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Abstract

Among various neural network language models (NNLMs), nemt neural network-based lan-
guage models (RNNLMs) are very competitive in many casesstMorrent RNNLMs only use
one single feature stream, i.e., surface words. Howevexiqus studies proved that language
models with additional linguistic information achieve teetperformance. In this study, we extend
RNNLM by explicitly integrating additional linguistic imrmation, including morphological, syn-
tactic, or semantic factors. Our proposed RNNLM is calledadred RNNLM that is expected to
enhance RNNLMs. A number of experiments are carried outshatyv the factored RNNLM im-
proves the performance for all considered tasks: consiptplexity and word error rate (WER)
reductions. In the Penn Treebank corpus, the relative iagments over n-gram LM and RNNLM
are 29.0% and 13.0%, respectively. In the IWSLT-2011 TED A& set, absolute WER reduc-
tions over RNNLM and n-gram LM reach 0.63 and 0.73 points.
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1 Introduction

Language models (LM) are a critical component of many apfibo systems such as automatic
speech recognition (ASR), machine translation (MT) andcaptharacter recognition (OCR). In

the past, statistical back-off n-gram language models sathisticated smoothing techniques haw
gained great popularity because of their simplicity anddgperformance. In n-gram language
models, words are represented in a discrete space: theulapphStandard back-off n-gram lan-
guage models predict the following word based on the pressieliwords, which can be expressed
as,

PWilwi_q, e wi) & p(Wi[Wipi1s s Wig, Wiq) (1)

Even though is usually limited to three or four, the number of parametera back-off n-gram
LM is still enormous. Assuming the vocabulary size6#k, a 4-gram language model needs
to estimatev4K? bigrams,64K> trigrams ands4K* 4-grams. Due to data sparseness, many a
not observed during the training phase. This means thaamMs have poor generalization to
low-frequency and unseen n-grams. This problem becomes severe as the vocabulary size
increases. Many interesting approaches have been propmssgrcome it in large vocabulary
continuous speech recognition (LVCSR) and statistical himectranslation systems, especially
smoothing techniques (Chen and Goodman, 1996), classm-graguage models (Brown et al.,
1992), topic language models (Gildea and Hofmann, 1999;aaslGlass, 2006), structured lan-
guage models (Chelba and Jelinek, 2000), maximum entroukge models (Rosenfeld, 1996)
and random forests language models (Xu and Jelinek, 2004).

Among these techniques, one of the most successful scheihesieural network language model
(NNLM), such as the feed-forward NNLM (Bengio et al., 2008h&enk, 2007; Kuo et al., 2012),
the recurrent NNLM (RNNLM) (Mikolov et al., 2010, 2011b) attte deep NNLM (Arisoy et al.,
2012). Compared to other LMs, recurrent NNLMs, which areestd-the art (Mikolov et al.,
2011a; Arisoy et al., 2012), embed words in a continuousesjraevhich probability estimation
is performed using artificial neural networks consistingngut layer, single or multiple hidden
layers, and output layer. Due to consistent improvemerdrims of perplexity and word error rate
and their inherently strong generalization, they have brexan increasingly popular choice for
LVCSR and statistical MT tasks.

Many of these RNNLMs only use one single feature stream,dweface words, which are limited
to generalize over words without using linguistic inforioat including morphological, syntactic,
or semantic. In surface word RNNLMs, such words as “prices ‘grice” and “developed" and
“developing" are completely independent training instendn this paper, we integrate additional
linguistic information into a RNNLM, called a factored RNNL which can further improve the
generalization of RNNLM using multiple factors (or featsy®f words (stems, lemmas, parts-of-
speech, etc.) instead of surface forms of words as inputtrrent neural networks. Let us use ar
example to illustrate the shortcomings of surface word RNNLn extreme cases, the training data
might only contain the following sentence: “differencewseén developed countries and develop
ing countries". During training in the RNNLM that treats baeord as a token in itself, the bi-gram
“developing countries" is a completely unseen instancewéver, for our factored RNNLM that
incorporates stem features, “developing countries" lgdda seen instances in a sense because
shares the same stem bi-gram “develop countri" with theipuswbi-gram “developed countries."
This coincides with our intuition; “developed" and “devping" should add knowledge to each
other during training. Our factored RNNLM may be more effieefor such morphologically rich
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languages as Czech, Arabic, or Russian. In this paper, weemaluate it on English, and our
experiments show that it significantly enhances perforraameasured in perplexity and WER.

