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Abstract
Among various neural network language models (NNLMs), recurrent neural network-based lan-
guage models (RNNLMs) are very competitive in many cases. Most current RNNLMs only use
one single feature stream, i.e., surface words. However, previous studies proved that language
models with additional linguistic information achieve better performance. In this study, we extend
RNNLM by explicitly integrating additional linguistic information, including morphological, syn-
tactic, or semantic factors. Our proposed RNNLM is called a factored RNNLM that is expected to
enhance RNNLMs. A number of experiments are carried out thatshow the factored RNNLM im-
proves the performance for all considered tasks: consistent perplexity and word error rate (WER)
reductions. In the Penn Treebank corpus, the relative improvements over n-gram LM and RNNLM
are 29.0% and 13.0%, respectively. In the IWSLT-2011 TED ASRtest set, absolute WER reduc-
tions over RNNLM and n-gram LM reach 0.63 and 0.73 points.
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1 Introduction

Language models (LM) are a critical component of many application systems such as automatic
speech recognition (ASR), machine translation (MT) and optical character recognition (OCR). In
the past, statistical back-off n-gram language models withsophisticated smoothing techniques have
gained great popularity because of their simplicity and good performance. In n-gram language
models, words are represented in a discrete space: the vocabulary. Standard back-off n-gram lan-
guage models predict the following word based on the previousn-1 words, which can be expressed
as,

p(wi |wi−1, ..., w1)≈ p(wi |wi−n+1, ..., wi−2, wi−1) (1)

Even thoughn is usually limited to three or four, the number of parametersin a back-off n-gram
LM is still enormous. Assuming the vocabulary size is64K , a 4-gram language model needs
to estimate64K2 bigrams,64K3 trigrams and64K4 4-grams. Due to data sparseness, many are
not observed during the training phase. This means that n-gram LMs have poor generalization to
low-frequency and unseen n-grams. This problem becomes more severe as the vocabulary size
increases. Many interesting approaches have been proposedto overcome it in large vocabulary
continuous speech recognition (LVCSR) and statistical machine translation systems, especially
smoothing techniques (Chen and Goodman, 1996), class n-gram language models (Brown et al.,
1992), topic language models (Gildea and Hofmann, 1999; Hsuand Glass, 2006), structured lan-
guage models (Chelba and Jelinek, 2000), maximum entropy language models (Rosenfeld, 1996)
and random forests language models (Xu and Jelinek, 2004).

Among these techniques, one of the most successful schemes is the neural network language model
(NNLM), such as the feed-forward NNLM (Bengio et al., 2003; Schwenk, 2007; Kuo et al., 2012),
the recurrent NNLM (RNNLM) (Mikolov et al., 2010, 2011b) andthe deep NNLM (Arisoy et al.,
2012). Compared to other LMs, recurrent NNLMs, which are state-of-the art (Mikolov et al.,
2011a; Arisoy et al., 2012), embed words in a continuous space in which probability estimation
is performed using artificial neural networks consisting ofinput layer, single or multiple hidden
layers, and output layer. Due to consistent improvement in terms of perplexity and word error rate
and their inherently strong generalization, they have become an increasingly popular choice for
LVCSR and statistical MT tasks.

Many of these RNNLMs only use one single feature stream, i.e., surface words, which are limited
to generalize over words without using linguistic information, including morphological, syntactic,
or semantic. In surface word RNNLMs, such words as “prices" and “price" and “developed" and
“developing" are completely independent training instances. In this paper, we integrate additional
linguistic information into a RNNLM, called a factored RNNLM, which can further improve the
generalization of RNNLM using multiple factors (or features) of words (stems, lemmas, parts-of-
speech, etc.) instead of surface forms of words as input to recurrent neural networks. Let us use an
example to illustrate the shortcomings of surface word RNNLM. In extreme cases, the training data
might only contain the following sentence: “difference between developed countries and develop-
ing countries". During training in the RNNLM that treats each word as a token in itself, the bi-gram
“developing countries" is a completely unseen instance. However, for our factored RNNLM that
incorporates stem features, “developing countries" belongs to seen instances in a sense because it
shares the same stem bi-gram “develop countri" with the previous bi-gram “developed countries."
This coincides with our intuition; “developed" and “developing" should add knowledge to each
other during training. Our factored RNNLM may be more effective for such morphologically rich
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languages as Czech, Arabic, or Russian. In this paper, we only evaluate it on English, and our
experiments show that it significantly enhances performance measured in perplexity and WER.

