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ABSTRACT

We report a wide range of comparative experiments establishing for the first time contrastive
foundations for a completely unsupervised approach to bilingual grammar induction that is
cognitively oriented toward early category formation and phrasal chunking in the bootstrap-
ping process up the expressiveness hierarchy from finite-state to linear to inversion transduc-
tion grammars. We show a consistent improvement in terms of cross-entropy throughout the
bootstrapping process, as well as promising decoding experiments using the learned grammars.
Rather than relying on external resources such as parses, POS tags or dictionaries, our method
is fully unsupervised (in the way this term is typically understood in the machine translation
community). This means that the bootstrapping can only rely on information gathered during
the previous step, which necessitates some strategy for expanding the expressiveness of the
grammars. We present principled approaches for moving from finite-state to linear transduc-
tion grammars as well as from linear to inversion transduction grammars. It is our belief that
early, integrated category formation and phrasal chunking in this unsupervised bootstrapping
process is better aligned to child language acquisition. Finally, we also report exploratory de-
coding results using some of the learned grammars. This is the first step towards an end-to-end
grammar-based statistical machine translation system.

KEYWORDS: Grammar & Formalisms, Empirical machine translation, Multilinguality and
Bilingual grammar induction.
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Figurel: Bootstrapping paths through the grammar hierarchy along with biparsing time com-
plexities of grammar formalisms.

1 Introduction

We report a wide range of comparative experiments establishing for the first time contrastive
foundations for a completely unsupervised approach to bilingual grammar induction that is
cognitively oriented toward early category formation and phrasal chunking in the bootstrap-
ping process up the expressiveness hierarchy from finite-state to linear to inversion transduc-
tion grammars.

In the context of bilingual grammar induction, “unsupervised” means that a transduction gram-
mar (or synchronous grammar) is learned without using any external resources such as parses,
POS tags, or dictionaries. In contrast, many, if not most, tree-based statistical MT approaches
rely on monolingually parsed, chunked, and/or tagged parallel corpora (e.g., Galley et al.
(2006)), from which a transduction grammar is extracted. Such approaches must compensate
for monolingual analyses that often are not designed optimally for expressing the relation-
ship between, say, English and Chinese. Exceptions include the hierarchical phrase-based SMT
method of learning ITGs (Chiang, 2005), which does not rely on external resources.

However, unlike Chiang (2005) where huge numbers of (linguistically questionable) phrase
translations are essentially memorized, our present work aims at inducing syntactic categories
at an early stage in the learning, as occurs in child language acquisition. While only time will
tell whether our more cognitively motivated approach to the induction of structural and lexical
relationships between two languages will lead to better machine translation models, it is our
belief that ultimately, learning the correct categories as early as humans do will provide a more
accurate generalization bias for subsequent learning of more complex transduction rules.

In this paper, we report a large body of foundational experiments that, for the first time, il-
luminate how EM-based bilingual grammar induction behaves as we move up the complexity
hierarchy of transduction grammars. We investigate various bootstrapping approaches to in-
duction of finite-state transduction grammars (FSTGs), linear transduction grammars (LTGs),
and inversion transduction grammars (ITGs). We then turn to various combinations of phrasal
chunking to induce segmental transduction grammars, which can represent various classes of
phrase-based translations. We then integrate category induction methods in various combina-
tions.
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This research thread represents a long term effort to investigate how a more principled,
generalization-oriented model of bilingual grammar induction could gradually replace vari-
ous parts of the long chain of heuristics used in the more memorization-oriented approaches.
Although we do also look at preliminary BLEU and NIST scores from MT decoding using the in-
duced transduction grammars, we believe it is premature to place excessive emphasis on such
scores because too many other factors (such as the language model, to name one) are entan-
gled. At this early stage of establishing the foundations for understanding category formation
in bottom-up bilingual grammar induction, it is more important to compare more directly how
well the relationships between the two languages are learned by the very many possible vari-
ous combinations of bootstrapping between transduction expressivity levels, phrasal chunking,
and category formation. Therefore, we focus more on the cross entropy of the induced bilin-
gual grammars—which is exactly the bilingual form of the standard way to evaluate how well
monolingual grammar induction captures monolingual data.