To the best of our knowledge, few studies have been done smp#spective. Our approach
provides the following advantages:

It predicts the following word based on the entire historyddo a recurrent connection
between input and hidden layers) in the low-dimensionaleggntation (due to the neural
network architecture).

It integrates the additional rich information of words irp@ular morphological and syntac-
tic features to overcome the data sparseness problem chydieited in-domain training
data, such as in academic lecture ASR and MT tasks.

It simultaneously interpolates all possible factors aredehtire history in stead of backing-
off to fewer factors and shorter context, which can addies®ptimization problem well in
factored n-gram language models.

Since it converges faster than RNNLM due to the integratibadalitional features, it can
save several days of training if the training data are large.

This paper is organized as follows: We introduce relatedistuin Section 2. In Section 3, we
describe our proposed factored RNNLM in detail. Sectionashthe performance of our model
as measured by both perplexity and WER. We finally summatizdindings and outline future
plans in Section 5.

2 Related work

Recently, deep neural networks are experiencing significaprovements in the fields of image
processing, acoustic modeling (Seide et al., 2011), lagguaodeling, etc. Neural network lan-
guage models to LVCSR were first presented in (Bengio et @032 which was a feed-forward
NNLM with a fixed-length context consisting of projectiomput, hidden, and output layers.
Arisoy et al. (2012) proposed a deep NNLM that uses multiptilén layers instead of single
hidden layer in feed-forward NNLMs. Furthermore, sevepaeddup techniques such as shortlists
regrouping and block models have been proposed (Schwe@k) 2Beed-forward NNLMs, which
predict following wordw; based on any possible context of length n-1 history, remé&imea of
n-gram language model.

Recurrent NNLM (RNNLM) (Mikolov et al., 2010, 2011b), whidmas different architecture at
the input and output layers, can be considered as a deepl metnark LMs because of its re-

current connections between input and hidden layers, wénetble RNNLMs to use their entire
history. Compared with feed-forward NNLMs, recurrent NN&Neduce computational complex-
ity and have relatively fast training due to the factoriaatof the output layer. Other experiments
(Mikolov et al., 2011a; Arisoy et al., 2012; Kuo et al., 20dd®monstrated that RNNLM signifi-

cantly outperforms feed-forward NNLM. Therefore, this papses RNNLM as a baseline and
improves it by incorporating additional information otltean surface words, such as morphologi:
cal or syntactic features.

Although few studies incorporate morphological and sytitdeatures into RNNLM, using multi-
ple features in language modeling is not novel. For exantjplé, and Kirchhoff (2004) presented
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a factored back-off n-gram LM (FLM) that assumes each wortjisivalent to a fixed numbeK§

of factors, i.e. W = f ¥, and produces a statistic model of the following fopaf,* *|f,2%, . ).
The standard back-off in an n-gram LM first drops the mostdistvord {v;_,., in the case of
Eqg. (1)), and then the second most distant word etc. untilutigram is reached. However,
the factors in FLM occur simultaneously, i.e., without fong a temporal sequence, so the or-
der in which they should be dropped is not immediately obsioln this case, FLM creates a
large space of back-off graphs that cannot be exhaustieslyched. Duh and Kirchhoff (2004)
employed a genetic algorithm (GA) that, however, providegnarantee of finding the optimal
back-off graph. Our factored RNNLM addresses this optitmzeproblem well, as described in
Section 3. In addition, Emami and Jelinek (2004); Alexasdueand Kirchhoff (2006); Kuo et al.
(2009); Collins et al. (2005) introduced various syntate@tures into their feed-forward NNLMs
and discriminative language models. Table 1 summarizes,FRINNLM, and our approach from
three points of view.

