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ABSTRACT
Recently, various unsupervised representation learning approaches have been investigated to
produce augmenting features for natural language processing systems in the open-domain
learning scenarios. In this paper, we propose a dynamic dependency network model to conduct
semi-supervised representation learning. It exploits existing task-specific labels in the source
domain in addition to the large amount of unlabeled data from both the source and target
domains to produce informative features for NLP tasks. We empirically evaluate the proposed
learning technique on the part-of-speech tagging task using Wall Street Journal and MEDLINE
sentences and on the syntactic chunking task using Wall Street Journal corpus and Brown
corpus. Our experimental results show that the proposed semi-supervised learning model can
produce more effective features than unsupervised representation learning methods for open-
domain part-of-speech taggers and syntactic chunkers.
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1 Introduction
Existing supervised natural language processing (NLP) systems are highly domain-dependent,
whose performance degrades significantly when tested on a new domain. Previous
works in a variety of NLP tasks, like part-of-speech (POS) tagging (Blitzer et al., 2006;
Huang and Yates, 2010; Blitzer et al., 2011), syntactic chunking (Huang and Yates, 2009;
Carreras and Màrquez, 2005), named entity recognition (NER) (Daumé III, 2007; Turian et al.,
2010; Daumé III and Marcu, 2006), or parsing (Sekine, 1997; McClosky et al., 2010) show
that the performance of supervised NLP systems drops a lot on domains whose vocabulary
differs from the vocabulary of the training data.

The major reason that causes the increasing of test error on out-of-domain texts is the tradi-
tional representation used in the supervised NLP systems. Most NLP systems use the lexical
features for predictions. Though it works very well for various in-domain NLP tasks, they per-
form poorly when tested on a different domain. There are two main reasons. First, the source
and target domains may have very different vocabularies, thus some test words may never
appear during the training phase. For example, “sequencing”, “metastases” and “genomic”
show up frequently as lexical features in biomedical text but rarely in newswire articles. A
classifier trained on newswire data thus will have seen few training examples related to sen-
tences with lexical features “sequencing”, “metastases” and “genomic” (Ben-David et al., 2010,
2007). Second, the prediction function based on lexical features may change across domains.
For example, “signaling” appears in “signaling that . . .” from a Wall Street Journal (WSJ) arti-
cle primarily as a present participle (VBG) (Marcus et al., 1993), but predominantly as a noun
in “signaling pathway” from a MEDLINE text (PennBioIE, 2005).

Recently, various unsupervised representation learning techniques are proposed to induce gen-
eralizable latent features across domains by exploiting large amount of unlabeled data from
both the source and the target domains. Blitzer et al. (2006) and Huang and Yates (2009,
2010) show that their learned representations can yield significant improvements for out-of-
domain POS taggers or syntactic chunkers. However, the latent features produced by these
unsupervised representation learning techniques provide no task-specific discriminative infor-
mation over the labels of NLP tasks.

To tackle this issue, in this paper we propose a semi-supervised Dynamic Dependency Network
(DDN) model to induce task-specific discriminative latent features across domains. In addi-
tion to exploiting large amount of unlabeled data from two domains, the DDN model will also
leverage the already-existing task labels from the source domain. It combines the advantages
of semi-supervised learning methods from (Blitzer et al., 2006; Daumé III, 2007) with the se-
quence models from (Huang and Yates, 2009, 2010), while maintaining desirable properties
like computational tractability and modeling flexibility to incorporate many features. This
model is more appealing than unsupervised representation learning techniques when a target
NLP task is known. Moreover, though we perform representation learning in a semi-supervised
manner, we only exploit the existing labeled data in the source domain. Thus our model can
be applied to arbitrary new domains without any extra annotation effort. The proposed model
is empirically evaluated for out-of-domain POS tagging systems on articles from WSJ and
MEDLINE, and for out-of-domain syntactic chunking systems on articles from WSJ and Brown
corpora. It is shown to outperform unsupervised representation learning techniques. Overall,
the contributions of this paper include

• We propose a novel probabilistic graphical model, Dynamic Dependency Networks
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(DDNs), which is computationally tractable for inference and training.

• We demonstrate how to apply DDNs on cross-domain semi-supervised representation
learning for sequence labeling systems.

• Our empirical results show that DDN-based semi-supervised representation learning is
superior to unsupervised representation learning for out-of-domain POS tagging and
syntactic chunking.