Note that, as observed in Wu (1997), this way of analyzing bilingual grammar induction can
also be viewed as the problem of bilingual language modeling—modeling two languages simul-
taneously. We attack this problem of bilingual language modeling by extending a surprisingly
effective finite-state baseline in two different ways: adding reordering capabilities and adding
context information in the form of categories. The ultimate aim of this research direction is to
have a grammar-based end-to-end statistical machine translation system, which would enable
the usage of the same model in training and decoding instead of relying on a pipeline of differ-
ent mismatched models trained independently. The bilingual language models we learn in this
paper are grammar-based, and they thus represent a step towards this goal. Our new model
is still extremely simple, even with the two proposed extensions. Reordering is added by first
promoting the finite-state model to a linear model, which allows reading from the beginning
or end of the two sentences independently and then by promoting the linear model to a fully
nesting model. Contextual information is added in the form of a handful of categories, which
are learned exclusively from the raw data.

We start by allowing any input token to translate into any output token, we also allow the
input or output token to be empty. The lexical rules can contain input and output strings of
length zero or one, but at least one of them must be nonempty. This initial search space is
reigned in by training, which eliminates some of the (very unlikely) rules, but it is mainly
expanded by allowing observed sequences to be taken up as lexicalized sequences (chunking),
and by allowing category diversification (splitting). This initial stage of search space expansion
is carried out in a very weak grammar formalism, which forces it to focus on learning lexical
rules, since the weak structure of the grammar makes it rely heavily on surface form. Once the
lexical chunks have been found and tentatively categorized, we will move the grammar into a
more expressive formalism, and further train it. The idea is that we will have found enough
good rules in the expansion phase that training with the more expressive formalism is mainly
about establishing the structure and getting rid of useless rules. This approach also has the
benefit that a lot of the “heavy lifting” can be done in the weaker grammar formalism, which
is also less expensive to compute.

We will consistently use preterminalized finite-state transduction grammars (PFSTGs) as
the weak grammar formalism, and preterminalized linear inversion transduction grammars
(PLITGs) and inversion transduction grammars (ITGs) as the more expressive grammar for-
malisms.
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The PFSTG’s weakness comes from the fact that they have no structural way to reorder the
input into the output. Instead they have to rely on singletons—Ilexical rules that delete from
the input or insert into the output. These rules allow the PFSTG to disregard parts of a sentence
pair, but still account for the parts that it can account for. It also means that PFSTGs need to
keep a lot of singleton rules around that a more expressive grammar could do without.

ITGs are capable of considerable structural reordering, they are in fact the most expressive
transduction grammar that can be used to parse a parallel corpus in polynomial time. They
are, in other words, the most expressive grammar that can possibly be afforded.

PLITGs are wedged between PFSTGs and ITGs in terms of expressiveness. They do allow for
some structured reordering. Like PFSTGs, the parse trees are chains rather than trees, but
unlike PFSTGs, the links in these chains do not have to be physically adjacent. Allowing the
first input token to be lexically associated with the last output token is an example of the kind
of reordering that PLITGs allow, which make them more expressive than PFSTGs. The fact
that these reorderings are limited to lexical units only is what makes them less expressive than
ITGs (Saers et al., 2011) .

The rest of the paper is structured so that we begin by describing the initial finite-state trans-
duction grammar that we will start our bootstrapping sequence (Section 2). We then describe
how the lexical chunking (Section 3) and category splitting (Section 4) is carried out before
moving on to expressivity expansion: first from finite-state to linear transduction grammars
(Section 5), and then from linear to inversion transduction grammar (Section 6). We then
move on to an illustrative example of what the bootstrapping process actually entails (Sec-
tion 7), along with some tentative decoding results, before offering some concluding remarks
(Section 8).

2 Initial grammar

As a grammar-based translation model baseline, we will use the simplest possible transduction
grammar: the finite-state transduction grammar. A finite-state transduction grammar is the
grammar form of a finite-state transducer. The transformation into a grammar is trivial and
gives us FSTGs.