To the best of our knowledge, few studies have been done on this perspective. Our approach
provides the following advantages:

• It predicts the following word based on the entire history (due to a recurrent connection
between input and hidden layers) in the low-dimensional representation (due to the neural
network architecture).

• It integrates the additional rich information of words in particular morphological and syntac-
tic features to overcome the data sparseness problem causedby limited in-domain training
data, such as in academic lecture ASR and MT tasks.

• It simultaneously interpolates all possible factors and the entire history in stead of backing-
off to fewer factors and shorter context, which can address the optimization problem well in
factored n-gram language models.

• Since it converges faster than RNNLM due to the integration of additional features, it can
save several days of training if the training data are large.

This paper is organized as follows: We introduce related studies in Section 2. In Section 3, we
describe our proposed factored RNNLM in detail. Section 4 shows the performance of our model
as measured by both perplexity and WER. We finally summarize our findings and outline future
plans in Section 5.

2 Related work

Recently, deep neural networks are experiencing significant improvements in the fields of image
processing, acoustic modeling (Seide et al., 2011), language modeling, etc. Neural network lan-
guage models to LVCSR were first presented in (Bengio et al., 2003), which was a feed-forward
NNLM with a fixed-length context consisting of projection, input, hidden, and output layers.
Arisoy et al. (2012) proposed a deep NNLM that uses multiple hidden layers instead of single
hidden layer in feed-forward NNLMs. Furthermore, several speedup techniques such as shortlists,
regrouping and block models have been proposed (Schwenk, 2007). Feed-forward NNLMs, which
predict following wordwi based on any possible context of length n-1 history, remain akind of
n-gram language model.

Recurrent NNLM (RNNLM) (Mikolov et al., 2010, 2011b), whichhas different architecture at
the input and output layers, can be considered as a deep neural network LMs because of its re-
current connections between input and hidden layers, whichenable RNNLMs to use their entire
history. Compared with feed-forward NNLMs, recurrent NNLMs reduce computational complex-
ity and have relatively fast training due to the factorization of the output layer. Other experiments
(Mikolov et al., 2011a; Arisoy et al., 2012; Kuo et al., 2012)demonstrated that RNNLM signifi-
cantly outperforms feed-forward NNLM. Therefore, this paper uses RNNLM as a baseline and
improves it by incorporating additional information otherthan surface words, such as morphologi-
cal or syntactic features.

Although few studies incorporate morphological and syntactic features into RNNLM, using multi-
ple features in language modeling is not novel. For example,Duh and Kirchhoff (2004) presented
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a factored back-off n-gram LM (FLM) that assumes each word isequivalent to a fixed number (K)
of factors, i.e.,W ≡ f 1:K , and produces a statistic model of the following form:p( f 1:K

i | f 1:K
i−n+1:i−1).

The standard back-off in an n-gram LM first drops the most distant word (wi−n+1 in the case of
Eq. (1)), and then the second most distant word etc. until theunigram is reached. However,
the factors in FLM occur simultaneously, i.e., without forming a temporal sequence, so the or-
der in which they should be dropped is not immediately obvious. In this case, FLM creates a
large space of back-off graphs that cannot be exhaustively searched. Duh and Kirchhoff (2004)
employed a genetic algorithm (GA) that, however, provides no guarantee of finding the optimal
back-off graph. Our factored RNNLM addresses this optimization problem well, as described in
Section 3. In addition, Emami and Jelinek (2004); Alexandrescu and Kirchhoff (2006); Kuo et al.
(2009); Collins et al. (2005) introduced various syntacticfeatures into their feed-forward NNLMs
and discriminative language models. Table 1 summarizes FLM, RNNLM, and our approach from
three points of view.

