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ABSTRACT
This paper introduces a method to improve supervised word sense disambiguation perfor-
mance by including a new class of features which leverage contextual information from large
unannotated corpora. This new feature class, selectors, contains words that appear in other
corpora with the same local context as a given lexical instance. We show that support vector
sense classifiers trained with selectors achieve higher accuracy than those trained only with
standard features, producing error reductions of 15.4% and 6.9% on standard coarse-grained
and fine-grained disambiguation tasks respectively. Furthermore, we find an error reduction
of 9.3% when including selectors for the classification step of named-entity recognition over a
representative sample of OntoNotes. These significant improvements come free of any human
annotation cost, only requiring unlabeled Web-Scale corpora.

KEYWORDS: word sense disambiguation, lexical semantics, semi-supervised learning.
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1 Introduction

Supervised word sense disambiguation (WSD) systems often rely directly on the local contexts
in which target words appear. For example, the state-of-the-art system of Zhong et al. (2008)
uses features based on collocations centered on the target word. Models relying on such features
do well with copious amounts of training data, but they are prone to errors when the local
context of a test instance differs from local context observed during training. Consider the
sentences below.

1. The workers loaded the port onto the ship this morning.
2. She purchased a couple of bottles of port from the store.
3. The couple enjoyed their richly-flavored port.

Though referring to the same sense of ‘port’, “a sweet dark-red dessert wine” (Miller et al.,
1993), it is difficult to connect any two instances based on local context; the parts-of-speech
even differ substantially. Models for disambiguation can benefit from the addition of a feature
that does not rely directly on the local context.

We present a new class of features which encodes an abstraction of a word’s context, rather
than encoding contents of the local context itself. We refer to this new feature class as
selectors, borrowing the term from an approach to knowledge-based (unsupervised) word sense
disambiguation which uses the idea of searching for words that share the same context (Lin,
1997; Schwartz and Gomez, 2008). More precisely, selectors are words that show up in the
same local context as a given instance of another word. For example, selectors for ‘port’ in
sentence 1 might be ‘bottles’, ‘crates’, ‘passengers’, ‘wine’, ‘luggage’, etc. Considering that the
other sentences may share some of the same selectors such as ‘bottles’ or ‘wine’, one can see
how this abstraction of context to selectors can be beneficial. Figure 1 demonstrates mapping
the context from one instance to selectors, which match the selectors of another instance. In
this sense, it is the contexts (or word instances) that have selectors rather than the words
themselves.

The contribution of this paper is the introduction of a novel and effective type of feature
that improves WSD accuracy at no cost in human annotation. Rather than requiring more
examples of labeled context to match a given test instance, we need only to match against an
orders-of-magnitude-larger unlabeled set of data. Because selectors leverage unlabeled data,
their inclusion in a supervised system constitutes semi-supervised learning.

The paper proceeds with a discussion of related work in semi-supervised WSD and the use of
web-scale data in language processing (Section 2). Then, we present our approach to acquiring
selectors as features from n-grams, and show how we translate selectors into features (Section
3). The effectiveness of selectors is evaluated within supervised word sense disambiguation
classifiers over the SemEval-2007 Task 17 (Pradhan et al., 2007), Senseval 3 English Lexical
Sample (Mihalcea et al., 2004), and OntoNotes 4 (Weischedel et al., 2011) (Section 4). We
also test selectors as features for the classification step of named-entity recognition over a
representative sample of OntoNotes. Lastly, we discuss the robustness of selectors as features by
inspecting actual instances from our experimental corpus (Section 5).
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The workers loaded the port onto the ship this morning.

She purchased a couple bottles of port from the store.
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Figure 1: Word instances which do not share context can share selectors.

2 Related Work

The idea of improving a supervised classifier by utilizing unlabeled data has been investigated
at different levels. For example, other approaches to disambiguation have used bootstrapped
samples (Yarowsky, 1995; Mihalcea and Moldovan, 1999; Mihalcea, 2004; Pham et al., 2005),
Wikipedia concepts (Mihalcea, 2007), or parallel corpora (Chan et al., 2007). Most of these
approaches, which are considered semi-supervised learning (Zhu, 2008), exploit some facet
of unannotated text to collect more training instances. Rather than produce more training
instances, we introduce a method to leverage massive unlabeled corpora to create a richer and
robust set of features.