2.1 Definition 1

A FSTG over languages L, and L, is a tuple G = (N, %, A,S,R), where N is a finite nonempty
set of nonterminal symbols, 3 is a finite nonempty set of L tokens, A is a finite nonempty set
of L, tokens, S € N is the designated start symbol and R is a finite nonempty set of finite-state
transduction rules on the forms:

A—e/fB, A—e€le

where A,LB€ N and e/ f € (&* x A*)—{e/e}.

To harmonize this kind of grammar with future extensions to it, we will preterminalized it.
A preterminalized FSTG has a special class of nonterminals called preterminals, which have a
monopoly on rewriting to biterminals. This does not change the expressivity of the grammar,
nor its asymptotic time complexity. To see why, simply imagine the degenerate case where
every biterminal has exactly one unique preterminal symbol associated with it. In this paper,
the only FSTGs we will use are preterminalized finite-state transduction grammars, or PESTGs.
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2.2 Definition 2

A PFSTG over languages L, and L, isa tuple G = (N, P, %, A, S,R), where N is a finite nonempty
set of nonterminal symbols, P is a finite nonempty set of preterminal symbols, disjoint from
N, X is a finite nonempty set of L, tokens, A is a finite nonempty set of L, tokens, S € N
is the designated start symbol and R is a finite nonempty set of preterminalized finite-state
transduction rules on the forms:

A—QB, A—ele, Q—elf

where ABEN,Q€ePande/f € (Z* x A*)—{e/€}.

As a baseline, we will choose the simplest possible PFSTG: a bracketing PFSTG. The bracket-
ing PFSTG has only one nonterminal symbol and one preterminal symbol. As such it relies
solely on lexical information to find translation correspondences. The lexical information is
surprisingly powerful when both sentences are given.

To assign scores to the sentence pairs, we need a weighting function for the rules, making it
a weighted PFSTG. We will go one step further, and require the weighting function to define
proper probability distributions such that:

p(Y = ©)=Pr(v|y)

which makes the grammar stochastic. These kind of conditional probabilities over rules can
be tuned towards a corpus of examples (a training corpus) through expectation maximization,
or EM. Expectation maximization can only be used to tune existing parameters, so to have
something to tune, we initialize the grammar using the training corpus. The structural rules
will have uniform probability, and the lexical rules will have a portion of the probability mass
relative to their cooccurrence in the training corpus. Specifically, we will initialize a stochastic
bracketing FSTG such that:

p(s—4) = 1,
p(A—QA) = 05,
p(A—e/e) = 0.5,
_ c(e/f)
P (Q e/f) Ze’eZ,f’eAC (e//f/)

where ¢ (e/f) is the cooccurrence count for the biterminal e/f € ((ZU{e}) x (Au{e})) —
{e/e}.

To calculate the expectations for the expectation maximization, we will parse the training
corpus with the grammar we have, using an adaptation of the parsing algorithm described
in Saers et al. (2010). The adaptation consists of allowing multiple categories (not simply
bracketing grammars), and to handle preterminals. Although this algorithm was designed for
the linear family of transduction grammars, the PFSTGs are merely a restricted form of PLITGs,
which means that the algorithm applies to them as well.

Training this grammar on IWSLT07 ChineseEnglish data (Fordyce, 2007) gave us a sentence-
level cross-entropy of 110.2. The results of all training runs can be found in Table 1, where
the baseline model is designated fstg.
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3 Chunking helps

We can induce new lexical rules by allowing lexical entities to combine in order to form
larger lexical entities. The end results are similar to phrase-based machine translation, but
the method of arriving at the segments (chunks or “phrases”) is very different.

To apply chunking to our PFSTG, we use the method described in Saers and Wu (2011). The
method was originally developed for PLITGs, which is a superset of PFSTGs, so it can be
applied as is. The gist of the method is to allow two bitokens that are observed next to each
other to combine into a new, larger bitoken. The process is thus limited to produce bitokens
of twice the length of existing bitokens. There is, however, nothing stopping us from applying
the method several times, getting larger and larger chunks. The maximum bitoken length of
the baseline grammar is 2 (one input token and one output token), which we can double by
chunking.