Conditioning
variables

History Pros and Cons

FLM Word and its lin-
guistic features

n-1 preceding
history

Better than n-gram LM due to linguistic fea-
tures; Creating a large space of models that
cannot be searched exhaustively.

RNNLM Word Entire history Further enhancing FLM due to RNN architec-
ture; Conditioning variables are only words,
no morphological or syntactic linguistic fea-
tures are used.

factored
RNNLM

Word and its lin-
guistic features

Entire history Combining the above merits, but more param-
eters and computation complexity, which ac-
tually does not cause problems, as described
in Section 4.4.

Table 1: Comparison of FLM, RNNLM, and factored RNNLM

Koehn and Hoang (2007) introduced various features from linguistic tools or word classes into
phrase-based MT models for better translation performance.

3 Factored RNNLM

The architecture of our factored RNNLM is illustrated in Fig. 1. It consists of input layerx , hid-
den layers (state layer), and output layery . The connection weights among layers are denoted
by matrixesU andW . Unlike RNNLM, which predicts probabilityP(wi |wi−1, si−1), our factored
RNNLM predicts probabilityP(wi |F(wi−1), si−1) of generating following wordwi and is explicitly
conditioned on a collection or bundle ofK factors of one preceding word. It is implicitly condi-
tioned on the factors of the entire history by the delay copy of hidden layersi−1. Here,F(wi−1) is
the vector concatenated fromK factor vectorsf k

i−1 (k = 1, ..., K), f k
i−1 stands for thek-th factor

vector encoded from thek-th factor of preceding wordwi−1, and the functions of factor extraction
f k(·) are used to extract the corresponding factors. A word’s factors can be anything, including
the word itself, its morphological class, its root, and any other linguistic features. An example is
shown in Table 2.

In the input layer, the extracted factors are encoded into the factor vectors using the 1-of-n coding.
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Figure 1: Architecture of factored recurrent NNLM.

Assume, for example, that the factor extracted by functionf k(wi−1) is them-th element in thek-th
factor vocabulary, which is then encoded to| f k|-dimension vectorf k

i−1 by setting them-th element
of the vector to 1 and all the other elements to 0. Here,| f k| stands for the size of thek-th factor
vocabulary. TheK factor vectors are concatenated intoF(wi−1) as expressed in Eq. (2). Finally,
the input layer is formed by concatenating factor vectorsF(wi−1) of the preceding wordwi−1 and
hidden layersi−1 at the preceding time step, as shown in Eq. (3).

Word: difference between developed countries and developing countries
Lemma: difference between developed country and developing country
Stem: differ between develop countri and develop countri
Part-of-speech1: NN IN JJ NNS CC VBG NNS

Table 2: An example of factor sequences.

F(wi−1) = [ f
1

i−1, f 2
i−1, ..., f K

i−1] (2)

x i = [F(wi−1), si−1] (3)

Using the concatenation vector, our proposed factored RNNLM can simultaneously integrate all
factors and the entire history in stead of backing-off to fewer factors and a shorter context. The
weight of each factor is represented in connection weight matrix U . Therefore, it can address the
optimization problem well in factored n-gram LM (Duh and Kirchhoff, 2004). In the special case
that f 1

i−1 is a surface word factor vector andf k
i−1 (k = 2, ..., K) are dropped, the factored RNNLM

goes back to the RNNLM.

1http://www.cis.upenn.edu/~treebank/

2839



The hidden layer employs a sigmoid activation function:

sm
i = f (
∑

j

(x j
i × umj)) ∀m ∈ [1, H]

f (z) =
1

1+ e−z

(4)

whereH is the number of hidden neurons in the hidden layer andumj is an element in matrixU
denoting the corresponding connection weight.