One can contrast selectors with clusters of words formed via context or distributional similarity
(for seminal examples see (Brown et al., 1992; Pereira et al., 1993; Lin, 1998; Schütze, 1998;
Pantel and Lin, 2002)). Distributional clusters are made up of words that appear in similar
contexts to each other, whereas selectors are words which show up in the specific context of a
single instance. In other words, selectors are instance-specific while distributional clusters are
created based on observing many instances of context. This key difference should become more
clear when we present our method of acquiring selectors.

The traditional use of selectors is in knowledge-based word sense disambiguation systems, not
utilizing training data. In Lin (1997), dependency relationships over a small corpus were used
to find noun selectors. We previously extended this to the Web, treating context as surrounding
text and introduced the ideas of acquiring selectors for additional parts-of-speech as well as for
words in context in addition to the target word (Schwartz and Gomez, 2008, 2009). Similar
to selectional preferences (Resnik, 1997), selectors essentially indicate the types of concepts
expected in a given syntactic or grammatical position. In these knowledge-based approaches,
disambiguation is performed by computing the semantic distance between selectors and senses
of the target word. These approaches rely on both a knowledge source such as WordNet (Miller
et al., 1993) and a semantic distance metric. In contrast, in the current approach we do not
need such a knowledge source or similarity judgments, and since our approach is data-driven,
selectors function as an abstraction of word instance context rather than as a list of semantically
similar words. Our current goal is to get the most out of supervised training data by leveraging
unannotated data via selectors (no use of a knowledge-base or similarity metrics). Consequently,
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our system achieves state-of-the-art results in line with top supervised systems while our earlier
knowledge-based approaches produce results in line with systems not utilizing training data.

A couple previous works have integrated unannotated data as features into supervised disam-
biguation systems. Dligach and Palmer (2008) used dynamic dependency neighbors, a feature
encoding verbs with the same object, according to a dependency parsed corpus, as a given
target verb in a verb WSD task. Besides our method not being limited to verbs, selectors are
much more specific than dependency neighbors; They are found by matching a larger context
and from a much larger, web-scale, dataset. Cárcamo et al. (2008) adapt the predominant
sense method of McCarthy et al. (2004) to find the best sense choice for a word instance rather
than it’s most common sense over a corpus. Yuret (2007) leveraged web-scale data to acquire
probability distributions of substitutes being within the same context as target instances. Unlike
selectors which are open-ended, substitutes were chosen from an a priori word list derived
from thesauri, and contextual part-of-speech was not considered. Additionally, the substitutes’
probability distribution itself was the entire feature set, rather than used to supplement an
existing feature set, and the resulting accuracies were lower than those we find with selectors.

Our approach utilizes web-scale N-grams, a source of unlabeled data which has previously
been used for many other supervised lexico-semantic tasks including delimiting named entities,
preposition selection, spelling correction, search query processing, adjective ordering, verb
POS disambiguation, and noun compound bracketing (Downey et al., 2007; Bergsma et al.,
2009; Huang et al., 2010; Bergsma et al., 2010). All of these systems utilized n-grams to
find frequency information for specific n-grams. In contrast, we use the n-grams as a source
for acquiring sets of lexical data (selectors), where we search with context and ask for the
missing piece rather than search for a complete n-grams. We believe this is the first work to use
web-scale N-grams as a source for selectors; motivation for using this source is discussed in the
next section.

3 Acquiring Selectors

A selector is a word which appears in the same local context as a given instance of a focus word.
For example, in the sentence below, with ‘port’ as the focus word, one might find selectors such
as ‘bottles’, ‘cargo’, ‘crates’, ‘wine’, ‘passengers’, or ‘supplies’.

The workers loaded the port onto the ship last night.

More formally, for a given word instance, wi , selectors are found based on the particular context
of wi . What defines the context may vary from syntactic or dependency relations (i.e., other
nouns which are objects of the verb ‘loaded’) to simple sequences of tokens (e.g.,finding words
that fill in the blank in “The workers loaded the ___ onto the ship last night.”).