The remainder of the paper is organized as follows. The next section discusses previous work.
Section 3 describes representation learning. Section 4 presents the proposed DDN model and
semi-supervised representation learning. Section 5 presents experimental results for out-of-
domain POS tagging systems. Section 6 presents empirical results for out-of-domain syntactic
chunking systems. We then conclude the paper.

2 Previous Work

Most previous work for domain adaptation tasks has focused on the setting where some la-
beled data is available in the target domain (Daumé III and Marcu, 2006; Daumé III, 2007;
Jiang and Zhai, 2007; Dredze et al., 2010; Daumé III et al., 2010). Daumé III and Marcu
(2006) proposed to tackle domain adaptation tasks by training three separate models to distin-
guish source-specific, target-specific and general information using maximum entropy classi-
fiers. Jiang and Zhai (2007) adopted instance weighting method for semi-supervised domain
adaptation by removing misleading training instances in the source domain, assigning more
weights to labeled data, and augmenting training data using target instances with predicted
labels. Daumé III (2007) proposed to perform supervised domain adaptation with feature aug-
mentation for various NLP tasks. Daumé III et al. (2010) used co-regularization to incorporate
unlabeled data for semi-supervised domain adaptation. In contrast, we investigate a more
practical setting for domain adaptation where we have no labeled data in the target domain.

Recently, various unsupervised representation learning techniques have been proposed
to tackle domain adaptation tasks by exploiting large amount of unlabeled data from
two domains (Ando and Zhang, 2005; Blitzer et al., 2006; Huang and Yates, 2009, 2010;
Blitzer et al., 2011). Blitzer et al. (2006) proposed a structural correspondence learning
(SCL) method to seek for generalizable features by modeling the correlation between pivot
features and non-pivot features. Turian et al. (2010) empirically evaluated Collobert and
Weston embeddings (Collobert and Weston, 2008), Brown clusters, and HLBL embeddings
(Mnih and Hinton, 2009) of words on both syntactic chunking and named entity recognition
tasks. Their experimental results demonstrated that those three word representations can im-
prove the performance of out-of-domain named entity recognition systems and in-domain syn-
tactic chunking systems. Huang and Yates (2009) employed Hidden Markov Models (HMMs)
to induce hidden states of the sentence words as latent features. Later, Huang and Yates (2010)
proposed to learn a multi-dimensional feature representation by simultaneously train multiple
HMMs with different initializations. Though unsupervised representation learning achieves
good empirical performance for out-of-domain NLP tasks, it underutilizes the source data,
since it completely neglects the existing task-specific labels when performing representation
learning. The DDN model we propose in this work can suitably address this problem by ex-
ploiting task labels when performing semi-supervised representation learning.
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3 Representation Learning

A representation is a set of features describing instances in a classification problem. Let X be
the set of all instances. For example, for a sequence labeling task in NLP, X is the set of all
sentences. Let Z be the label set of the classification problem. For POS tagging, Z is the set
of all sequences of part-of-speech tags. For syntactic chunking, Z is the set of all sequences
of syntactic chunks. Let f : X→ Z be the prediction function. A representation is a function
R : X → Y, for some suitable feature space Y (such as Rd). A domain D is defined as a
distribution over the instance set X. An open-domain system learns a classification model
from a set of training instances (R(x), f (x)), where each instance x ∈ X is drawn from a
source domain Ds and expressed in a representation space defined by function R, and classifies
test instances drawn from a separate target domain Dt .

It has been shown in recent theoretical work that the performance of domain adapta-
tion greatly depends on the data representation employed, and traditional data represen-
tations in NLP prevent learning systems from generalizing appropriately across domains
(Ben-David et al., 2010). Previous work by Ben-David et al. (2007) uses Vapnik-Chervonenkis
(VC) theory (Vapnik, 1995) to prove theoretical bounds on an open-domain learning machine’s
performance. It demonstrates that the choice of representation is crucial for domain adapta-
tion. It is customary in VC theory that a good choice of representation must allow a learning
machine to achieve low error rates during training.

In light of Ben-David et al.’s theory findings, traditional representations in NLP are inadequate
or problematic for domain adaptation. Traditional representations in NLP tasks are lexical
features based on local context. Although many previous studies have shown that lexical fea-
tures allow learning systems to achieve impressively low error rates during training, they also
make texts from different domains look very dissimilar and create domain divergence prob-
lems. For example, a sentence containing “CEO” may be common in a domain of newswire
text but scarce or nonexistent in a different domain like biomedical articles. Likewise, a sen-
tence containing “path-way” is almost certainly from a biomedical literature rather than from
a newswire article. Thus with traditional representations of NLP, a prediction model trained in
one source domain can hardly work well in a different target domain.