By applying chunking to the baseline PFSTG, and training with the chunks (model fstg_c in
Table 1), we get a cross-entropy of 73.0, which is significantly better than the 110.2 that the
baseline grammar (model fstg) scored. If we repeat the chunking (model fstg_c_c), we
go all the way down to 45.0. A third round of chunking and training (model fstg_c_c_c)
gets us a small improvement down to 43.9. This is interesting, since going from segments of
length 1 to segments of length 2 helps tremendously, and proceeding to segments of length 4
goes a long way indeed. Pushing it up to segments of length 8 (which is close to the default
“maximum phrase length” of Moses: 7), does surprisingly little. Either way, chunking was
responsible for cutting the cross-entropy in more than half.

4 Splitting helps

We can introduce new nonterminal or preterminal symbols by splitting off some of the prob-
ability mass of an existing symbol to one or more new symbols. This gives us the possibility
of diversifying the categories used by the grammar, which is necessary in order to move away
from bracketing grammars to more interesting types of grammars.

Splitting into new symbols is a problem that can be formulated as splitting the probability
mass of one symbol to several existing symbols. This requires the new symbols to be inserted
into the grammar before the splitting takes place, which is a reasonable prerequisite. The
assumption that the probability mass of the symbol being split could end up in any of the ex-
isting symbols makes it necessary to have some mechanism to control the destination of the
probability mass. Furthermore, it is desirable to have some mechanism to introduce perturba-
tions into the splitting of the probability mass, since exactly splitting it uniformly will inhibit
learning. In addition to this wish list, we also wanted to differentiate between the case when
the nonterminal was on the left-hand side of a rule, and when it was on the right-hand side.
Remember that we are dealing with preterminalized grammars, and being able to have dif-
ferent splitting policies depending on where in the rule the symbol occurs is important. We
want preterminals to be heavily perturbed on the left-hand side, but lightly perturbed on the
right-hand side. When the preterminal is on the left-hand side, it is assigning a category to the
terminal pair it rewrites to; by having larger differences in probability mass, we are essentially
assigning a category at random, but keeping some of the mass in the other category, just in
case the decision was wrong. When the preterminal is on the right-hand side, it determines
the contexts in which a particular category can occur, which we do not want to randomize too
much; relying on training is better. It turns out that all these desiderata can be addressed in a
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very simple way.

To split a nonterminal x, we give a set of target nonterminals y,, ¥, ..., i paired up with a kind
of pseudo counts ay, ay, ..., a; that represent “how often x was split into y;”. The as are used as
parameters to a Dirichlet distribution, from which a categorical distribution is randomly drawn
every time x has to be split.

If any of the ys do not exist in the grammar, they are added to it. If no pseudo count is given
for a nonterminal, it is assumed to be zero. This means that the Dirichlet distribution will be
well-defined over the set of nonterminal symbols in the grammar. The expected categorical
distribution drawn from the Dirichlet distribution will be “relative frequency” over the pseudo
counts, but since we are drawing the categorical distribution at random, there will be some
perturbation to it. The magnitude of the perturbation will be inversely proportional to the total
number of pseudo counts in the Dirichlet distribution. Intuitively, the more pseudo counts we
have, the more certain we can be that they are correct. Conversely, with few pseudo counts,
there is a lot of uncertainty, and therefore a lot of variation in the categorical distributions we
draw.

Once we have a categorical distribution over the set of nonterminals, we can distribute the
probability mass of a rule containing x, into the expected portion according to the categorical
distribution. To keep x as a symbol, it needs to retain some of the probability mass, and the
simplest way to do this is to have non-zero pseudo counts for it; this is the approach we took.

To allow for different behavior depending on where in the rule x occurs, we simply supply two
Dirichlet distributions: one to be used when x is on the left-hand side of a rule, and one to be
used when it is on the right-hand side.

The pseudo code for the algorithm is give below.