Conditioning History Pros and Cons
variables
FLM Word and its lin- n-1 preceding Better than n-gram LM due to linguistic fea-
guistic features  history tures; Creating a large space of models that
cannot be searched exhaustively.
RNNLM  Word Entire history ~ Further enhancing FLM due to RN lzitec-

ture; Conditioning variables are only words,
no morphological or syntactic linguistic fea-
tures are used.
factored Word and its lin- Entire history  Combining the above merits, but more param-
RNNLM guistic features eters and computation complexity, which ac-
tually does not cause problems, as described
in Section 4.4.

Table 1: Comparison of FLM, RNNLM, and factored RNNLM

Koehn and Hoang (2007) introduced various features froguistic tools or word classes into
phrase-based MT models for better translation performance

3 Factored RNNLM

The architecture of our factored RNNLM is illustrated in Fiy It consists of input layer, hid-
den layers (state layer), and output laygr. The connection weights among layers are denote
by matrixesU andW. Unlike RNNLM, which predicts probability (w;|w;_;,s;_;), our factored
RNNLM predicts probability?(w;|F(w;_,),s;_; ) of generating following worav; and is explicitly
conditioned on a collection or bundle &ffactors of one preceding word. It is implicitly condi-
tioned on the factors of the entire history by the delay coyidden layer;_;. Here,F(w;_;) is
the vector concatenated frokhfactor vectorg‘i’i1 (k=1, .., K), fi’il stands for thek-th factor
vector encoded from thie-th factor of preceding word;_,, and the functions of factor extraction
fk(-) are used to extract the corresponding factors. A word'ofaatan be anything, including
the word itself, its morphological class, its root, and atiyeo linguistic features. An example is
shown in Table 2.

In the input layer, the extracted factors are encoded irgdabtor vectors using the 1-afeoding.
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Figure 1: Architecture of factored recurrent NNLM.

Assume, for example, that the factor extracted by funcfitiw,_; ) is them-th element in thé-th
factor vocabulary, which is then encoded £6|-dimension vectof | by setting then-th element
of the vector to 1 and all the other elements to 0. Hgt&| stands for the size of thieth factor
vocabulary. The& factor vectors are concatenated iftov;_;) as expressed in Eq. (2). Finally,
the input layer is formed by concatenating factor vecks;_,) of the preceding word;_; and
hidden layes;_; at the preceding time step, as shown in Eqg. (3).

Word: difference  between developed countries and devedopicountries
Lemma: difference  between developed country and deveajopicountry
Stem: differ between develop countri and develop countfi
Part-of-speech NN IN JJ NNS CC VBG NNS

Table 2: An example of factor sequences.

F(Wi—l) = [fil_p i2—1’ ey fllfl] (2)

x; = [F(wi_1), si-1] (3)

Using the concatenation vector, our proposed factored RMN&an simultaneously integrate all

factors and the entire history in stead of backing-off todefactors and a shorter context. The
weight of each factor is represented in connection weightim&. Therefore, it can address the
optimization problem well in factored n-gram LM (Duh and &tihoff, 2004). In the special case
thatfil_l is a surface word factor vector arjﬂ(’j_l (k =2,...,K) are dropped, the factored RNNLM

goes back to the RNNLM.

*http:// ww. ci s. upenn. edu/ ~t r eebank/
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The hidden layer employs a sigmoid activation function:

st=FO (! xupy)) Vme[1,H]
! @)

f&)= 1+e*

whereH is the number of hidden neurons in the hidden layergpdis an element in matrix/
denoting the corresponding connection weight.