At the same time, traditional representations contribute to data sparsity, a lack of sufficient
training data for the relevant parameters of the system. In traditional supervised NLP systems,
there are parameters for each word type in the data, or perhaps even combinations of word
types. Since vocabularies can be extremely large, this leads to an explosion in the number of
parameters. As a consequence, for many of their parameters, supervised NLP systems have zero
or only a handful of labeled examples. No matter how sophisticated the learning technique,
it is difficult to estimate parameters without relevant data. Because vocabularies differ across
domains, domain adaptation greatly exacerbates this issue of data sparsity.

Huang and Yates (2009) show how to use language models, HMMs, to induce latent-variable
states as generalizable features for various open-domain NLP tasks, such as POS tagging and
syntactic chunking. These learned representations have proven to meet the criteria for open-
domain representations. It would be difficult to tell two domains apart based on the HMM
labels since the same HMM states may generate many similar words from a variety of domains.
However, these unsupervised representations are not specifically discriminative for any NLP
tasks. This is the main motivation of the research in this paper. Unsupervised representation
learning based on HMMs nevertheless serves as one of the comparisons in our experiments.
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4 Dynamic Dependency Network for Semi-supervised
Representation Learning

In this section, we present a Dynamic Dependency Network (DDN) model to incorporate
task-specific label information in the source domain for semi-supervised representation learn-
ing. A dynamic dependency network is a dynamic extension of dependency networks
(Heckerman et al., 2000) for modeling data with sequential observations and labels. Depen-
dency networks are cyclic directed graphical models. Similar to directed acyclic Bayesian net-
works, dependency networks allow simple local parameter estimations given fully observed
data. But by dropping acyclicity constraints, dependency networks are more flexible on model-
ing interdependencies between variables than acyclic Bayesian networks. Following the same
principle of Dynamic Bayesian Networks (DBNs) (Murphy, 2002), we extend dependency net-
works into sequential models to form Dynamic Dependency Networks. Although with directed
cycles a DDN model will lose the ability of handling time series data that requires time forward
directed arcs (not vice versa), it has increased the capacity of modeling word or label interde-
pendencies within local contexts of sentences, comparing to DBNs. Figure 1 demonstrates an
example of the DDN models we will use for semi-supervised representation learning.

In this DDN model (Figure 1), the variables are partitioned into three interconnected sequences
X = {X1, . . . , XT }, Y = {Y1, . . . , YT } and Z = {Z1, . . . , ZT }, representing observations, hidden
states and labels respectively. Similar to the HMM model used in (Huang and Yates, 2009),
the state sequence is hidden in our model and the state variable Yt at location t takes values
from a predefined set of state values; the observation sequence X is produced from the ob-
served sentence; given Yt , we assume X t is conditionally independent of X t ′ for t 6= t ′. But
in addition to the two layers, X and Y in HMMs, our DDN model adds another task-specific
label layer Z . For example, for the POS tagging task, Z will be the sequence of POS tags. More-
over, we take the bi-directional sequential dependency between labels into consideration by
connecting each neighbor pairs of labels using bi-directional arcs. At each location t, X t , Yt
are both parents of Zt , since we assume both the sentence observation and the hidden state
representation determine the sequence label. This DDN model maintains the same inference
complexity as the HMM, since only the state sequence Y is latent during training. While by
allowing bi-directional arcs over the label sequence Z , it has a natural capacity of modeling
and incorporating task-specific label information for representation learning. By incorporating
the label sequence Z into the model, we expect to identify more task discriminative latent
sequence representations.

Figure 1: A Dynamic Dependency Network (DDN)
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4.1 Training and Inference

Although we have an additional bi-directional Z layer in DDNs, the structures over the hidden
layer Y , and between Y and the observed sequence X are similar to in HMMs. Thus inference
over the hidden states and parameter learning in DDNs are as tractable as in HMMs. Assume
that we are given a data set of N i.i.d. samples, {(X i , Z i)} for i = 1,2, . . . , N , where X i is the
ith sentence and Z i is the corresponding sequence of labels, e.g., POS tags, for X i . Given the
training data, its log-likelihood is

L(θ) =
N∑

i=1

log P(X i , Z i |θ)

where θ denotes the set of model parameters.