4.1 General nonterminal (and preterminal) splitting algorithm

To refresh memory, a rule consists of a single nonterminal (or preterminal) symbol (i) on the
left-hand side, and a sequence of nonterminal (or preterminal) and biterminal symbols on the
right-hand side (¢). Furthermore, there is a permutation over the right-hand side (7). The
rule form is thus i — ¢; 7. There is also a probability function that assigns a probability to
each rule (p).

Input: a set of rules R, a nonterminal to split x, a probability function p over R, a left-hand
side Dirichlet distribution over nonterminals D;, a right-hand side Dirichlet distribution over
nonterminals D,..

Output: a new set of rules R° and a new probability function p’ over
R.
R<()
foralli —» ¢;m€Rdo
RH(_()

if i = x then
Draw the parameters to a categorical distribution over nonterminals o ~ D;
for all nonterminal y do
R" — (R", [y = 7,a,p(i = $;m)])
end for
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else
R’ — ([i =;m,p(i = ¢;m)])
end if
forall 0 <k < |¢| do
R/// — ()
for all [z — vq_i; 7T, p”"] €R” do
if ¢, = x then
Draw the parameters to a categorical distribution over nonterminals a ~ D,
for all nonterminals y do
R” — R", [z = o_y; T a,0"])
end for
else
R” —(R",[z2 > Yo.rbi;m,p"])
end if
R — (R//,RW)
end for
end for
for all [r,p”] €R” do
R «(R,r)
p'(r)+=p"
end for
end for

We consistently used pseudo counts of 1000 (both for left- and right-hand side) when split-
ting nonterminals, and 0.5 (for left-hand side) and 1000 (for right-hand side) when splitting
preterminals.

So far, we only have four PFSTGs, with different segment lengths. We did not carry out all
possible experiments, but the ones we did carry out all show that splitting helps (all models
in Table 1 with an s followed by some number have had all their symbols split into the given
number of symbols). Sometimes it helps as little as when moving from 73.0 for a bracketing
PFSTG with segment length 2, to 72.5 for the same grammar with its pre- and nonterminal
split in two (model fstg_c to fstg_c_s2). The same modest improvement was observed
when splitting the grammar with segment length 4, where we moved from 45.0 cross-entropy
to 44.5 (model fstg_c_c to fstg_c_c_s2). However, splitting again gave 42.9 (moving to
fstg_c_c_s2_s2), and a third time gave 39.5 (moving to fstg_c_c_s2_s2_s2). Beyond the
first split, we see a better improvement than chunking an extra time.

5 Moving to linear transductions helps

The preterminalized finite-state transduction grammar is very closely related to the pretermi-
nalized linear inversion transduction grammar. The only difference is that the latter has more
structural rules. As a reminder, the PFSTG has rules on the following forms:

A—QB, A—ele, Q—e/f

Whereas the PLITG has rule on the following forms:

A—[QB], A—[BQ], A—(QB), A—(BQ), A—ele, Q—e/f
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Where the square and angled brackets have their customary interpretation as straight and
inverted permutations respectively. The difference is in the structural rules, and each of the
structural rules in a PFSTG corresponds to four structural rules in a PLITG. To move from a
PESTG to a PLITG, we merely have to add these rules, and distribute the probability mass. We
distribute the probability mass uniformly.

Another possibility that PLITGs have that PFSTGs do not is to canonize the singletons. In the
PLITGs we have used so far, there is always some ambiguity due to the fact that singletons are
empty in one of the languages, and there is no way to tell whether the empty string should
attach to the front or the back of the string in that language. This ambiguity can be eliminated
by insisting that it attach to the same end that the known string attaches to in its language.
This enforces a canonical form for singletons, and reduces complexity.

To canonize a PLITG, start by creating two new preterminal symbols, one for input singletons
and one for output singletons for every existing preterminal. Then move all the singleton
realizations of that preterminal to the newly created symbols. Consider the preterminal P. We
will split it into pelf (non-singletons), pf (input singletons) and P¢ (output singletons), and
divide the set of rules so that the singletons must be produced by the singleton symbols, and
the non-singletons must be produced by the non-singleton symbol.