Like (Goodman, 2001; Mikolov et al., 2011b), we assume that each word belongs to exactly one
class and divide the output layer into two parts: the first estimates the posterior probability distri-
bution over all classes,

y l
c = g(
∑

j

(s j
i ×wl j)) ∀l ∈ [1, C] (5)

whereC is the number of predefined classes. The second computes the posterior probability distri-
bution over the words that belong to classc(wi), the one that contains predicted wordwi :

yo
w = g(
∑

j

(s j
i ×wo j)) ∀o ∈ [1, nc(wi)] (6)

wherenc(wi) is the number of words belonging to classc(wi) andwl j andwo j are the correspond-
ing connection weights.

To ensure that all outputs are between 0 and 1, and their sum equals to1, the output layer employs
a softmax activation function shown below:

g(zd) =
ezd

∑
x ezx

(7)

Finally, probabilityP(wi |F(wi−1), si−1) is the product of two posterior probability distributions:

P(wi |F(wi−1), si−1) = P(c(wi)|F(wi−1), si−1)× P(wi |F(wi−1), si−1, c(wi))

= y l
c |l=classid(c(wi )) × yo

w |o=wordid(wi )
(8)

The architecture of splitting the output layer into two parts can greatly speedup the training and the
test processes of RNNLM without sacrificing much performance. Many word clustering techniques
can be employed. In this paper, we map words into classes withfrequency binning (Mikolov et al.,
2011b), which proportionally assigns words to classes based on their frequencies. The pseudo
codes are shown in Fig. 2.

3.1 Training

To use the factored RNNLM, connection weight matrixesU andW must be learned. To learn them,
training is performed with the back-propagation through time (BPTT) algorithm (Boden, 2002) by
minimizing an error function defined in Eq. (9).

L =
1

2
×

N∑
i=1

(t i − pi)
2 + γ× (
∑
lk

u2
lk +
∑

t l

w2
t l) (9)
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double df=0, a=0, b=0;

for (i=0; i<|V|; i++) b+=vocab[i].cn;

for (i=0; i<|V|; i++) {

df+=vocab[i].cn/b;

#vocab[i].cn denotes the number of the i-th word that occurs

#vocab[i].classid denotes the class index of the i-th word

#nclass is the number of classes predefined

df+=vocab[i].cn/b;

if (df>1) df=1;

if (df>(a+1)/nclass) {

vocab[i].classid=a;

if (a<nclass-1) a++;

}

else {

vocab[i].classid=a;

}

}

Figure 2: Frequency binning.|V | is the word vocabulary’s size.

whereN is the number of training instances,t i denotes the desired output; i.e., the probability
should be 1.0 for the predicted word in the training sentenceand 0.0 for all others. The first
part of this equation is the summed squared error between theoutput and the desired probability
distributions, and the second part is a regularization termthat prevents RNNLM from over-fitting
the training data.γ is the regularization term’s weight, which is determined experimentally using a
validation set.

The training algorithm randomly initializes the matrixes and updates them with Eq. (10) over all
the training instances in several iterations. In Eq. (10),ψ stands for one of the connection weights
in the neural network andη is the learning rate. After each iteration, it uses validation data for
stopping and controlling the learning rate. Usually, the factored RNNLM needs 10 to 20 iterations.

ψnew =ψprevious −η× ∂ L

∂ψ
(10)

3.2 Free parameter & time complexity

To better understand the differences between RNNLM and our factored RNNLM, we compare
them in terms of the number of free parameters and computational complexity of one training step
in Table 3.τ is the amount of steps used in BPTT.

Free Parameter Computational Complexity

RNNLM (1) (|V |+ H)× H +H × (C + |V |) (1+ H)× H ×τ+H × |V |
fRNNLM (2) (| f 1|+ ...+ | f K |+ H)× H +H × (C + |V |) (K + H)× H ×τ+H × |V |
Difference (2)-(1) (| f 1|+ ...+ | f K | − |V |)×H (K − 1)×H × τ

Table 3: RNNLM vs. factored RNNLM (fRNNLM).

