~f (C)− ~vi ||2. This means: the more difference between the learner’s expected
word choice ~f (C) and the actual word choice ~vi , the more “uncomfortable” the learners are.

Learning Goal We assume that the learners learn about the word usages from some standard
English corpus3 D, containing word usage samples in the format (C , wi). The learners’ learning
goal is to find V and ~f which get them most “comfortable” with the word usages in D. Therefore,
mathematically, the learners’ objective is to minimize the overall uncomfortness on the English
text D: min~f ,V

∑
(C ,wi)∈D ||~f (C)− vi ||2.

2Because |det(V )| is the area circled by the word vectors in V , forcing it to be higher than 1 can be interpreted as
assuming the learners know beforehand that the prepositions cannot be too similar to the others.

3Although there may be other sources where the learners may obtain English knowledge from, such as dictionaries,
the learners would learn word usages better from texts(Fischer, 1990).
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Following the discussion above, we formalize the learning process of ESL learners as finding
the best uncluttered word vectors V and word usage patterns ~f which together minimize the
“uncomfortness” function over some standard English corpus D:

min
~f ,V

∑
(C ,wi)∈D

||~f (C)− V Ii ||2 s.t.|det(V )| ≥ 1 (1)

We calculate the optimal set of word vectors V in the optimization problem above by firstly
reducing the problem into a Minimization of Within Class Distances problem, as shown in
Appendix A, and then solving it using the Relevance Component Analysis(RCA) algorithm(Bar-
Hillel et al., 2006).

In the end, we will be able to obtain the word vectors for prepositions V I1, . . . , V In, and
therefore also their similarities by calculating the distance between them (the distance between
prepositions wi , w j is ||V Ii − V I j ||). According to our model’s assumption, after ESL learners’
learning, the similarities of intensions of two words’ will highly correlate to this distance. We
can therefore fill in the confusion set for every preposition with the prepositions that have the
least distances to it.

This approach is similar to the approach described in Section 3.2 in that it also focuses on the
similarities of preposition usages under specific contexts. The two approaches differ, however,
in their treatments of the degrees to which words are considered to be similar. For example,
consider a corpus where under some certain context C , prepositions pa, pb and pc occur 101,
100, 100 times, respectively. Using RCA, the system would consider all three to be mutually
confusable because they appear almost equally frequently in the same context. On the other
hand, while the preposition selector considers pb and pc to be confusable with pa, it does not
conclude that pb and pc are also mutually confusable under context C .

Thus, if most usage contexts contain only one or two preposition types, the preposition selector
and RCA may produce similar confusion sets; but if the data also include usage contexts that
contain three or more preposition types, RCA may offer confusion sets based on a more globally
optimized similarity metric.

4 Experimental Setup

We conduct experiments to compare different methods for constructing confusion sets. To
evaluate the confusion sets’ qualities, we examine how they impact the performance of an
end-to-end grammar error correction (GEC) system. In particular, we train a separate classifier
for each preposition using only training examples that are covered by the confusion set, a
setup similar to the NegL1 system as described in (Rozovskaya & Roth, 2010a). Additionally,
we also compare the confusion sets with an intrinsic evaluation; we measure how well each
method’s confusion sets match real ESL mistakes by calculating their coverage on an annotated
ESL corpus.

4.1 Data

As the ground-truth for our experiments, we use the NUS Corpus of Learner English(NUCLE)
(Dahlmeier & Ng, 2011b). This is an error-annotated ESL corpus; that is, the writers’ mistakes
have been identified and corrected by an English teacher. In this collection, many writers’ native
(L1) language is Chinese. Following the methodologies established in other studies on the
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preposition selection problem, we focus on the 36 most frequent prepositions4. We used 80% of
the full corpus for training, 10% for development and 10% for testing.

We use the NUCLE corpus in several ways. First, it is used to establish upper-bound confusion
sets. We constructed these “gold” confusion sets by tabulating the observed preposition errors
in the corpus. Second, it is used as a source of training data for the end-to-end GEC system5.
For each confusion set construction method, we extract from the training portion of NUCLE
those instances that are consistent with the proposed confusion sets to train the GEC system.
The trained systems are then tested on the unfiltered test set. Third, it is used as the ground
truth for computing the coverage metric.