Like (Goodman, 2001; Mikolov et al., 2011b), we assume tlaahenord belongs to exactly one
class and divide the output layer into two parts: the firstresties the posterior probability distri-
bution over all classes,

yi= g(;(s{ xwy;)) Vie[1,C] (5)

whereC is the number of predefined classes. The second computesstegipr probability distri-
bution over the words that belong to clage;), the one that contains predicted worgd

o= g(;(s{ xw,;)) Vo & [1,ne(w,)] ©)

wherenc(w;) is the number of words belonging to clags;) andw;; andw,; are the correspond-
ing connection weights.

To ensure that all outputs are between 0 and 1, and their suadss®1, the output layer employs
a softmax activation function shown below:
24

g(zq) = W @]

Finally, probabilityP(w;|F(w,_,),s;_1) is the product of two posterior probability distributions:

P(w;|F(w;_1),5:-1) = P(c(W)IF(W;_1),5;-1) x P(W;|F(w;_1),5;_1,c(w;)) ®)

— 1 0
=Y. |l:classid(c(wI ) X Yw |n:wordid(w,)

The architecture of splitting the output layer into two garan greatly speedup the training and the
test processes of RNNLM without sacrificing much perforneamdany word clustering techniques
can be employed. In this paper, we map words into classedwgnency binning (Mikolov et al.,
2011b), which proportionally assigns words to classes dasetheir frequencies. The pseudo
codes are shown in Fig. 2.

3.1 Training

To use the factored RNNLM, connection weight matrikeandW must be learned. To learn them,
training is performed with the back-propagation througietiBPTT) algorithm (Boden, 2002) by
minimizing an error function defined in Eq. (9).

1 N
L= 2% D (ti=p P47 x Qub+ D wh) ©)
1 Lk tl

i=
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#vocab[i].cn denotes the number of the i-th word that occurs
#vocab[i].classid denotes the class index of the i-th word
#nclass is the number of classes predefined
double df=0, a=0, b=0;
for (i=0; i<IVI; i++) b+=vocabl[i].cn;
for (i=0; i<IVI; i++) {
df+=vocabli].cn/b;
if (df>1) df=1;
if (df>(a+1)/nclass) {
vocabli].classid=a;
if (a<nclass-1) a++;
}
else {
vocabli].classid=a;
}
}

Figure 2: Frequency binningV | is the word vocabulary’s size.

whereN is the number of training instances, denotes the desired output; i.e., the probabilit
should be 1.0 for the predicted word in the training sentearoe 0.0 for all others. The first
part of this equation is the summed squared error betweeautpeit and the desired probability
distributions, and the second part is a regularization tiah prevents RNNLM from over-fitting
the training datay is the regularization term’s weight, which is determinedenmentally using a
validation set.

The training algorithm randomly initializes the matrixeglaupdates them with Eq. (10) over all
the training instances in several iterations. In Eq. (4/03tands for one of the connection weights
in the neural network ang is the learning rate. After each iteration, it uses valoatiata for

stopping and controlling the learning rate. Usually, ttddeed RNNLM needs 10 to 20 iterations.

wnew — wprevious —nx E (10)
Y

3.2 Freeparameter & time complexity

To better understand the differences between RNNLM and actofed RNNLM, we compare
them in terms of the number of free parameters and compuott@mplexity of one training step
in Table 3.7 is the amount of steps used in BPTT.

Free Parameter Computational Complexity
RNNLM (1) (lVI+H)xH+Hx (C+|V|) (I1+H)xHxTt+Hx|V|
fRNNLM (2) (fY+ .+ IfS|+H)xH+Hx (C+|V]) (K+H)xHxT+Hx|V]
Difference (2)-(1) (If'+ ...+ fX|— V) x H (K—1)xHx7t

Table 3: RNNLM vs. factored RNNLM (fRNNLM).

From this table we can observe that the factored RNNLM haserfree parameters and larger
computational complexity. If the factored RNNLM only emptoword factor (1) and POS factors
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(f?), then, it has39 x H additional free parameters. The additional computaticoaiplexity is
(K —1) x H x 7. In experimentsH is usually set t800 — 1000, 7 is usually set to 4|V| is
usually set to several hundreds of thousands. This mean&ltkdV| > (K — 1) x H x 7, and
the increased complexity can be neglected. Owing to thetiaddl free parameters, our factored
RNNLM converges faster and reduces training time. Sectidnshows the exact running time
spent on experiments.