From this table we can observe that the factored RNNLM has more free parameters and larger
computational complexity. If the factored RNNLM only employs word factor (f 1) and POS factors
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( f 2), then, it has39× H additional free parameters. The additional computationalcomplexity is
(K − 1) × H × τ. In experiments,H is usually set to300 − 1000, τ is usually set to 4,|V | is
usually set to several hundreds of thousands. This means that H × |V | ≫ (K − 1)× H × τ, and
the increased complexity can be neglected. Owing to the additional free parameters, our factored
RNNLM converges faster and reduces training time. Section 4.4 shows the exact running time
spent on experiments.

4 Experiments

In this section, we show the performance of our factored RNNLM as measured by perplexity.
After analyzing these results, we present the performance measured by word error rate when the
factored RNNLM is used in a LVCSR system. In our experiments,we mainly compare our factored
RNNLMs with a 4-gram LM with modified Kneser-Ney smoothing (Chen and Goodman, 1996)
and RNNLM (Mikolov et al., 2011b). In the factored RNNLM, we investigate four commonly
used types of factors: word, stem2, lemma3 and part-of-speech (POS).

For perplexity results, we use the WSJ portion of Penn Treebank (LDC99T42). The WSJ portion
is divided into training (sections 00-20), heldout (sections 21-22), and test (sections 23- 24) sets
containing 930K, 101K, and 97K words respectively. The vocabulary is limited to 10K words. This
setting is the same as that used by other studies (Xu and Jelinek, 2004; Mikolov et al., 2011b). The
sizes of the factor vocabularies in the training set are shown in Table 44. Note that the word
vocabulary (10001 in Table 4) contains 10K words and one special token “<unk>" denoting words
not in the vocabulary.

Factors Word Lemma Stem POS

Sizes 10001 7356 6892 37

Table 4: Statistics of factor vocabularies.

4.1 Impacts of factors

This experiment analyzes the contribution from each factorto the factored RNNLM in terms of
the perplexities on the heldout and test sets. We set the number of hidden neurons in the hidden
layer and the number of classes in the output layer for both the RNNLM and factored RNNLM to
320 and 300. Table 5 shows the experimental results. fRNNLMwslp denotes the factored RNNLM
incorporating the word, stem, lemma, and POS factors, and soforth, the ratio is computed using
|U | f actored RNN LM−|U |RNN LM

|U |RNN LM
that indicates the percentage of additional parameters in matrix U against

the RNNLM. Subscript numbers are the relative improvementsover RNNLM.

From this table, we observe the following: (1) All of the factored RNNLMs significantly improve
their performances. For example, the improvement of fRNNLMwsp against the RNNLM on the
test set reaches 14.4%. (2) No significant differences are found among the factored RNNLMs
with various combinations of factors. The contributions from stem and lemma factors are less than
1.0%. In particular, it is not necessary to use both stem and lemma because they are very similar
and obviously do not complement each other. (3) Although thesize of the parts-of-speech is the

2http://tartarus.org/~martin/PorterStemmer/
3http://lemmatizer.org/turglem-english-description
4We directly use manually tagged parts-of-speech in the PennTreebank corpus. Section 4.6 investigates automatically

tagged parts-of-speech.
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Ratio Heldout Test

4-gramLM 156.26 156.41

RNNLM - 146.94 145.63

fRNNLM wp 0.4% 128.1412.8% 126.4713.1%
fRNNLM wsp 67.5% 127.0913.4% 124.6314.4%
fRNNLM wlp 72.0% 126.8113.7% 124.7614.3%
fRNNLM wslp 138.8% 126.0614.2% 124.7614.3%

Table 5: Impacts of factors measured by perplexities.

smallest (only 37, Table 4), they have the largest impact on our factored RNNLM. The main reason
may lie in that syntactic factor (POS) has stronger complementariness to the surface word factor,
while morphological factors (stem and lemma) are too similar to the word itself, limiting such
complementariness. Therefore, in the following experiments we only use word, stem, and POS in
our factored RNNLM.