The non-ESL corpus used for constructing confusion sets is the Foreign Broadcast Information
Service (FBIS) corpus, which is a Chinese-English bilingual corpus. For most experiments, only
the English portion is used. For experiments that make use of L1 translations, we extracted the
Chinese translations for English prepositions using the GIZA++ (Och & Ney, 2004) implemen-
tation of the IBM word alignment model (Brown et al., 1993). Of the FBIS corpus, we used its
first 32,000 sentences, which contain 151,767 prepositions.

4.2 Metrics

4.2.1 Extrinsic Evaluation

We use F1-measure to evaluate the confusion sets’ effects on the GEC system

F1 = 2× Precision×Recall

Precision+Recall

where precision is the number of suggested corrections that agree with the human annotator
divided by the total number of proposed corrections by the system, and recall is the number
of suggested corrections that agree with the human annotator divided by the total number of
errors annotated by the human annotator.

A challenge faced by automatic GEC system is that ESL writers do not make mistakes on most
of the usual cases. In NUCLE, 1.3% of the preposition instances contain an error. To reduce the
class imbalance for the underlying classifiers during training, we follow the methodology used
by Dahlmeier & Ng (2011b) to keep all instances that contain an error and retain a random
sample of q percent of the correct instances in the training data. In our experiments, the value
of q (20%≤ q ≤ 40%) is tuned on development data. We keep the test data as it is. That is, the
filtering we discussed above is only applied on the training data.

4.2.2 Intrinsic Evaluation: Coverage

When an ESL student mistakenly uses some preposition instead of the correct one, the wrong
preposition is not necessarily in the proposed confusion set list. We refer to the proportion of

4These preposition words include about, along, among, around, as, at, beside, besides, between, by, down, during,
except, for, from, in, inside, into, of, off, on, onto, outside, over, through, to, toward, towards, under, underneath, until, up,
upon, with, within, without

5While using NUCLE to train the GEC system seems in contradiction with our overall aim of reducing our reliance on
error-annotated corpus, we argue that the usage is appropriate here because we need to compare different approaches
of constructing confusion sets without interference from other factors. We do not pursue alternatives such as injecting
noise into standard English as training data (Rozovskaya & Roth, 2010a,b) to avoid unintended interactions between
the confusion sets and the error generation methods.
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ESL students’ mistakes in a corpus that fall into the proposed confusion set list as the coverage
of the confusion set list on that corpus.

The coverage metric can be seen as measuring recall: how well does the proposed confusion set
table cover the mistakes in some ESL corpus? If each confusion set includes all the prepositions,
then the coverage would be 100%. As discussed earlier, in order for the confusion sets to be
useful, they cannot be too large. A high quality confusion set table is one whose confusion sets
are small in their sizes but cover the majority of the mistakes seen in the ESL corpus.

4.3 Confusion Set Construction Methods
Our experiments compare the following confusion set construction methods:

The Trivial Confusion Sets(all preps) To show the confusion sets’ effect in general from
comparison, we establish a baseline by using the trivial confusion sets, in which all prepositions
are considered to be confusable to each other.

Construction from NUCLE(gold) We establish the upper-bound of the confusion set table
by tabulating the preposition mistakes in NUCLE. This confusion set table contains the most
prepositions, and therefore is the one with the highest coverage of ESL mistakes.

Construction by Distributional Similarity Metrics As described in Section 3.1, this model
represents a preposition as a feature vector and directly computes the distance between pairs of
prepositions to construct confusion sets. The values of the feature vectors are computed from
the FBIS corpus. Three standard distance/similarity measures are used: KL-Divergence(kl div),
Euclidean Distance(euc dist) and Cosine Similarity(cos sim).

Construction from Preposition Selector Errors(selector) Section 3.2 proposes generating
confusion sets from classification errors. Here, we train a Maximum Entropy classifier6 for
the preposition selection task on the FBIS corpus, and rerun the classifier on the same data to
collect the mistakes it still makes.

Construction by Word Usage Similarity Modeling(RCA) In Section 3.3 we proposed to
simulate ESL learners’ learning of both words’ intensions and extensions. We formalize their
learning as an optimization problem and then calculate words’ intensions and extensions using
the RCA algorithm(Bar-Hillel et al., 2006). The final confusion sets contain words which have
similar intensions.