Let q(Y ) be any non-zero distribution over hidden variables Y , we can get a lower bound for
L(θ). For notational convenience, we will drop the superscript i in the following formulas.

ℓ(θ) = log
∑

Y

q(Y )
P(X , Y, Z|θ)

q(Y )
(1)

≥
∑

Y

q(Y ) log
P(X , Y, Z|θ)

q(Y )

=L(θ)− DK L(q(Y ) ‖ P(Y |X , Z ,θ)) (2)

where DK L(·) denotes the Kullback-Leibler divergence measure. We denote the objective in
(2) as F(q,θ). We then conduct training by maximizing F(q,θ) using iterative Expectation-
Maximization (EM) algorithm (Baum et al., 1970; Dempster et al., 1977). For the (k + 1)th
iteration, in the E-step, we update q given fixed θ k from previous iteration by

qk+1 =arg max
q

F(q,θ k) (3)

which has the following solution when the K L divergence becomes zero

qk+1(Y ) = P(Y |X , Z ,θ k). (4)

In the M-Step, we update θ given fixed qk+1

θ k+1 =arg max
θ

F(qk+1,θ) (5)

Similar to HMMs, the parameter estimation in (5) requires computation of P(Yt−1, Yt |X , Z)
and P(Yt |X , Z) for all t in the E-step. We extend the Baum-Welch algorithm used in HMMs
to conduct the required computation with the current model parameters θ . Let αt(y) =
P(X1, Z1, · · · , X t , Zt , Yt = y |θ) and βt(y) = P(X t+1, Zt+1, · · · , XT , ZT |Yt = y,θ). The set of
{αt(y)} and {βt(y)} can be solved inductively using a forward procedure and a backward
procedure respectively, which are analogous to the forward and backward procedures used for
HMMs. Then the marginal probabilities can be computed as

P(Yt = y |X , Z ,θ) =
αt(y)βt(y)∑
by αT (by)

(6)
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P(Yt = y, Yt+1 = y′|X , Z ,θ) = (7)
αt(y)βt+1(y′)∑
by αT (by)

P(Yt+1 = y′|Yt = y)P(Zt+1|Zt , Zt+2, X t+1, Yt+1 = y′)

The major difference from HMMs is that the computation of (7) requires the additional local
probabilities, P(Zt |Zt−1, Zt+1, X t , Yt), in the bi-directional Z sequence. The typical conditional
probability table (CPT) parameters for P(Zt |Zt−1, Zt+1, X t , Yt) requires a storage space in the
size of (L − 1) × L2 × V × S, where L is the number of discrete label values for Z , V is the
number of discrete word features for X , and S is the number of discrete states for Y . To
reduce the computational cost and memory size for storing such a large CPT and increase
the scalability of the proposed model, we exploit a multi-class logistic regression model to
model this conditional probability distribution and store the model parameters of the logistic
regression model instead.

The logistic regression classifier is trained in the M-step with data collected at each location t,
over four types of features Zt−1, Zt+1, X t , Yt . Given the model parameters θ , the hidden state
values of sequence Y are computed using the Viterbi inference algorithm used in HMMs. Thus
the trained logistic regression model only requires a model parameter matrix W in the size of
L× (2L+ V +S+1) to calculate the probability P(Zt |Zt−1, Zt+1, X t , Yt ,W ) for any inputs. The
space required to store the W matrix is much smaller than the space required for the original
conditional probability table. To avoid overfitting, we trained a L2-norm regularized logistic
regression model using a second-order Newton method.

With the computed marginal probabilities and induced hidden states, the model parameters θ
of the DDN can be re-estimated in a similar way as in HMMs in addition to the retraining of
the logistic regression classifier.

4.2 Semi-supervised Representation Learning

We have introduced above how to train DDNs with labeled sentences and conduct inference to
induce the hidden states. For cross-domain semi-supervised representation learning, we have
a small amount of labeled sentences {(X l , Z l )} in the source domain and a large amount of
unlabeled sentences {X u} in both the source and target domains. This requires the DDN model
to handle unlabeled sentences as well. Note in the DDN model we introduced, dropping the
label layer Z does not affect either the structure nor the parameter of the other two layers,
but simplify a DDN model into a HMM. Thus we can use DDNs as HMMs on unlabeled sen-
tences by sharing common model parameters across labeled and unlabeled sentences. With
this semi-supervised representation learning, we expect to inference latent features that are
not only generalizable in different domains, but also more informative or discriminative about
the target task labels.