3.1 Approach

We find selectors by searching for sequences of tokens in the Google N-grams version 2, which
contains 4.1 billion n-grams that were automatically part-of-speech tagged (Lin et al., 2010).
The primary reason we chose web-scale N-grams as a source is because it has become difficult
to get selectors via search engines.1 Still, using web-scale n-grams for context searches has
advantages: there is a decent likelihood of finding selectors for a given instance, the search

1The Web search engines which support wildcard queries no longer run public APIs or allow scripted access.
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Workers loaded the port onto the ship last night.
workers loaded 〈det〉? (〈noun〉+) onto
loaded 〈det〉? (〈noun〉+) onto
(〈noun〉+) onto 〈det〉 ship last

My objective was to fight as a mother for what I hold dearest.
was to (〈ver b〉+) as 〈det〉
to (〈ver b〉+) as 〈det〉? mother
objective was to (〈ver b〉+)

The new economy in the US depends heavily, for one thing, on a deep foundation
of basic scientific research, which comes up with revolutionary products like
genetically modified foods.

with revolutionary (〈noun〉+) like genetically
revolutionary (〈noun〉+) like
(〈noun〉+) like genetically modified

...which comes up with revolutionary products like...
up with (〈ad j〉+) products like
up with (〈ad j〉+) products
with (〈ad j〉+) products

Table 1: Example search sequences produced for the given focus word focus word (in bold) and context
(in italic).’()’ surrounds the focus word, ‘?’ implies optional match and ’+’ allows multiple matches. The
bottom three examples are from our experimental corpus.

process is offline, this version of the Google N-grams provides part-of-speech information, and
they have been shown helpful for other lexico-semantic tasks (Bergsma et al., 2009; Huang
et al., 2010; Bergsma et al., 2010). On the downside, because the Google N-grams are at most
5-grams, the selectors can only be found using a relatively small context. – up to 4 tokens. For
this first investigation of selectors as features we think this trade-off is worthwhile.

We search the n-grams by constructing 3 to 5 token sequences consisting of words or part-of-
speech (POS) tags. Determiners, conjunctions, possessives, and symbols in the sequence are
replaced with their POS tag, and determiners are also marked as optional if they do not begin
or end the phrase. The slot of the focus word, the word for which selectors are being acquired,
is restricted by POS and permitted to match multi-word phrases (taking the head-word as the
selector in such cases). Examples of search sequences are given in Table 1.

Searching based on all sequences can be expensive in terms of disk IO, so the sequences are
sorted such that the process can be halted once enough selectors have been found. In particular,
we define four criteria of informative value for a given sequence seq:

1. the number of tokens in seq:
leng th(seq) = |tokens(seq)|

max_tokens

2. the number of content words (noun, verbs, adjective, or adverbs):
nvar(seq) = |nouns(seq)|+|ver bs(seq)|+|ad ject ives(seq)|+|adver bs(seq)|

max_tokens
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3. the distance from the focus word to the center:
center(seq) = 1− |be f ore(seq)−a f ter(seq)|

|tokens(seq)|

4. if the focus word is an edge of seq:

¬ed ge(seq) =

¨
0, if focus word is at front or back

1, otherwise

where max_tokens = 5, the maximum number of tokens in a sequence, and be f ore / a f ter
are the number of token before and after the focus word. The overall informative value is defined
as the sum of weighted (αi) criteria (c1..4 = [leng th(seq), nvar(seq), center(seq),¬ed ge(seq)] ):

in f o(seq) =
4∑

i=1

αici

Next, we iterate through the list of sorted search sequences in order to aggregate selector(s)
frequencies. During aggregation, the selector frequencies are normalized and weighted by
in f o(seq):

score(s) =
∑

seq∈seqs

in f o(seq) ∗ f req(s)
max

s′∈sels(seq)
f req(s′)

where sels(seq) is the set of selectors found when searching with sequence seq. This favors both
selectors occurring with multiple sequences as well as those found based on a more informative
context. In practice we break the aggregation loop one iteration after acquiring a soft minimum
(k) of selectors to improve runtime. 2

3.2 Selectors as Features.

We have described acquisition of selectors for an arbitrary focus word instance. In order to use
selectors as features, we acquire selectors for all target words (words being disambiguated)
and encode the top k, according to score(s), as binary features. We selected k = 50 as well
as weightings α1..4 = [0.2,0.2,0.1,0.5] after cross-validating over the training set (defined in
Section 4).