4.3.1 Fixing Sizes of Confusion Sets

Our evaluation fixes the size of the confusion sets in the final confusion set tables to be N ,
where 3 ≤ N ≤ 7. This is mainly because confusion sets tables with sizes greater than 7 are
able to cover over 90% of the ESL mistakes, and increasing confusion sets’ sizes from there start
to hurt the GEC systems’ performance. On the other hand, when the sizes are too small, the
confusion set lists prevents the GEC system from making reasonable corrections.

5 Experiments
We compare the proposed methods of constructing confusion sets by using the resulting
confusion sets in an end-to-end GEC system as described in Section 4. The experiments aim

6We used the package downloaded from http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.html
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to address the following questions: (1) How does the proposed method for automatically
constructing confusion sets from non-ESL corpus compare against those developed from error-
annotated ESL corpus? (2) Regarding the models for ESL learners’ word learning, does
considering the interactions between their learning of words’ intensions and extensions help to
capture the learners’ confusions? (3) How are these models affected by the choices of different
context feature groups? (4) How would the quality be affected by the choice of confusion set
sizes?

Figure 1 shows a summary of the results. Each plot shows the GEC system’s performance versus
the size of the confusion sets for each confusion sets construction method under a different set
of context feature choices 7. In the baseline all preps, because we always fix the confusion sets’
size to be a constant number 36 to contain all prepositions, the resulting curves are displayed
as horizontal lines in the figures.

We make four observations:

First, regarding the use of non-ESL corpus, the experimental results suggest that confusion sets
that are automatically constructed from non-ESL corpus is competitive with those constructed
from an error-corrected ESL corpus. When picking the best feature sets Gov,Obj,L1-Trans in
RCA, the GEC system can perform as well as if it were using the gold confusion sets constructed
from a corpus containing 150K preposition usages.

Second, regarding the models for ESL learners’ word learning, our experiments suggest that
the learners’ confusions are better captured when we model their learning of both words’
intensions and extensions altogether. In our experimental results, confusion sets constructed by
RCA model, which considers the interaction of words’ intensions and extensions, consistently
outperforms the other automatic methods selector, kl div, euc dist, cos sim, which only consider
the learning of either words’ intensions or their extensions.

Third, regarding the feature sets used in constructing confusion sets, we find that in general all
the models tend to perform better when they use more features. For example, by using Gov,Obj
in addition to L1-Trans, selector raises the GEC system’s F-score from 5.00% to 8.81%. RCA,
however, is more stable with respect to the feature set changes. We separately show, for these
two models, a comparison of the features’ effects on them in Figure 2.

Fourth, our evaluation confirms that, in general, using confusion sets helps improving the GEC
system’s performance. This is because by limiting the confusion set’s sizes, one can greatly
reduce the underlying classifiers’ mis-classification errors, at the cost of reducing their coverage
a little. These two factors together lead to positive changes overall. To further demonstrate this
effect, we show in Table 1 statistics of the decomposition of GEC systems’ errors on the testing
dataset. Also worth noticing is that our proposed approach (RCA), although having a slightly
less coverage compared to the (gold), reduces mis-classification errors even further.

5.1 Discussions

The experiments above demonstrated RCA’s strength over other methods. In this section
we provide more in-depth analysis on the differences between RCA and other methods, by
comparing those methods’ effects on the GEC system’s precision and recall separately.

7Note that among the standard similarity metrics, we only plot kl div’s F1-scores because it performs better or
similar to the other two methods in most of the cases. In later experiments, we will also only demonstrate the best of
the three when all of them are performing similarly.
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(e) Using Gov,Obj,L1-Trans

Figure 1: F1-Scores of different confusion set construction methods. For each of the five feature
combinations, a plot demonstrates the performance of different methods using that feature
combination. We display every method’s performance as a curve in which each point represents
the GEC system’s F1-Score when using that method to construct confusion set list of a particular
size for the 36 prepositions.
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(a) RCA methods’ F1 scores
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(b) Selector methods’ F1 scores

Figure 2: F1-scores of models using different feature sets to build confusion sets for all 36
prepositions.

all size=3 size=4 size=5 size=6 size=7
preps gold RCA gold RCA gold RCA gold RCA gold RCA

Out of Coverage 0 54 58 37 42 33 37 24 29 22 19
Mis-classification 284 135 119 162 147 173 158 189 176 203 195

Table 1: Confusion sets help reducing mis-classification errors. Here we categorize the GEC
system’s mistakes by whether they are caused by the confusion sets. Out of Coverage represents
the cases where confusion sets precluded the right correction to be made, while Mis-classification
includes all the other cases where the underlying classifiers are responsible for the prediction
mistakes. The RCA we demonstrate here uses Gov,Obj,L1-Trans features.