To produce the new preterminal symbols, we also need to account for the case when P is on
the right-hand side of a structural rule, and withholding some of the possible new rules will
make the grammar singleton canonical. In a PLITG in normal form there may be at most one
preterminal symbol on the right-hand side. Consider the four kinds of rules where P could
occur in a PLITG:

A— [PB],A— [BP],A— (PB),A— (BP)

To keep the PLITG canonical, we would like to have the following rules:

A— [PE/fB] Ao [BPE/f] JA— (PFBY, A— (BP/f),
A— [PB],A— (P*B),A— [PfB] ,A— (BP)

The probability mass is divided to reflect the probability of P rewriting to non-singletons and
the singletons respectively.

Whether we use a canonical PLITG or not, it allows us to move from any of the grammar
we have trained so far to a PLITG and resume training with this more expressive grammar
formalism. This gives a consistent improvement in cross-entropy (this can be seen in Table 1,
where the PLITG models end in _1tg, and are meaningful to compare to the models preceding
them).

6 Moving to inversion transductions helps

Moving from a PFSTG or PLITG into an ITG is a much more complicated process than moving
from a PFSTG to a PLITG. Since we have that first step covered, we will focus on moving from
a PLITG to an ITG. Once this step is in place, we can move from a PFSTG to an ITG via a PLITG
(with or without training at the PLITG stage).
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Model cross-entropy
fstg 110.2
fstg_ltg 108.9
fstg_ltg_itg 95.5
fstg_itg 93.2
fstg_c 73.0
fstg_c_ltg 72.5
fstg_c_ltg_itg 60.7
fstg_c_itg 60.7
fstg_c_s2 72.5
fstg_c_s2_ltg 70.5
fstg_c_s2_itg 60.8
fstg_c_c 45.0
fstg_c_c_ltg 44.5
fstg_c_c_itg 36.5
fstg_c_c_s2 44.5
fstg_c_c_s2_ltg 42.5
fstg_c_c_s2_itg 35.8
fstg_c_c_s2_s2 42.9
fstg_c_c_s2_s2_ltg 39.5
fstg_c_c_s2_s2_itg 33.3
fstg_c_c_s2_s2_s2 39.5
fstg_c_c_s2_s2_s2_1ltg | 39.5
fstg_c_c_s2_s2_s2_itg | 32.8
fstg_c_c_s3 44.5
fstg_c_c_s3_itg 36.3
fstg_c_c_c 43.9
fstg_c_c_c_itg 35.9

Tablel: The cross-entropy scores on the data for various models.

6.1 Definition 3

A syntax-directed transduction grammar (SDTG) in normal form is a tuple (N,%,A,S,R)
where N is a finite nonempty set of nonterminal symbols, ¥ is a finite nonempty set of in-
put language symbols, A is a finite nonempty set of output language symbols, S € N is the
designated start symbol, and R is a finite nonempty set of syntax-directed transduction rules
on the forms:

S—A A-yim, A—elf

where A€ N, ¢ € NNN*, &t is a permutation vector over ¢, and e/f € (Z* x A*)— (e/e).

6.2 Definition 4

An inversion transduction grammar (ITG) in normal form is an SDTG in normal form, where
the number of nonterminals allowed on the right-hand side is exactly two for all nonterminals
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except the start symbol (which may only have one). The rules are thus on the forms:

S—A A—-BC;n, A—e/f

Since there are only two possible permutation vectors (straight and inverted), the rules are
typically expressed as:

S—A, A—|[BC], A—(BC), A—e/f

where the square brackets represent straight order, and the angled brackets represent inverted
order.

To make a PLITG in normal form into an ITG in normal form, all that has to be done is to
eliminate the rules where a nonterminal is allowed to go to nothing (empty rules). This does,
however, leave us with an ITG that generates the exact same transduction that the PLITG gen-
erated, which is not necessarily what we want. It is more likely that we want a grammar that
is more expressive than the grammar we had. To this end, we will promote the preterminals
to full nonterminals. Since the removal of the empty rules entails having the nonterminals be-
have as preterminals, and promoting the preterminals to full nonterminals entails having the
preterminals behave as nonterminals, there is no longer any point in making the distinction
between the two classes of symbols. Indeed, an ITG only has nonterminal symbols.