Our overall system follows a similar procedure of (Huang and Yates, 2009). First we train a
DDN model over both the labeled sentences in the source domain and the unlabeled sentences
in both domains, as we described above. Then we use the trained DDN model to produce latent
features (i.e, hidden state values Y ) for the training and test sentences using Viterbi inference
algorithm. Finally we train a classification model, e.g., CRFs, over the training sentences for
the target task, e.g. POS tagging, using the latent features as augmented inputs, and then per-
form classification on the test sentences. We expect semi-supervised representation learning to
help improve out-of-domain prediction performance with more discriminative latent features.

2873



5 Domain Adaptation for Part-of-Speech Tagging

In this section, we report our empirical study on how semi-supervised representation learning
can improve out-of-domain part-of-speech tagging accuracy.

5.1 Datasets

We used the same datasets as (Blitzer et al., 2006; Huang and Yates, 2009, 2010). The source
domain contains articles from Wall Street Journal (WSJ), with 39,832 manually tagged sen-
tences from sections 02-21 and 100,000 unlabeled sentences from a 1988 subset. The target
domain contains bio-medical articles from MEDLINE, with 561 labeled sentences1 and 100,000
unlabeled sentences. The task is to assign words with one of the POS tags from the Penn Tree-
bank POS tags (Marcus et al., 1993) and two more tags from MEDLINE dataset. Among the
tags, two tags cannot be seen in the newswire articles, HYPH (hyphens) and AFX (common
post-modifiers for biomedical entities such as genes). These two tags were introduced because
of the importance of hyphenated entities in biomedical text, which are about 1.8% of the words
in the 561 labeled sentences.

5.2 Representation Learning

We explored both unsupervised representation learning using HMMs and semi-supervised rep-
resentation learning using the proposed DDNs. We built a vocabulary with all sentences from
the source and target domains. In order to reduce the vocabulary size, we further applied
the preprocessing steps used in (Huang and Yates, 2009, 2010): we mapped lower frequency
(0-2) words to a single unique identifier and sole-digit words into a single unique identifier in
our vocabulary. With these preprocessed sentences, we applied representation learning models
(DDNs and HMMs) to derive hidden states as additional features for supervised POS taggers.

We used HMMs to perform unsupervised representation learning on 139,832 newswire sen-
tences and 100,000 unlabeled biomedical sentences following the work (Huang and Yates,
2009). Then we decoded the hidden states for 39,832 newswire sentences (the labeled sen-
tences in the source domain) as well as 561 biomedical sentences (the test sentences in the
target domain) as additional features for supervised POS tagging. In the unsupervised repre-
sentation training, one hyperparameter, the number of hidden states, has to be set. A large
number of hidden states would make the model more capable to derive latent features, how-
ever, it also needs more memory storage and high computation cost. We used 80 states in our
experiments, following (Huang and Yates, 2009), to produce fair comparisons.

We used the proposed DDN model for semi-supervised representation learning on 39,832 la-
beled and 100,000 unlabeled newswire sentences as well as 100,000 unlabeled biomedical
sentences. The labels we used in semi-supervised representation learning are the same labels
we will use later to train POS taggers. Thus comparing to unsupervised representation learn-
ing, the semi-supervised representation learning does not require additional annotation effort,
but makes use of the existing labels in the source domain. For our semi-supervised representa-
tion learning, we need to choose two hyperparameters, the number of hidden states and the
L2 regularization parameter. We set the former as 80, same as in unsupervised representation
learning. Our model is not sensitive to the L2 regularization parameter and we set it as 0.5.

1Sentences are manually annotated as part of the Penn BioIE project.
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5.3 Part-of-Speech Tagging Accuracy

For supervised POS tagging, the training data contains 39,832 labeled newswire sentences and
the test data contains 561 biomedical sentences. The 561 biomedical sentences contain 14,554
tokens, of which 23% are OOV (Out-Of-Vocabulary) tokens. We tested our semi-supervised
representation learning using supervised Conditional Random Field (CRF) POS taggers and
used a fast-training CRF package developed by Okazaki (2007). The feature set used for the
CRF POS tagger is presented in Table 1. Specifically, we extracted unigram features. We
also added orthographical features such as suffix (-ing, -ogy, -ed, -ly, -s, -ion, -tion, -ity), as
well as capitalization. Orthographical features contribute to improving tagging accuracy for
out-of-vocabulary words as is demonstrated by (Lafferty, 2001). In addition, we added the
latent states as state features for each word from the learned representations. For example,
a sentence like “He is the CEO .” contains 5 words: 4 regular words and a “period”. A state
feature is learned for each of them.