We fix the feature set that all methods use to be Gov,Obj,L1-Trans in the discussion, because it
allows all models to perform their best.

5.1.1 Precision

In Figure 3, comparing with the all prep baseline, we see that by limiting the classifiers’ choices,
confusion sets are indeed able to raise up GEC systems’ precision. The confusion sets computed
by RCA and euc dist are more helpful in raising the GEC system’s precision, in contrast with
selector. The difference is more significant when the confusion sets are small.

5.1.2 Confusion Set Coverage

Furthermore, we would like to provide an analysis of the GEC system’s recalls, which is, in
our setup, mainly affected by the number of ESL mistakes that are precluded from classifiers’
consideration by the confusion sets. We measure this by calculating the proportion of ESL
mistakes they cover using the metrics developed in 4.2.2. The coverage also reflects one
confusion set’s match to ESL students’ real mistakes.

Shown in Figure 4 are the coverage of confusion sets constructed by different models, of
different sizes. RCA and the selector greatly outperform other automatic approaches.
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Figure 3: Precision of different methods on NUCLE
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Figure 4: Coverage of confusion sets in different models using features Gov,Obj,L1-Trans
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6 Conclusions
We proposed a method to automatically construct confusion sets for preposition errors without
relying on any annotated ESL corpus or human post-processing. Based on the notion that ESL
word selection errors are mainly because ESL learners are not able to choose between similar
words, we build a model that analyzes which words might appear similar to each other to an
ESL learner. Our model applies an algorithm called Relevance Component Analysis (Bar-Hillel
et al., 2006) to describe how an ESL learner might learn both words’ intensions and extensions
from reading English text. The resulting confusion sets have been shown to both improve
GEC system’s performance, and correlate well with real ESL mistakes. Also, by modeling the
interaction between the intensional and extensional knowledge in ESL learners’ learning, our
model ends up with better confusion sets than the models considering the development of
only intensional or extensional knowledge. One key strength of our proposed technique is that
because it only relies on standard English corpora, it is more scalable. Although this paper
focuses on prepositions, the proposed approach may be applicable to other word classes.
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A Solving the Optimization Problem for Word Usage Similarity
To solve the minimization problem in formula 1, we will first cast it into a Minimization of
Within Class Distances problem.

Firstly, suppose there are N unique contexts C1, . . . , CN in the corpus, note that by grouping the
samples with same contexts together, we may rewrite formula 1 as:

min
f ,V

∑
1≤k≤N

∑
(Ck ,wi)∈Dk

||~f (Ck)− V Ii ||2 s.t.|det(V )| ≥ 1

where Dk =
�
(C , wi) ∈ D | C = Ck

	
.

Secondly, for a certain V , the optimal function ~f which minimizes the cost function should

satisfy: ~f (Ck) =
∑
(Ck ,wi )∈Dk

V Ii

|Dk | = V ~mk, where ~mk =
∑
(Ck ,wi )∈Dk

Ii

|Dk | . That is, ~f should map context Ck

to the centroid of the word choice vectors in group Dk. We may therefore rewrite the formula
above as:

min
V

∑
1≤k≤N

∑
(Ck ,wi)∈Dk

||V ~mk − V Ii ||2 s.t.|det(V )| ≥ 1

⇔ min
V

∑
1≤k≤N

∑
(Ck ,wi)∈Dk

||~mk − Ii ||2V T V s.t. det(V T V )≥ 1

where the notation ||~t||B is the Mahalanobis distance: ||~t||B =
p
~tT B~t. Together, this gives

us the exact equation for the minimization of within class distances problem that the RCA
algorithm may solve(Bar-Hillel et al., 2006, p. 945). We therefore directly apply the RCA
algorithm to calculate the optimal V : V = TR̂−

1
2 where T is a constant number and

R̂=
∑

1≤k≤N

∑
(Ck ,wi)∈Dk

(Ii − ~mk)(Ii − ~mk)
T
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