4 Experiments

In this section, we show the performance of our factored RMNds measured by perplexity.

After analyzing these results, we present the performaregsared by word error rate when the
factored RNNLM is used in a LVCSR system. In our experimemesmainly compare our factored
RNNLMs with a 4-gram LM with modified Kneser-Ney smoothingh@ and Goodman, 1996)
and RNNLM (Mikolov et al., 2011b). In the factored RNNLM, weviestigate four commonly

used types of factors: word, sténlemma and part-of-speech (POS).

For perplexity results, we use the WSJ portion of Penn TrelellaDC99T42). The WSJ portion
is divided into training (sections 00-20), heldout (seeti®1-22), and test (sections 23- 24) set:
containing 930K, 101K, and 97K words respectively. The odary is limited to 10K words. This
setting is the same as that used by other studies (Xu an@keffi04; Mikolov et al., 2011b). The
sizes of the factor vocabularies in the training set are shiowTable 4. Note that the word
vocabulary (10001 in Table 4) contains 10K words and oneiapiken “<unk>" denoting words
not in the vocabulary.

Factors Word Lemma Stem POS
Sizes 10001 7356 6892 37

Table 4: Statistics of factor vocabularies.

4.1 |Impacts of factors

This experiment analyzes the contribution from each fatidhe factored RNNLM in terms of
the perplexities on the heldout and test sets. We set the ewaithidden neurons in the hidden
layer and the number of classes in the output layer for ba&RIKNLM and factored RNNLM to
320 and 300. Table 5 shows the experimental results. fRNJM|Mienotes the factored RNNLM
incorporating the word, stem, lemma, and POS factors, arfdrifo, the ratio is computed using
M that indicates the percentage of additional parametersainixl/ against

the RNNLM Subscrlpt numbers are the relative improvemewnés RNNLM.

From this table, we observe the following: (1) All of the fartd RNNLMs significantly improve
their performances. For example, the improvement of fRNNLMagainst the RNNLM on the
test set reaches 14.4%. (2) No significant differences arad@mong the factored RNNLMs
with various combinations of factors. The contributiormnfrstem and lemma factors are less thal
1.0%. In particular, it is not necessary to use both stem amdfrla because they are very similar
and obviously do not complement each other. (3) Althougtsthe of the parts-of-speech is the

2http://tartarus. org/~martin/ Porter Stenmer/

Shttp://| emmati zer. org/ turgl em engli sh-description

“We directly use manually tagged parts-of-speech in the Femebank corpus. Section 4.6 investigates automaticall
tagged parts-of-speech.
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Ratio Heldout Test
4-gramLM 156.26 156.41
RNNLM - 146.94 145.63
fRNNLM,,, 0.4% 128.14y, 4y, 126.47510,
fRNNLM,,;, 67.5% 127.09; 4, 124.63,4
fRNNLM,,;,, 72.0% 126.813,, 124.76,4,
fRNNLM,,, 138.8% 126.06,5, 124.76,3

Table 5: Impacts of factors measured by perplexities.

smallest (only 37, Table 4), they have the largest impactoractored RNNLM. The main reason
may lie in that syntactic factor (POS) has stronger compigareess to the surface word factor,
while morphological factors (stem and lemma) are too sintitathe word itself, limiting such
complementariness. Therefore, in the following experita@re only use word, stem, and POS in
our factored RNNLM.