For a better understanding of the contribution of each factor to the factored RNNLM, we do a quan-
titative analysis of the connection weight values. The basic assumption in this analysis is that if one
feature has a strong correlation or contribution to the factored RNNLM, the connections between
the input features to the hidden neurons have large values (either positive or negative corresponding
to positive or negative correlations). We show connection weight matrixU (corresponding to the
logs of the absolute values of neural connection weights) inFigs. 3 (a) and (b). The horizontal and
vertical axis denote the hidden neurons and the input feature dimensions. Since feature streams
(word, stem, POS and history) are organized in blocks in matrix U , we mark each feature stream in
blocks on the right vertical axis. In these figures, the connection intensity is marked by color, the
brighter the color, the stronger the connection. From thesefigures, we can see that the POS fea-
ture stream shows the strongest connection intensity amongall feature streams. The POS feature
stream contributes the most to the factored RNNLM. However,RNNLM (Mikolov et al., 2011b)
does not use it. In addition, the feature stream of the history also shows relatively strong intensity
that confirms that the entire history is important.

4.2 Hidden neurons

In this subsection, we evaluate the impacts from various numbers of hidden neurons in the hidden
layer. Table 6 shows the results of the heldout set and the relative gains over the RNNLM. The
experiments prove that factored RNNLMs consistently reduce perplexity. With increasing hidden
neurons, both RNNLM and fRNNLMwsp enhance performance. The biggest improvement over
RNNLM is 13.4%. The convergence column denotes the difference of the fRNNLM and RNNLM
iterations, showing that factored RNNLM converges using fewer iterations. For example, RNNLM
converges after 15 iterations, while fRNNLMwsp takes 12 iterations.

4.3 Convergence study

Figure 4 demonstrates the training progress of RNNLM and fRNNLM wsp. In the same way, the
number of hidden neurons in the hidden layer and the number ofclasses are set to 320 and 300,
respectively. From this figure, we can observe that fRNNLMwsp significantly outperforms RNNLM
at all iterations, especially at iterations 1-4 where the improvements exceed 20.0% and iterations
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Figure 3: Neural connection weight intensity: between input feature and hidden neural nodes.

#Hidden neurons RNNLM fRNNLMwsp Gain Convergence

60 163.71 147.00 10.2% -3
120 152.33 133.07 12.6% -2
240 147.74 128.75 12.8% -2
320 146.94 127.09 13.4% -1
480 143.18 126.70 11.5% -2
640 142.22 126.04 11.4% -1

1000 141.91 125.76 11.4% 0

Table 6: Impact from hidden layer on heldout data set.

5-10 where they exceed 15.0%, the final improvement reaches 13.5%. In other words, the relative
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improvements decrease with increasing iterations.
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Figure 4: Convergence curve.

4.4 Running-time analysis

This subsection analyzes the time complexity of the two RNNLMs. Table 7 shows the training time
of an iteration, the training time of all iterations, and thetest time on a PC with 1006G of memory
and 24 2.66Ghz CPUs with 144 cores. We observe the following:(1) No significant difference
of elapsed time is found between RNNLM and fRNNLMwsp during an iteration of training and
test stage. (2) RNNLM requires more time than fRNNLMwsp because it takes 18 iterations to
reach a convergence and fRNNLMwsp uses 16 iterations. This experiment shows that although
fRNNLM wsp has more free parameters and time complexities (shown in Table 3), it saves time
owing to its fast convergence.

An iteration during
training

All iterations during
training

During test

RNNLM 48.92m 880m19s 29.18s
fRNNLM wsp 49.58m 792m39s 29.35s

Table 7: Elapsed time during training and test. m=minute, s=second.

4.5 Hybrid LM

In the experiments described above, RNNLMs are compared to a4-gram back-off n-gram language
model with modified Kneser-Ney smoothing trained using the SRILM toolkit (Stolcke, 2002). It
is also useful to interpolate the recurrent neural network with a back-off n-gram language model
to reduce the perplexity and the word error rate. In the following this interpolated model will be
denoted by a hybrid language model. Table 8 compares the hybrid RNNLMs in terms of perplexity.