4 Experiments

We evaluate whether the selector class of features can benefit WSD classifiers above and beyond a
standard set of features in a variety of datasets and situations. Supervised classifiers are trained
with and without utilization of selectors and we record a simple accuracy of |cor rect_instances|

|all_instances| ∗100

of the testing data.3 In particular, we use support vector classifiers implemented with Scikit-learn
(Pedregosa et al., 2011) with a radial basis kernel and other parameters set via 5-fold cross-
validation over the training set. As a standard point of comparison, most frequent sense (M FS)
accuracy is also reported, indicating the testing accuracy if the system always predicted the
most common sense according to the training data. As often noted, state-of-the-art supervised
systems often perform just above the M FS (Navigli et al., 2007; Pradhan et al., 2007).

2An implementation of this method is included in supplementary data.
3accurac y = precision = recal l under the standard (SemEval) definition of precision and recall for WSD, and

because we attempt all instances of our samples.
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4.1 Data Sets

We test selectors over three sense-annotated corpora. For our primary corpus, we use the
SemEval-2007 Task 17: Lexical Sample (Pradhan et al., 2007) (results in sections 4.3.1 and
4.3.3). This corpus is an early selection from the Wall Street Journal portion of OntoNotes
(Weischedel et al., 2011), and contains coarse-grained noun and verb senses. We also experiment
over the Senseval-3 English Lexical Sample data(Mihalcea et al., 2004), containing fined-grained
noun, verb, and adjective sense annotations over selections of the British National Corpus (Clear,
1993) (section 4.3.2). The inclusion of adjectives, fine-grained senses, and difference in corpus
gives us a more robust evaluation of selectors. Lastly, we experiment with random samples
over portions of the full Ontonotes 4.0 in order to test on out-of-domain data and to examine if
selectors help for another lexico-semantic task: named-entity classification. Details about the
OntoNotes test sets are included when discussing those results (sections 4.3.4 and 4.3.5).

4.2 Baseline Features

As a consistent baseline throughout our experiments, we use the same features as Zhong et al.
(2008)’s state-of-the-art system, first explored by Lee and Ng (2002). These features give the
best published results that we are aware of over the Wall Street Journal portion of OntoNotes,
plus they are the common denominator in many high-performance supervised WSD systems
(Cai et al., 2007; Chan et al., 2007; Zhong et al., 2008).

• collocations (coll). Tokens relative to the target, denoted ci, j , starting at i; ending at j.
1-grams: c−1,−1, c+1,+1, c−2,−2, c+2,+2,
2-grams: c−2,−1, c+1,+2,
3-grams: c−3,−1, c+1,+3, c−1,+1,
4-grams: c−2,+1, c−1,+2• parts-of-speech (pos). The part-of-speech for the following words relative to the target
word: p−3, p−2, p−1, p0, p+1, p+2, p+3 (0 is the target word).
• surrounding words (surr). The bag-of-words from the current, previous, and next

sentence.

4.3 Results

4.3.1 SemEval-2007

Table 2 shows the results with and without selectors over the SemEval-2007 corpus. We see
that including selectors improves performance over a state-of-the-art set of features with a
significant (p < 0.01) error reduction of 15.4%.4 This puts our system just behind the top system
participating in SemEval-2007, NUS-ML (Cai et al., 2007), which achieved an accuracy of 88.7.
Moreover, we see improvements from selectors for both nouns and verbs.

Tables 3 and 4 break the results down for each word. Though it is possible for selectors
to introduce noise leading to occasional errors, we see that both words with many training
instances as well as those with fewer ones can benefit from selectors. We will inspect a couple
instances where selectors helped prediction in Section 5.

4 error reduction= (1−acc1)−(1−acc2)
1−acc1

, where acc1 and acc2 represent the two accuracies.

2429



base w/ sels mfs tests
noun 87.9 91.7 80.9 2559
verb 83.3 83.7 76.5 2292
both 85.7 87.9 78.8 4851

Table 2: Classifier accuracies without (base) and with the selector class of features (w/ sels)
over SemEval-2007 Task 17. (mfs: accuracy of classifying with the most frequent sense of the
training data, tests: number of instances in the test set.)