For a better understanding of the contribution of each faotthe factored RNNLM, we do a quan-
titative analysis of the connection weight values. Thedassumption in this analysis is that if one
feature has a strong correlation or contribution to thediazt RNNLM, the connections between
the input features to the hidden neurons have large valithe(@ositive or negative corresponding
to positive or negative correlations). We show connectieigit matrixU (corresponding to the
logs of the absolute values of neural connection weightB)gs. 3 (a) and (b). The horizontal and
vertical axis denote the hidden neurons and the input featimensions. Since feature stream:
(word, stem, POS and history) are organized in blocks inim&trwe mark each feature stream in
blocks on the right vertical axis. In these figures, the catioe intensity is marked by color, the
brighter the color, the stronger the connection. From tligsges, we can see that the POS fea
ture stream shows the strongest connection intensity aralbfieature streams. The POS feature
stream contributes the most to the factored RNNLM. HoweR&NLM (Mikolov et al., 2011b)
does not use it. In addition, the feature stream of the hisitso shows relatively strong intensity
that confirms that the entire history is important.

4.2 Hidden neurons

In this subsection, we evaluate the impacts from variousharmof hidden neurons in the hidden
layer. Table 6 shows the results of the heldout set and tla¢ivielgains over the RNNLM. The
experiments prove that factored RNNLMs consistently redaerplexity. With increasing hidden
neurons, both RNNLM and fRNNLIM, enhance performance. The biggest improvement ov
RNNLM is 13.4%. The convergence column denotes the diffezei the fRNNLM and RNNLM
iterations, showing that factored RNNLM converges usinggieiterations. For example, RNNLM
converges after 15 iterations, while fRNNLM takes 12 iterations.

4.3 Convergence study

Figure 4 demonstrates the training progress of RNNLM andNRM .. In the same way, the
number of hidden neurons in the hidden layer and the numbelas$es are set to 320 and 300
respectively. From this figure, we can observe that fRNNLMsignificantly outperforms RNNLM
at all iterations, especially at iterations 1-4 where thpriovements exceed 20.0% and iteration:
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(a) Connection weight intensities of word, stem, POS antbtyis
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(b) Locally amplified view in rectangle marked position.

Figure 3: Neural connection weight intensity: between irfpature and hidden neural nodes.

#Hidden neurons  RNNLM  fRNNLN, Gain Convergence

60 163.71 147.00 10.2% -3
120 152.33 133.07 12.6% -2
240 147.74 128.75 12.8% -2
320 146.94 127.09 13.4% -1
480 143.18 126.70 11.5% -2
640 142.22 126.04 11.4% -1

1000 141.91 125.76 11.4% 0

Table 6: Impact from hidden layer on heldout data set.

5-10 where they exceed 15.0%, the final improvement reach&%dl In other words, the relative
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improvements decrease with increasing iterations.

PP
285 ' 288.1

265 —6—RNNLM —&—fRNNLMwsp
245
225
205
185 1
165

145 A

125

i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Figure 4: Convergence curve.

4.4 Running-time analysis

This subsection analyzes the time complexity of the two RNISLTable 7 shows the training time
of an iteration, the training time of all iterations, and test time on a PC with 1006G of memory
and 24 2.66Ghz CPUs with 144 cores. We observe the followfhgNo significant difference
of elapsed time is found between RNNLM and fRNN|M during an iteration of training and
test stage. (2) RNNLM requires more time than fRNNL M because it takes 18 iterations to
reach a convergence and fRNNL) uses 16 iterations. This experiment shows that althoug
fRNNLM,,;, has more free parameters and time complexities (shown ile Bbit saves time
owing to its fast convergence.

An iteration during All iterations during During test

training training
RNNLM  48.92m 880m19s 29.18s
fRNNLM,,,, 49.58m 792m39s 29.35s

Table 7: Elapsed time during training and test. m=minutegssnd.

45 Hybrid LM

In the experiments described above, RNNLMs are compared-{gram back-off n-gram language
model with modified Kneser-Ney smoothing trained using tReL# toolkit (Stolcke, 2002). It
is also useful to interpolate the recurrent neural netwaith & back-off n-gram language model
to reduce the perplexity and the word error rate. In the Vailhg this interpolated model will be
denoted by a hybrid language model. Table 8 compares thédfihiNLMs in terms of perplexity.