This table demonstrates that the hybrid factored RNNLM alsooutperforms the hybrid of
RNNLM, as we expected. For example, the perplexity reductions of n-gram+fRNNLM over
n-gramLM+RNNLM on the heldout and test sets are 8.8% and 9.4%, respectively, and n-
gramLM+fRNNLM largely improves the 4-gramLM on the heldoutand test sets by 28.9% and
29.6%.
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Heldout Test

4-gramLM 156.26 156.41

RNNLM 146.94 145.63
fRNNLM wsp 127.09 124.63

4-gramLM+RNNLM 121.89 121.62
4-gramLM+fRNNLMwsp 111.20+8.8% 110.19+9.4%

Table 8: Perplexities of hybrid language models.

4.6 N-best re-scoring

To evaluate the factored RNNLM in the context of large vocabulary speech recognition, we use
the data sets for the IWSLT-2011 large vocabulary continuous speech recognition shared task
(Federico et al., 2011) to recognize TED talks published on the TED website5. TED talks touch
on the environment, photography and psychology without adhering to a single genre. This task
reflects the recent increase of interest in automatically transcribing lectures to make them either
searchable or accessible.

For LM, the IWSLT-2011 campaign defines a closed set of publicly available English texts, in-
cluding a small collection of TED transcriptions (in-domain corpus) and a large collection of news
sentences (general-domain). All training data are preprocessed by a non-standard-word-expansion
tool that converts non-standard words (such as CO2 or 95%) totheir pronunciations (CO two,
ninety five percent). The most frequent 100K words are extracted from the preprocessed corpora,
which, with the CMU.v0.7a pronunciation dictionary6, are used as the LM vocabulary. Our vocab-
ulary contains 157K entries with an OOV rate of 0.78% on the test2010 data set. Forthe re-scoring
test, we use the IWSLT data sets of tests 2010 and 2011. Their statistics are shown in Table 9.

LM training data

#sentences #words
in-domain 124K 2,063K

general-domain 115,101K 2,458,626K

Test sets

data #talks #utterances #words
test2010 11 1664 27.0K
test2011 8 818 12.4K

Table 9: Summary of IWSLT2011 data sets

The acoustic models are trained on 170h speech segmented from 788 TED talks that were pub-
lished prior to 2011. We employ two types of schemes, a HiddenMarkov Model (HMM) and a
Subspace Gaussian Mixture Model (SGMM) for each context-dependent phone and train them with
the Kaldi toolkit (Povey et al., 2011). HMM consists of 6.7K states and 240K Gaussians that are
discriminatively trained using the boosted Maximum MutualInformation criterion. SGMM con-

5http://www.ted.com/
6http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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sists of 9.2K states. In addition, we apply speaker adaptivetraining with feature space maximum
likelihood linear regression on top of the HMM and SGMM. The acoustic feature vectors have
40 dimensions. For each frame, we extract 13 static MFCCs, splice 9 adjacent frames, and apply
LDA to reduce its dimension with maximum likelihood linear transform. For the in-domain and
general-domain corpora, modified Kneser-Ney smoothed 3- and 4-gram LMs are constructed using
SRILM (Stolcke, 2002), and interpolated to form a baseline of 3- and 4-gram LMs by optimizing
the perplexity of the development data set.