word base w/ sels mfs tests trains
area-n 78.4 83.8 70.3 37 326

authority-n 81.0 81.0 23.8 21 90
base-n 40.0 70.0 10.0 20 92
bill-n 98.0 98.0 75.5 102 404

capital-n 96.5 96.5 96.5 57 278
carrier-n 71.4 71.4 71.4 21 111
chance-n 73.3 60.0 40.0 15 91

condition-n 79.4 79.4 76.5 34 132
defense-n 42.9 61.9 28.6 21 120

development-n 65.5 79.3 62.1 29 180
drug-n 89.1 91.3 87.0 46 205

effect-n 86.7 93.3 76.7 30 178
exchange-n 86.9 86.9 73.8 61 363

future-n 95.2 94.5 86.3 146 350
hour-n 89.6 91.7 89.6 48 187

job-n 82.1 79.5 82.1 39 188
management-n 88.9 93.3 71.1 45 284

move-n 97.9 97.9 97.9 47 270
network-n 96.4 98.2 90.9 55 152

order-n 91.2 91.2 91.2 57 346
part-n 91.5 90.1 66.2 71 481

people-n 90.4 93.9 90.4 115 754
plant-n 98.4 98.4 98.4 64 347
point-n 90.7 93.3 81.3 150 469

policy-n 97.4 97.4 97.4 39 331
position-n 68.9 88.9 46.7 45 268

power-n 85.1 89.4 27.7 47 251
president-n 98.7 98.3 72.9 177 879

rate-n 88.3 90.3 86.2 145 1009
share-n 97.1 97.7 97.1 525 2534

source-n 80.0 88.6 37.1 35 152
space-n 92.9 100.0 78.6 14 67
state-n 79.2 80.6 79.2 72 617

system-n 68.6 72.9 48.6 70 450
value-n 98.3 98.3 98.3 59 335

Table 3: Classifier accuracies for each noun of the SemEval-2007 Task 17 test set. trains:
number of training instances.
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word base w/ sels mfs tests trains
affect-v 100.0 100.0 100.0 19 45
allow-v 97.1 91.4 97.1 35 108

announce-v 100.0 100.0 100.0 20 88
approve-v 91.7 83.3 91.7 12 53

ask-v 74.1 87.9 51.7 58 348
attempt-v 100.0 100.0 100.0 10 40

avoid-v 100.0 100.0 100.0 16 55
begin-v 66.7 72.9 56.2 48 114

believe-v 80.0 83.6 78.2 55 202
build-v 73.9 78.3 73.9 46 119

buy-v 80.4 78.3 76.1 46 164
care-v 42.9 42.9 28.6 7 69

cause-v 100.0 100.0 100.0 47 73
claim-v 80.0 80.0 80.0 15 54
come-v 32.6 51.2 23.3 43 186

complain-v 85.7 85.7 85.7 14 32
complete-v 93.8 93.8 93.8 16 42

contribute-v 83.3 72.2 50.0 18 35
describe-v 100.0 100.0 100.0 19 57
disclose-v 92.9 92.9 92.9 14 55

do-v 90.2 93.4 90.2 61 207
end-v 66.7 90.5 52.4 21 135

enjoy-v 57.1 42.9 57.1 14 56
estimate-v 100.0 100.0 100.0 16 74
examine-v 100.0 100.0 100.0 3 26

exist-v 100.0 100.0 100.0 22 52
explain-v 88.9 88.9 88.9 18 85
express-v 100.0 100.0 100.0 10 47

feel-v 68.6 72.5 68.6 51 347
find-v 82.1 85.7 82.1 28 174

fix-v 50.0 50.0 50.0 2 32
go-v 70.5 63.9 45.9 61 244

grant-v 80.0 80.0 80.0 5 19
hold-v 50.0 54.2 37.5 24 129
hope-v 100.0 100.0 100.0 33 103

improve-v 100.0 100.0 100.0 16 31
join-v 38.9 38.9 38.9 18 68

keep-v 56.2 58.8 56.2 80 260
kill-v 87.5 87.5 87.5 16 111

lead-v 69.2 66.7 38.5 39 165
maintain-v 90.0 100.0 90.0 10 61

need-v 91.1 91.1 71.4 56 195
negotiate-v 100.0 100.0 100.0 9 25

occur-v 90.9 95.5 86.4 22 47
prepare-v 94.4 88.9 77.8 18 54
produce-v 75.0 75.0 75.0 44 115
promise-v 75.0 100 75.0 8 50
propose-v 85.7 92.9 85.7 14 34

prove-v 54.5 81.8 68.2 22 49
purchase-v 100 100.0 100.0 15 35

raise-v 29.4 50.0 14.7 34 147
recall-v 86.7 86.7 86.7 15 49

receive-v 95.8 95.8 95.8 48 136
regard-v 78.6 78.6 71.4 14 40

remember-v 100.0 100.0 100.0 13 121
remove-v 100.0 100.0 100.0 17 47
replace-v 100.0 100.0 100.0 15 46
report-v 91.4 94.3 91.4 35 128