This table demonstrates that the hybrid factored RNNLM adstperforms the hybrid of

RNNLM, as we expected. For example, the perplexity reduastiof n-gram+fRNNLM over

n-gramLM+RNNLM on the heldout and test sets are 8.8% and 9.4%pectively, and n-
gramLM+fRNNLM largely improves the 4-gramLM on the heldaid test sets by 28.9% and
29.6%.

2845



Heldout Test

4-gramLM  156.26 156.41

RNNLM  146.94 145.63
fRNNLM,,;,  127.09 124.63
4-gramLM+RNNLM 121.89 121.62

4-gramLM+RNNLM,,,, 111.2Q44, 110.19 4,

Table 8: Perplexities of hybrid language models.

4.6 N-best re-scoring

To evaluate the factored RNNLM in the context of large vodalyuspeech recognition, we use
the data sets for the IWSLT-2011 large vocabulary contisuspeech recognition shared task
(Federico et al., 2011) to recognize TED talks publishedhen®ED websité. TED talks touch
on the environment, photography and psychology withouegdf to a single genre. This task
reflects the recent increase of interest in automaticadigseribing lectures to make them either
searchable or accessible.

For LM, the IWSLT-2011 campaign defines a closed set of plybhwailable English texts, in-
cluding a small collection of TED transcriptions (in-domabrpus) and a large collection of news
sentences (general-domain). All training data are preggsed by a non-standard-word-expansio
tool that converts non-standard words (such as CO2 or 95%)eio pronunciations (CO two,
ninety five percent). The most frequent KO@ords are extracted from the preprocessed corpor
which, with the CMU.v0.7a pronunciation diction&nare used as the LM vocabulary. Our vocab:
ulary contains 15K entries with an OOV rate of 0.78% on the test2010 data settheae-scoring
test, we use the IWSLT data sets of tests 2010 and 2011. Th#sties are shown in Table 9.

LM training data

#sentences #words
in-domain 124 2,06
general-domain  115,1@1 2,458,626
Test sets
data #talks #utterances #words
test2010 11 1664 27K
test2011 8 818 12Kk

Table 9: Summary of IWSLT2011 data sets

The acoustic models are trained on 170h speech segmented’88 TED talks that were pub-
lished prior to 2011. We employ two types of schemes, a Hiddarkov Model (HMM) and a
Subspace Gaussian Mixture Model (SGMM) for each contepeddent phone and train them with
the Kaldi toolkit (Povey et al., 2011). HMM consists of 6.7tates and 240K Gaussians that are
discriminatively trained using the boosted Maximum Mutlrdbrmation criterion. SGMM con-

Shttp: // www. t ed. com
Sht t p: / / www. speech. ¢s. cnu. edu/ cgi - bi n/ cnudi ct
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sists of 9.2K states. In addition, we apply speaker adaptaieing with feature space maximum
likelihood linear regression on top of the HMM and SGMM. Thmastic feature vectors have
40 dimensions. For each frame, we extract 13 static MFCGQisesp adjacent frames, and apply
LDA to reduce its dimension with maximum likelihood lineaansform. For the in-domain and
general-domain corpora, modified Kneser-Ney smoothed@4egram LMs are constructed using
SRILM (Stolcke, 2002), and interpolated to form a baselifid-aand 4-gram LMs by optimizing
the perplexity of the development data set.

First, we employ a Kaldi speech recognizer (Povey et al.1p@ldecode each utterance using the
trained AM and the 3-gram LM. Second, we use the 4-gram LMdtirde re-scoring and generate
n-best lists. The n-best size is at most 100 for each utterdtinally, we use RNNLM and factored
RNNLM to re-score the n-best. Note that since it is very timasuming to train RNNLM and
factored RNNLM on large data, we only use the in-domain cefputraining them, and the corpus
is automatically tagged with parts-of-speétiefore training fRNNLM,, and fRNNLM,,. The
best re-scoring results measured by word error rate are minated in Table 10. We also conduct
utterance-level significance tests.

test2010(%)  test2011(%)
4-gramLM  14.34 15.32

4-gram+RNNLM  14.12 15.22
4-gram+RNNLM,, 13.57 g55  14.64 (5
4-gram+fRNNLM,,, 13.65 4, 14.59  ¢3

Table 10: n-best re-scoring performance in word-errag-r&ubscript numbers are the absolutt
improvements over RNNLM: indicates significantly better results than RNNLM at the p.&10
level using a two-sided t-test.