First, we employ a Kaldi speech recognizer (Povey et al., 2011) to decode each utterance using the
trained AM and the 3-gram LM. Second, we use the 4-gram LM for lattice re-scoring and generate
n-best lists. The n-best size is at most 100 for each utterance. Finally, we use RNNLM and factored
RNNLM to re-score the n-best. Note that since it is very time consuming to train RNNLM and
factored RNNLM on large data, we only use the in-domain corpus for training them, and the corpus
is automatically tagged with parts-of-speech7 before training fRNNLMwp and fRNNLMwsp. The
best re-scoring results measured by word error rate are demonstrated in Table 10. We also conduct
utterance-level significance tests.

test2010(%) test2011(%)

4-gram LM 14.34 15.32

4-gram+RNNLM 14.12 15.22
4-gram+fRNNLMwp 13.57†

0.55 14.64†
0.58

4-gram+fRNNLMwsp 13.65†
0.47 14.59†

0.63

Table 10: n-best re-scoring performance in word-error-rate. Subscript numbers are the absolute
improvements over RNNLM.† indicates significantly better results than RNNLM at the p = 0.01
level using a two-sided t-test.

The experimental results show that fRNNLMwp and fRNNLMwsp significantly improves upon
4-gram LM and RNNLM. For example, the absolute improvementsof fRNNLM wsp over the
4-gram LM on the sets of tests 2010 and 2011 are 0.69 and 0.73 points, respectively. How-
ever, fRNNLMwsp doest not significantly outperforms fRNNLMwp. Table 11 demonstrates the
re-scoring results sampled from RNNLM and fRNNLMwp. This table shows that the results
of fRNNLM wp are more grammatically fluent. Fig. 5 illustrates the absolute improvements of
fRNNLM wp over RNNLM for each talk in the sets of tests 2010 and 2011. Ourapproach improves
most talks, expect talks 824 and 1183.

Conclusion

In this paper we follow the architecture of a state-of-the-art recurrent neural network language
model (RNNLM) and present a factored RNNLM by integrating additional morphological, syntac-
tic, and/or semantic information into RNNLM. Our approach,which is a hybrid of factored n-gram
LM and RNNLM, addresses the problems in them. In experiments, we investigate the influences
of four commonly used types of features on our factored RNNLM: word, stem, lemma and part-
of-speech. We carry out many experiments to evaluate the factored RNNLM performance and
analyze the influencing factors. Our experimental results prove that factored RNNLM consistently
outperforms n-gram LM and RNNLM for all considered tasks.

7http://www.nactem.ac.uk/tsujii/software.html
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model result

Reference or we’ll be here all day with my childhood stories
RNNLM * THE WORLD WE’REall day with my childhood stories
fRNNLM wp or WILL be here all day with my childhood stories

Reference but don’t worry if you can’t see it so well
RNNLM * * TILLER if you can’t see it so well
fRNNLM wp * don’t worry if you can’t see it so well

Reference and so you’re standing there and everything else is dark but there’s this portal that you wanna jump in
RNNLM and so you’re * STAYING IN ANYTHING else* TO START there’s this portal that you WANT TO jump in
fRNNLM wp and so you’re * STAYING IN ANYTHING elseis dark but there’s this portal that you WANT TO jump in

Reference AND by the way here are four doctors in your part of the united states who offer it and their phone numbers
RNNLM * by the way here are four doctors in your part of the united states who* OFFEREDand their phone numbers
fRNNLM wp * by the way here are four doctors in your part of the united states whooffer it and their phone numbers

Table 11: Re-scoring results sampled from RNNLM and fRNNLMwp. * denotes deletion errors,
capitalized words denote substitution errors, and underlined words show their differences.
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Figure 5: Absolute improvement on each talk.

Recently, syntactic parse trees are used in many advanced LMs (Chelba and Jelinek, 1998;
Khudanpur and Wu, 2000; Xu et al., 2002; Collins et al., 2005;Rastrow et al., 2012). For future
work, we intend to investigate topic information (Shi et al., 2012) and richer syntactic structure
features into factored RNNLM, such as context-free rule productions, constituent/head features,
and head-to-head dependencies that can be extracted using parser tools. Second, neural networks
are notorious for being time consuming during training, future studies will also focus on speeding
up the training of factored RNNLM using graphical processing units (Schwenk et al., 2012). Fur-
thermore, factored RNNLMs need to be evaluated on other tasks like MT and with other languages
such as Czech, Arabic, and Turkish.
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