The theory of promoting preterminals to nonterminals is to insert unary rules, where the
preterminal rewrites into exactly one nonterminal symbol. For every preterminal that is to
be promoted, one such rule is generated for each nonterminal. To control how much of its
“preterminal-ness” the preterminal retain, we employ a hyperparameter a. The probability
mass of the preterminal is redistributed so that a of it is retained in its original rules, whereas
1 — a is redistributed to the new unary rules. The last thing that needs to be determined is
the preterminals affinity to specific nonterminals. We use the function ( y) for this, which
gives the probability of the nonterminal y given the preterminal that is being promoted. In
this round of experiments, 3 was uniform over all nonterminals. Naturally, we want to keep
the new ITG in normal form, so we will actually not insert the unary rules, but rather anything
the nonterminal can expand into. This gives us the following new probability function (p’)
over the new and old rules:

pPlx—¢;n)=aplx - ¢;m)+(1—a)d oy B(¥)p(y = ¢;7)

Where x is the preterminal being promoted, N is the set of nonterminals, ¢ is a sequence of
nonterminals and biterminals, and 7 is a permutation over ¢.

To train at the ITG stage, we use the algorithm presented in Saers et al. (2009), which we
generalize to handle multiple nonterminals rather than being restricted to bracketing ITGs.

It is clear from Table 1 that the ITG models explain the data better than any other kind of
model, and that more induction steps are better (the best model is the most heavily processed
one, with two chunking steps and three splitting steps before moving on to ITGs). In the cases
where we move to ITGs via PLITGs, we also see some improvements, which is encouraging.
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7 Qualitative analysis and translation assessments

In this section, we present a qualitative analysis of an example to illustrate the nature of
alignments learned during various stages in the training. As a step forward towards our goal
of purely inducing ITGs in an unsupervised manner for the purpose of translation, we report
our initial findings on using these bootstrapped models in translation tasks.

7.1 Bootstrapping improves the alignments

Although the cross-entropy scores indicate an improvement in the quality of the grammars
learned after LTGs and ITGs with FSTGs, we were interested in understanding the qualitative
nature of generalizations the model was learning. Such an analysis would reveal how new gen-
eralizations might emerge as expressivity of models increases. They would also help identify
overfitting of the model and how errors propagate from one stage to another.

An important consideration in bootstrapping would be to identify whether or not alignments
that could not be learned in less expressive models could be learned by more expressive models
after bootstrapping. In order words, whether bootstrapping enables learning of those align-
ments that would otherwise be impossible to learn with less expressive models. One should
also consider the possibility that incorrect alignments in the initial stages might prevent the
correct alignments from ever being learned.

With the above question in mind, we decided to investigate one of the simplest and most
common manifestations of this scenario in Chinese-English parallel data. Typically, locatives
in chinese appear before the verb whereas in English they appear after the verb. Hence, the
alignments of bisentences which contain these locative markers require the model to permit a
certain degree of reordering. We present below, a qualitative analysis of the translation rules
learned for one such locative marker at various stages in our bootstrapping pipeline.

We choose the Chinese locative marker which occurs 67 times in our data set.
typically translates to inside in English. The following are two sentences that occur in our
training data.

Source:
Gloss: inside is what ?
Translation: what is inside ?

Source:
Gloss: inside is what thing ?
Translation: what does it contain ?

In the first example, the correct alignment would require an alignment permutation of
[2,1,0,3] which is beyond the expressive power of the FSTG models. As the translation that is
present in the training data for the second example is inexact, the locative marker is forced to
align to . These examples are representative of the way in which appears in the training
corpus.