Table 1: CRF feature set used in our supervised CRF POS taggers. Zi variables stand for labels
to be predicted, Wis represent word tokens. Yis stand for hidden state values decoded from
HMM or DDN models, i.e., the new representation features.

Feature Type Feature Description

Transition
Zi = t
Zi = t and Zi−1 = t ′

Word Wi = w and Zi = t

Orthography
For every s ∈ {-ing, -ogy, -ed, -s, -ly, -ion, -tion, -ity},
suffix(Wi)=s and Zi = t
Wi is capitalized and Zi = t
Wi has a digit and Zi = t

HMM features Zi = t and Yi = y
DDN features Zi = t and Yi = y

Our experimental results in term of per-token accuracy with different representation learning
methods are presented in Table 2. For all test results reported in this paper, the “All Words”
results are average accuracies over all words in the test data, the “OOV Words” results are
average accuracies over only OOV words in the test data that appeared less than 3 times in the
training data. We reported the empirical results for the following approaches:

• Baseline: the baseline CRF POS-tagger trained without representation learning.

• ASO: the Alternating Structural Optimization technique in (Ando and Zhang, 2005).

• SELF-CRF: the comparison method using a self-training paradigm. We first train a CRF
without representation learning on the training data and apply it on the test data, then
retrain it on the training data plus the test data with predicted labels.

• PLAIN-SEM: the method based on the representation learning technique using con-
trastive estimation (Smith and Eisner, 2005). We used the modified version in
(Huang and Yates, 2010).
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Table 2: Per-token accuracy for out-of-domain words on MEDLINE domain trained with Wall
Street Journal articles.

Approaches All Words OOV Words
Baseline 88.3% 67.3%
ASO 88.4% 70.9%
SELF-CRF 88.5% 70.4%
PLAIN-SEM 88.5% 69.8%
SCL 88.9% 72.0%
SEM-CRF 90.0% 71.9%
HMM 90.5% 75.2%
DDN 91.3% 76.1%

• SCL: the method based on the representation learning with the Structural Correspon-
dence Learning (SCL) technique, developed by (Blitzer et al., 2006).

• SEM-CRF: the method based on the representation learning in (Huang and Yates, 2010).

• HMM: the method based on the unsupervised representation learning using HMMs in
(Huang and Yates, 2009).

• DDN: the method based on the proposed semi-supervised representation learning.

We also investigated how our representation learning benefits supervised POS taggers by vary-
ing the number of labeled training sentences from the source domain. For comparison, we
considered Baseline, SCL and HMM, since SCL and HMM work very well among all the other
comparison methods. The per-token accuracies on test data are reported in Figure 2.
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Figure 2: Per-token accuracies for out-of-domain POS tagging. WSJ is used as the source
domain and MEDLINE is used as the target domain.

From Table 2 and Figure 2, we can see that with semi-supervised representation learning, DDN
consistently outperforms other comparison methods for out-of-domain POS tagging. From
Figure 2, we can see that by increasing the number of labeled training data, DDN can gain
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Table 3: Statistical Significance (McNemar’s) tests for out-of-domain experiments with CRF
POS taggers. Results are significant with p < 0.05.

Null Hypothesis p-value
HMM vs. Baseline 2.3× 10−9

DDN vs. Baseline 3.4× 10−10

DDN vs. SCL 6.7× 10−7

DDN vs. HMM 2.9× 10−4

more improvements in accuracy compared with Baseline, SCL and HMM. Specifically, DDN
increases accuracy by 2.4% compared with Baseline, by 1.3% compared with SCL, and by 0.6%
compared with HMM when the labeled training data is 1,000. When the labeled training data
reaches 39,832, DDN increases accuracy by 3.0% compared with Baseline, by 2.4% compared
with SCL, and by 0.8% compared with HMM. Those results suggest that DDN can produce
more effective task-specific features by incorporating existing labels from the source domain,
and further assist out-of-domain POS tagging.