rush-v 100.0 100.0 100.0 7 28
say-v 98.7 98.7 98.7 541 2161
see-v 44.4 59.3 44.4 54 158
set-v 47.6 59.5 28.6 42 174

start-v 44.7 52.6 44.7 38 214
turn-v 51.6 58.1 38.7 62 340

work-v 60.5 67.4 55.8 43 230

Table 4: Classifier accuracies for each verb of the SemEval-2007 Task 17 test set.
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base w/ sels mfs tests
noun 68.5 72.1 54.1 1766
verb 72.0 72.4 57.9 1927

adjective 49.4 53.4 54.7 148
all 69.4 71.5 56.1 3841

Table 5: Sense classifier accuracies without (base) and with the selector class of features (w/
sels) over Seneval-3: English Lexical Sample. (mfs: accuracy of classifying with the most
frequent sense of the training data, tests: number of instances in the test set.)

4.3.2 Senseval-3

We also tested selectors as features over the Senseval-3 data(Mihalcea et al., 2004) to get a
more robust idea of their impact. The instances in this sample come from a difference corpus,
the British National Corpus, include fine-grained sense annotations, and a limited number of
adjectives.

Examining the results in Table 5, we see an improvement from using selectors over the baseline
for all three parts-of-speech. Overall error reductions is 6.9%. Selectors seem to help the
most for both nouns and adjectives, but in the case of adjectives we actually see the mfs just
outperforms the supervised systems. We suspect this is partly due to the average adjective
having many more possible senses (10.2, versus 5.8 for nouns and 6.3 for verbs), and one
should also keep in mind the small number of adjective examples.

4.3.3 Feature Impact Analysis

Results discussed thus far imply selectors are contributing information beyond that of the
standard set of features. However, since selectors represent an abstraction of context and the
baseline features encode various contextual information, it is possible that all information from
certain baseline features is subsumed by selectors. In this experiment, we try to understand the
type of information being contributed by selectors by observing accuracies when features are
removed.

Table 6 shows accuracy results when building classifiers with all combinations of feature types.
For these tests, we used the SemEval-2007 data set, the larger and more recent of the two
previously mentioned evaluation data sets. We see a clear benefit from the inclusion of selectors
across the board. Interestingly, we see that although surr class of features gets the system
beyond the mfs baseline, it seems to provide more distractions than help once other features
are included as well. In fact, our best results come from the combination of collocations,
part-of-speech information, and selectors with an accuracy of 88.1.

4.3.4 Out-of-Domain Test Data

It is often noted that WSD systems perform poorly on test data from a different domain than that
of the training data (Zhong et al., 2008; Agirre et al., 2010). We examine whether selectors keep
their benefit when tested on out-of-domain data over a portion of OntoNotes 4.0 (Weischedel
et al., 2011). We put together all occurrences of a random selection of 100 nouns and verbs
over three portions of OntoNotes: The Wall Street Journal (WSJ), Xinhua New Agency (Xh),
and Sinorama Magazine (Sr). The Xinhua and Sinorama corpora correspond to a different
source of newswire data and a different genre (magazine) respectively. As is standard, we used

2432



accuracy
feature types w/o sels w/ sels err reduc
coll 86.3 87.9 11.7 %
pos 83.8 86.3 15.3 %
surr 82.5 86.8 24.6 %
coll, pos 86.9 88.2 9.9 %
pos, surr 86.0 87.7 12.1 %
surr, coll 85.5 87.4 13.1 %
coll, pos, surr 85.7 87.9 15.4 %
sels alone - 84.7 -
(mfs) 78.8 - -
mean err reduc - - 14.5 %

Table 6: Accuracy of classifier utilizing all combinations of feature types on the SemEval-2007
Task 17 test set. err reduc is the error reduction when using selectors. Refer to section 4.2 for
feature type identifiers.

base w/ sels mfs tests
WSJ 82.5 84.3 80.7 166
Xh 77.1 78.2 75.4 564
Sr 58.1 58.8 46.8 816

Table 7: Accuracy of the classifiers when training on the WSJ , and applying to another source
of news (Xh) or another genre of text (Sr) within OntoNotes 4.

samples from sections 02-21 of WSJ as training, while samples from section 22 of WSJ plus
all sections of Xh and Sr were used for testing. We decided to use OntoNotes because our
main testing corpus, SemEval-2007 Task 17, is itself derived from OntoNotes, though it lacked
multiple genres of text.