The experimental results show that fRNNLMand fRNNLM,, significantly improves upon
4-gram LM and RNNLM. For example, the absolute improvemaitéRNNLM,,, over the
4-gram LM on the sets of tests 2010 and 2011 are 0.69 and 0.in8&poespectively. How-
ever, fRNNLM,,, doest not significantly outperforms fRNNLJy. Table 11 demonstrates the
re-scoring results sampled from RNNLM and fRNNLM This table shows that the results
of fRNNLM,,, are more grammatically fluent. Fig. 5 illustrates the aboimprovements of
fRNNLM,,, over RNNLM for each talk in the sets of tests 2010 and 2011.dpproach improves
most talks, expect talks 824 and 1183.

Conclusion

In this paper we follow the architecture of a state-of-thieracurrent neural network language
model (RNNLM) and present a factored RNNLM by integratindiidnal morphological, syntac-

tic, and/or semantic information into RNNLM. Our approaetjch is a hybrid of factored n-gram

LM and RNNLM, addresses the problems in them. In experimemsinvestigate the influences
of four commonly used types of features on our factored RNNlMdrd, stem, lemma and part-
of-speech. We carry out many experiments to evaluate thertst RNNLM performance and

analyze the influencing factors. Our experimental resutisgthat factored RNNLM consistently

outperforms n-gram LM and RNNLM for all considered tasks.

“http: // ww. nact em ac. uk/tsujii/software. htm
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model result

Reference orwe'll be here  all day with my childhood stories

RNNLM * THE WORLD WE'REall day with my childhood stories

fRNNLM,,,  orWILL be here  all day with my childhood stories

Reference but don’t worry if you can’t see it so well

RNNLM * * TILLER if you can't see it so well

fRNNLM,,,  * don'tworry if you can't see it so well

Reference and so you're standing there and everything etiark but  there’s this portal that you wanna jump in
RNNLM and so you're * STAYING IN ANYTHING elset TO START there’s this portal that you WANT TO jump in
fRNNLM,,,  and soyou're * STAYING IN ANYTHING elsés dark but  there’s this portal that you WANT TO jump in
Reference AND by the way here are four doctors in your patefunited states who offer it and their phone numbers
RNNLM * by the way here are four doctors in your part of the edistates wh OFFEREDand their phone numbers

fRNNLM,,,  * by the way here are four doctors in your part of the unitedestavhooffer it and their phone numbers

Table 11: Re-scoring results sampled from RNNLM and fRNN|M* denotes deletion errors,
capitalized words denote substitution errors, and unggdlivords show their differences.

15 14

0
A A
¢ BRI R 69§§zéwg&ﬁ§&§9§§v9 ¥
Y [
057 1st2010 tst2011

Figure 5: Absolute improvement on each talk.

Recently, syntactic parse trees are used in many advances! (QHelba and Jelinek, 1998;
Khudanpur and Wu, 2000; Xu et al., 2002; Collins et al., 20Rastrow et al., 2012). For future
work, we intend to investigate topic information (Shi ef 2012) and richer syntactic structure
features into factored RNNLM, such as context-free ruledpations, constituent/head features
and head-to-head dependencies that can be extracted @asgey ools. Second, neural networks
are notorious for being time consuming during trainingufetstudies will also focus on speeding
up the training of factored RNNLM using graphical procegsimits (Schwenk et al., 2012). Fur-
thermore, factored RNNLMs need to be evaluated on othestdskMT and with other languages
such as Czech, Arabic, and Turkish.
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