We also present results for corresponding significance tests over comparisons between Baseline,
SCL, HMM and DDN in Table 3. We followed the experiments in (Blitzer et al., 2006), and
used a McNemar paired test for labeling disagreements (Gillick and Cox, 1989) with p < 0.05
being significant on all test words. We report the p values in Table 3. We can see that DDN
significantly improves out-of-domain tagging accuracy over Baseline, SCL and HMM.

6 Domain Adaptation for Syntactic Chunking

In this section, we empirically study how our proposed semi-supervised representation learning
can improve out-of-domain performance on syntactic chunking.

6.1 Datasets

We used the datasets from the CoNLL 2005 shared task (Carreras and Màrquez, 2005) for our
second set of experiments on syntactic chunking. We used the standard training set, consist-
ing of sections 02-21 of the Wall Street Journal (WSJ) portion of the Penn Treebank, and
conducted tests on the Brown corpus (Kucera and Francis, 1967). The test data contains 3
sections (ck01-ck03) of propbanked Brown corpus data, which consists of 426 sentences con-
taining 7,159 tokens. Besides these labeled data, we also incorporated unlabeled data from
both domains. We added 100,000 unlabeled news sentences for the source domain and 57,000
unlabeled sentences for the target domain. In this setting, while the source domain contains
newswire text, the test sentences are drawn from the domain of “general fiction” and contain
entirely different styles of English.

The original training data and test data from the CoNLL 2005 shared task contain POS tags
as well as partial syntax, namely chunks and clauses. In order to perform syntactic chunking
task, we mapped the partial syntax labels to chunking labels in IOB2 format. IOB2 format
is a standard format for various sequence tasks like syntactic chunking and it is widely used
in previous works including the CoNLL 2000 shared task2. In IOB2 format, the chunk tags

2http://www.clips.ua.ac.be/conll2000/chunking/.
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Table 4: Average chunking performance on Brown corpus, with Wall Street Journal articles as
training data.

Methods F1
Baseline 89.93%
SELF-CRF 90.21%
SCL 90.62%
HMM 91.79%
DDN 93.05%
UPC Chunker 91.73%

consist of two parts. The first part represents the position of the token in this chunk and the
second part stands for the name of the chunk type. For example, the chunking type of VP is
used for verb phrase words and the chunking type of NP is used for noun phrase words. For
words forming a chunk of type k, the first word receives the B-k tag (Begin), and the remaining
words receive the tag I-k (Inside). Words outside a chunk receive the tag O. Below we give an
example of a sentence labeled with chunking tags in IOB2 format from the source domain:

The/B-NP $/I-NP 1.4/I-NP billion/I-NP robot/I-NP spacecraft/I-NP faces/B-
VP a/B-NP six-year/I-NP journey/I-NP to/B-VP explore/I-VP Jupiter/B-NP and/O
its/B-NP 16/I-NP known/I-NP moons/I-NP ./O

6.2 Representation Learning

We built a vocabulary with all sentences from the source and target domains. In order to reduce
the vocabulary size, we used the same preprocessing steps as in POS tagging experiments,
mapping lower frequency (0-2) words to a single unique identifier in our vocabulary and sole-
digit words into a single unique identifier. On the preprocessed sentences, we then applied
representation learning models (DDNs or HMMs) to derive hidden states of the sentence words,
which can be used as additional features for supervised syntactic chunking systems.

We used HMMs to perform unsupervised representation learning on 139,832 newswire source
sentences and 57,000 unlabeled “general fiction” sentences from Brown corpus. Then we
decoded the hidden states for 39,832 labeled newswire sentences and 426 “general fiction”
test sentences as additional features for supervised syntactic chunking, using the trained HMM.
In the unsupervised representation training, one hyperparameter, the number of hidden states,
has to be set. We used 80 states in our experiments in consideration of the model capability,
memory storage and computation cost.

We used the proposed DDN model for semi-supervised representation learning on the same
data as for HMMs, i.e., 139,832 newswire sentences from the source domain and 57,000
unlabeled “general fiction” sentences from the target domain. But different from unsupervised
representation learning, our proposed semi-supervised representation learning makes use of
the existing labels of the 39,832 sentences in the source domain. In our semi-supervised
representation learning, we need to choose two hyperparameters, the number of hidden states
and the L2 regularization parameter. We set the former as 80 and the latter as 0.5, which are
same as in our previous experiments for POS-tagging.
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Figure 3: Results in term of F1 measure for out-of-domain syntactic chunking. WSJ is used as
the source domain and Brown corpus is used as the target domain.