We see from Table 7 that selectors still give an improvement in the case of another source of
newswire. When moving to a more distant domain, such as another genre, the improvement still
exists though it is no longer significant. The difficulty of the out-of-domain task is exemplified
by lower M FS values, which are still based on the most frequent sense in the training data
(always WSJ in this case). The results demonstrate relative robustness across minor shifts in
domain, and potential for greater success if one combined them with a domain-adaptation
technique.

4.3.5 Named Entity Classification

We believe selectors can benefit other supervised lexical disambiguation tasks. In this experiment,
we seek preliminary evidence for such a belief based on improving the classification step of
named entity recognition.

In named entity classification, one is given a noun phrase representing an entity with its context,
and one attempts to classify the named entity into a variety of classes. We build a classifier
which labels entities with one of the 18 classes provided by OntoNotes. We sample 1000
randomly selected sentences from The Wall Street Journal, Xinhua, and Sinorama portions of
OntoNotes. The data is divided into training and testing samples:
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base w/ sels mfc tests
85.0 86.4 20.2 259

Table 8: Named-entity classifier accuracies without (base) and with the selector class of features
(w/ sels) across a random sample of the WSJ , Xh and Sr portions of OnotNotes. (mfc: accuracy
of predicting the most frequent named entity class in training data, tests: number of instances
in the test set.)

• The Wall Street Journal (WSJ): sections 02 - 21(train); section 22(test)
• Xinhua New Agency (Xh): sections 0000 - 0209(train); sections 0210 - 0325(test)
• Sinorama Magazine (Sr): sections 1001 - 1059(train); sections 1060 - 1078(test)

For the WSJ we stick with standard training and test sets, while we divide Xh and Sr corpora
similarly. Out of the 1,000 randomly selected sentences across these corpora there are 2,106
total named entity instances: 1,847 training examples and 259 test examples. We find this to
be a representative sample of the WSJ , Xh, and Sr portions of OntoNotes 5.

We choose our features by looking at the most common types of features used during the
CoNLL-2003 Shared Task in Named Entity Recognition(Tjong Kim Sang and De Meulder, 2003),
and more recent developments(Ratinov and Roth, 2009; Finkel and Manning, 2009). To the
best of our knowledge state-of-the-art features have not been established for labeling all classes
of Named Entities in OntoNotes, though Finkel and Manning use the three most common classes
and group the others into a misc category.

• character n-grams. Character sequences of length 1 to 6.
• case information. Case of the first, second, and last letter, as well as an indicator for

punctuation.
• lexical information. The target word, its base form, as well as the same collocations

used in WSD: c−1,−1, c+1,+1, c−2,−2, c+2,+2, c−2,−1, c+1,+2, c−3,−1, c+1,+3, c−1,+1, c−2,+1, col−1,+2

• parts-of-speech. The part-of-speech for the following words relative to the target word:
p−3, p−2, p−1, p0, p+1, p+2, p+3 (0 is the target word).

• gazetteers. Mapping of target tokens (or n-grams initiated at the target) to 31 categories
based on lists downloaded from Ratinov & Roth (2009).

• cluster membership. Mapping of words to Brown (1992) clusters (also down-
loaded from Ratinov & Roth) based on these positions relative to the target word:
bc−2, bc−1, bc0, bc+1, bc+2.

• selectors. Selectors were included for the target word as in WSD.

Table 8 shows the results for named entity classification. Here, we used one classifier and many
potential labels, and thus the most frequent class accuracy is very low, corresponding to the
prediction of organization for each instance. The inclusion of selectors as features increased
the accuracy of our named entity classification system, with a significant 9.3% error reduction.
These results, combined with the extensive WSD tests lead us to believe that selectors can
also be used successfully as features for many tasks requiring contextual information, such as
prepositional phrase attachment or semantic role labeling, could also benefit from the inclusion
of selectors as features.