Table 2 shows some of the best translations (in the decreasing order of probability) of the
token learned after the FSTG, FSTG_LTG, FSTG_ITG and FSTG_LTG_ITG stages in our
training pipeline, in contrast to directly inducing ITGs. It is not surprising that FSTGs fail to
learn the correct translations of the locative as most alignments of sentences containing the
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FSTG FSTG_LTG FSTG_LTG ITG | ITG
P / P /inside | P — /inside | A— /inside
P— /there | P — /it P— / A— /in
P— /it P— /there | P — /it A— /
P /what | P — / P /in A—> /it
P— /1 P— /what | P — /1 A— /1
Table2: The best translation rules for the Chinese locative marker at various stages in the
training pipeline.
Model Cross-Entropy | BLEU | NIST
FSTG 110.2 7.95 0.4752
FSTG_LTG 108.9 8.34 | 0.7466
FSTG_LTG_ITG | 95.5 8.83 0.8554

Table3: The correlation between the cross-entropy and the BLEU and NIST scores for token
based models.

token are non-monotonic. From the second column of the table we can observe that the correct
translation is learned to be the best translation after bootstrapping with LTGs alone. However,
singleton translation and other synonyms of do not appear in the top five translations.
Upon bootstrapping ITG with the FSTG_LTG, we identify that the translation in makes it into
the top translations. The translations learned at FSTG_LTG_ITG stage are almost comparable
to directly inducing an ITG as shown in the rightmost column.

Although locatives represent an extreme case of the nature of generalizations that could be
learned from bootstrapping, we find that this kind of learning applies to all alignments at
the FSTG stage. The correct alignments tend to get rewarded through successive stages of
bootstrapping while the noisy alignments are drowned out. The end result is comparable to
that of inducing LTGs and ITGs directly without the overhead of such an induction.

7.2 Successive bootstrapping promises improvements in translation
quality

The final goal of our approach is to build a theoretically principled SMT system with well-
defined representations. Although cross-entropy is a good measure of gauging how our models
explain the data, it is not sufficient to guarantee an SMT system with a good performance. It is
important to observe an improvement in the performance on a translation task that correlates
with the improvement in cross-entropy of the model.

We approach this promise with caution as our models in their current state, are not optimized
to compete with the state of the art SMT systems. We report the results of our preliminary
experiments on using our trained models for the task of SMT.

Table 3 shows the BLEU scores obtained using only token based models (without any sort of
chunking) on the IWSLTO7_CE test set. These scores gives a gist of how translation quality
changes with the grammar formalism, but a token-based model will naturally perform poorly
compared to the state of the art. We used an in-house decoder for the purpose of decoding
using our models. We used a trigram LM trained using SRILM (Stolcke, 2002) on the IWSLT
dataset and a part of the gigaword data set.
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We can observe significant gains in the BLEU (Papineni et al., 2002) and NIST (Doddington,
2002) scores after training on LTGs and a further improvement after training on ITGs. Further,
these scores seem to be reflecting our estimates about the goodness of our models using cross-
entropy.

Due to time constraints, we could not perform extensive experiments on the quality of transla-
tions produced with other models discussed in the rest of the paper. We also want to emphasize
that an exhaustive evaluation of the performance of these models on translation tasks would
result in a combinatoric explosion of models where chunking and splitting could be applied at
various stages in the training pipeline with different chunking and splitting strategies. There-
fore, in order to realize a competitive SMT system using our bootstrapping technique, we
would first need to understand the qualitative and quantitative effects of using different mod-
els and the respective chunking and splitting strategies. We intend to pursue this task more
confidently given our encouraging results on cross-entropy and the BLEU score correlation.

8 Conclusions

We reported a wide range of comparative experiments for a completely unsupervised approach
to bilingual grammar induction with early category formation and phrasal chunking in the
bootstrapping process up the expressiveness hierarchy from finite-state to linear to inversion
transduction grammars. We reported a consistent improvement in the cross-entropy as we
move through FSTGs to LTGs and ITGs. We also saw a substantial improvement in cross-
entropy scores upon chunking and inducing categories. We reported an illustrative example
that indicates generalizations learned from bootstrapping are equivalent to inducing models
with higher expressivity directly but at a much lower cost. Finally, we discussed some of the
encouraging results of our translation assessment experiments using bootstrapped models.
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