6.3 Syntactic Chunking Results

For supervised syntactic chunking, the training data contains 39,832 labeled newswire sen-
tences and the test data contains 426 “general fiction” sentences. The 426 “general fiction”
sentences contain 7,159 tokens. We tested our semi-supervised representation learning with su-
pervised Conditional Random Field (CRF) syntactic chunking. We used the same fast-training
CRF package developed by Okazaki (2007). For syntactic chunking, in addition to the CRF
feature set in Table1 which we used in POS tagging experiments, we also extracted POS tag
features. All features are represented with boolean values.

Our experimental results with different representation learning methods are presented in Table
4. The results are in term of F1 measure, since F1 measure is widely used in syntactic chunk-
ing tasks (Huang and Yates, 2009; Carreras and Màrquez, 2005). We reported the empirical
results of the following approaches for comparison:

• UPC Chunker: a chunking system based on Voted Perceptrons (Carreras and Màrquez,
2003). Carreras and Màrquez (2005) trained such a chunker on WSJ sections 02-21 and
tested it on three sections of the Brown corpus (ck01-03). The reported results serve as
the current state-of-the-art performance on this experimental setting.

• Baseline: the baseline CRF chunker without representation learning.

• SELF-CRF: the CRF chunker with a self-training paradigm. We first train a CRF without
representation learning on the training data and apply it to the test data, then retrain it
on the training data plus the test data with predicted labels.

• SCL: the method based on the representation learning produced using the Structural
Correspondence Learning (SCL) technique (Blitzer et al., 2006).

• HMM: the method based on unsupervised representation learning using Hidden Markov
Models (Huang and Yates, 2009).

• DDN: the method based on the proposed semi-supervised representation learning.

We also investigated the performance of the proposed DDN-based chunker by varying the
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number of labeled training sentences from the source domain. Its comparison results with
Baseline, SCL and HMM are presented in Figure 3.

From Table 4 and Figure 3, we can see that with semi-supervised representation learning,
the DDN based chunker consistently outperforms other methods for out-of-domain syntactic
chunking. According to Figure 3, by increasing the number of labeled training data, DDN
can gain more improvements in term of F1 measure comparing to Baseline, SCL and HMM.
Specifically, DDN increases the F1 by 2.52% comparing with Baseline, by 1.91% comparing
with SCL, and by 0.74% comparing with HMM when the number of labeled training sentences
is 1,000. When the number of labeled training sentences reaches 39,832, DDN outperforms
Baseline by 3.08%, outperforms SCL by 2.43%, and outperforms HMM by 1.26%, in term of F1-
measure. These results again suggest that the semi-supervised representation learning method,
DDN, can produce more effective task-specific features by incorporating existing labels from
the source domain.

We also produced the results of corresponding significance tests, reported in Table 5. We used
a McNemar paired test for labeling disagreements (Gillick and Cox, 1989) with p < 0.05 being
significant on all test words. We reported the p values in Table 5, from which we can see that
DDN significantly improves out-of-domain chunking performance over Baseline, SCL and HMM.

Table 5: Statistical Significance (McNemar’s) tests for out-of-domain experiments with CRF
syntactic chunkers. Results are statistical significant with p < 0.05.

Null Hypothesis p-value
HMM vs. Baseline 5.6× 10−8

DDN vs. Baseline 2.9× 10−10

DDN vs. SCL 7.1× 10−8

DDN vs. HMM 4.7× 10−4

Conclusion

In this paper, we proposed a Dynamic Dependency Network model for semi-supervised repre-
sentation learning. In addition to the large amount of unlabeled data from two domains, it
incorporates the task-specific labels from the source training data into representation learning.
We then used the induced generalizable state features to augment source training sentences
and target test sentences for two cross domain NLP tasks: part-of-speech tagging and syntac-
tic chunking. Our empirical studies show that the proposed semi-supervised representation
learning outperforms unsupervised representation learning based on HMMs on out-of-domain
test data for both POS tagging system and syntactic chunking system. With the proposed semi-
supervised representation learning, the POS taggers and the syntactic chunkers resulted also
outperform a set of other POS tagging methods and syntactic chunking methods for out-of-
domain predictions. All results suggest the proposed semi-supervised representation learning
can better bridge the domain gap between training sentences and test sentences by exploiting
task-specific label information in the representation learning process.
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