5The Pearson correlation between frequencies of each entity type in our sample versus all instances are 0.982 and
0.945 for the training and test sets respectively.
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bill-n.1 bill-n.2 bill-n.3 occur-v.1 occur-v.2 occur-v.3
bill bill market be go go
it staff system happen get look
legislation system paper occur come break
system money note go have remove
program time bill take try find
law it bond work lead get
plan tax stock come listen place
you work debt see work keep
measure rent rate have be stick
project tuition report change belong stop

Table 9: The ten most common selectors for each sense of the noun ‘bill’ and the verb ‘occur’.
Top selectors which are unique to each sense are emboldened.

5 Discussion: On the Robustness of Selectors

In the previous section we saw that adding selectors to a standard feature space increases
classifier accuracy. In this section, we discuss this improvement by examining the values of
features extracted for instances in the SemEval-2007 experimental corpus. Particularly, we
endeavor to show that selectors contribute robustness to the WSD feature space through an
abstraction of context that distinguishes senses of words.

The idea of abstracting context is based on the notion that contexts which realize words of
similar meaning have similar selectors. Consider the selectors for senses of both words in Table
9: ‘bill’ and ‘occur’. We see that each of the sets of selectors varies depending on the sense of
each word. Furthermore, though coarse-grained, one may even infer the sense of each word by
considering its most common selectors; they should be similar to the sense.

For the the supervised classifier, selectors are an encoding or abstraction of context to help
identify each sense with no need for concept similarity judgments. For example, both sentences
below were annotated incorrectly without selectors, but correctly with selectors.

1. Polls show wide, generalized support for some vague concept of service, but the bill now
under discussion lacks any passionate public backing.

2. Emerson, in his lecture, refers to the “startling experience which almost every person confesses
in daylight, that particular passages of conversation and action have occurred to him in
the same order before, whether dreaming or waking, a suspicion that they have been with
precisely these persons in precisely this room, and heard precisely this dialogue, at some
former hour, they know not when”.

For sentence 1, selectors of bill-n.1 seem to best match the instance’s local context (i.e. one can
imagine inserting selectors from bill-n.1 in place of ‘bill’ more easily than selectors from other
senses of bill). Though the training set never contained the exact context “...but the ___ now
under..”, it did produce selectors which match this context. In sentence 2 the immediate context
before and after the target word seem contradictory: “... action have occurred...” implies
occur-v.1 (to “happen or take place”), while “... occurred to him ...” implies occur-v.1 (to “come
to mind”). However, when considering the whole context occur-v.2 fits best, and in fact, the
selectors for this instance match with many of the most frequent selectors for occur-v.2 such as
‘belong’, ‘lead’, ‘listen’, and ‘try’.
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5.1 Extensions

We presented evidence that selectors may benefit other lexico-semantic classification tasks in
section 4.3.5. Here, we discuss a few extensions to our selector acquisition approach that we
believe could bring about further improvements in accuracy. The primary reason we chose to
use n-grams as a source for selectors is because the Web search engines that support wildcard
search (Yahoo and Google), which is necessary for efficient selector acquisition, no longer
support APIs which return all matches. However, because our n-grams were restricted to the
order of 5 tokens, the size of local context is limited.

To allow one to search with larger local context, a couple more advanced approaches might
be employed. One solution is to use non-wildcard Web search queries (The still-supported
Microsoft API could handle this) where candidate selectors are inserted in place of the wildcard.
Because this would result in an expensive number of Web queries, one could limit candidates to
selectors found through the web-scale 5-grams corpora. Another idea might be to use a smaller
corpus than the Web where it is practical to base selectors on grammatical or dependency
relationships. A similar approach was done by Lin (1997) without supervision. One can now
produce dependency parses over much larger corpora. This would allow one to focus on the
important constituents in context as well as capture long distance relationships. Still, part of the
attractiveness of web-scale n-grams for selectors is the simplicity. Should our n-gram selectors
not contain sufficient local context, one would expect selectors to be ineffective as a type of
feature. We found that is not the case.

6 Conclusion

We introduced a novel method for increasing the informative value of a supervised disambigua-
tion set of features by leveraging large unannotated corpora to encode an abstraction of local
context via selectors. When tested over SemEval-2007 Task 17 and Senseval-3 English Lexical
Sample, we found that word sense disambiguation classifiers utilizing selectors performed
significantly better than those without. The improvements from selectors come free of any
annotation cost, requiring only a web-scale n-gram collection. We believe other tasks, such as
prepositional phrase attachment or semantic role labeling, could also benefit from the inclusion
of selectors as features.
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