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ABSTRACT
Current state-of-the-art Statistical Machine Translation systems are based on log-linear models
that combine a set of feature functions to score translation hypotheses during decoding. The
models are parametrized by a vector of weights usually optimized on a set of sentences and
their reference translations, called development data. In this paper, we explore a (common
and industry relevant) scenario where a system trained and tuned on general domain data
needs to be adapted to a specific domain for which no or only very limited in-domain bilingual
data is available. It turns out that such systems can be adapted successfully by re-tuning model
parameters using surprisingly small amounts of parallel in-domain data, by cross-tuning or no
tuning at all. We show in detail how and why this is effective, compare the approaches and
effort involved. We also study the effect of system hyperparameters (such as maximum phrase
length and development data size) and their optimal values in this scenario.

TITLE AND ABSTRACT IN CZECH

Jednoduchá a efektivní optimalizace parametrů
pro doménovou adaptaci statistického strojového překladu

Současné systémy statistického strojového překladu jsou založeny na logaritmicko-lineárních
modelech, které pro hodnocení překladových hypotéz ve fázi dekódování kombinují sadu
příznakových funkcí. Tyto modely jsou parametrizovány vektorem vah, které se optimalizují
na tzv. vývojových datech, tj. množině vět a jejich referenčních překladů. V tomto článku
se zabýváme (častou a pro průmyslové nasazení relevantní) situací, kdy je ťreba překladový
systém natrénovaný na datech z obecné domény adaptovat na nějakou specifickou doménu,
pro kterou jsou k dispozici paralelní data jen ve velice omezeném (či žádném) množství.
Ukazujeme, že takové systémy mohou být vhodně adaptovány pomocí optimalizace parametrů
za použití jen překvapivě malého množství paralelních doménově-specifických dat nebo
tzv. křížovou optimalizací. Možností je také nepoužití optimalizace vůbec. Jednotlivé přístupy
analyzujeme a porovnáváme jejich cekovou náročnost. Dále se zabýváme analýzou systémových
hyperparametrů (např. maximální délkou frází a velikostí vývojových dat) a jejich optimalizací.
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1 Introduction

Statistical Machine Translation (SMT) is an instance of a machine learning application and, in
general, will work best if the data for training and testing are drawn from the same distribution
(i.e. domain, genre, and style). In practice, however, it is often difficult to obtain sufficient
amounts of in-domain data (in particular parallel data required for translation and distortion
models) to train a well performing system for a specific domain.

Recently, Pecina et al. (2011) showed that just using in-domain development data for parameter
tuning improves output quality of a Phrase-Based SMT (PB-SMT) system trained on general-
-domain data but applied to a specific domain. Although further additional improvements can
be realized by using in-domain parallel and/or monolingual training data, parameter tuning
on in-domain data requires only a relatively small set of parallel sentences, which is often
easier to obtain. They report on a series of experiments carried out on the domains of Natural
Environment (env) and Labour Legislation (lab) and two language pairs: English–French and
English–Greek (both directions) and observe a substantial average relative improvement of 25%
in terms of BLEU (Papineni et al., 2002) when switching from general-domain to in-domain
tuning.

In this paper, we corroborate the results reported by Pecina et al. (2011), carrying out similar
experiments on the domain of medical texts (med). In contrast to earlier work, we explain
the improvements brought about by specific domain tuning by analysing the results in detail.
In a nutshell: domain tuning for matching-domain training, tuning and test data results in
feature vectors that trust (often long) translation table entries, while tuning with and for specific
domains (while using generic training data) allows the MT system to stitch together translations
from smaller bits and pieces with significantly more reordering, effectively undoing or "de-
-tuning" any previous optimizations. In a sense, this is natural: substantial divergence between
test and training data means that in particular long and potentially high quality phrase pairs
obtained in training may no longer be applicable to the test data and that this divergence can
only be bridged by smaller translation units and more flexible recombination. Furthermore, our
findings show that in the general-domain training and specific-domain test scenario, approaches
that do not perform any parameter tuning (at all) or that tune on other specific development
sets may in fact fare better than tuning on general-domain data. In addition, there is a question
of how much specific-domain tuning data is in fact required to "de-tune" a general domain
system to a specific domain. Finally, given the fact that a general-domain system can only
use limited length translation units when translating specific-domain data, we explore limited
length training and decoding.

After a brief overview of the log-linear model including its parameter optimization and an
overview of the state-of-the-art in domain adaptation for SMT, we describe our experiments,
present the results, the analysis, explore the resulting research questions with additional
experiments, and conclude.

2 Phrase-Based Statistical Machine Translation

In PB-SMT, implemented e.g. in Moses (Koehn et al., 2007), an input sentence is segmented
into sequences of consecutive words, called phrases. Each phrase is then translated into a target
language phrase, which may be reordered with other translated phrases to produce the output.
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Formally, the model is based on the noisy channel model. The translation e of an input sentence
f is searched for by maximizing the translation probability p(e|f) formulated as a log-linear
combination of a set of feature functions hi and their weights λi:

p(e|f) =∏n
i hi(e, f)λi

Typically, the components include features of the following models: phrase translation model,
which ensures that the source and target phrases are good translations of each other (e.g. direct
and inverse phrase translation probability, direct and indirect lexical weighting, and phrase
penalty), language model, which ensures that the translations are fluent, reordering (distortion)
model, which allows to reorder phrases in the input sentences (e.g. distance-based and lexical-
ized reordering) and word penalty, which prevents the translations from being too long or too
short. These models are trained on either parallel or monolingual training data.

The weights of the log-linear combination influence overall translation quality; however, the
optimal setting depends on the translation direction and data. A common solution to optimise
weights is to use Minimum Error Rate Training (MERT), proposed by Och (2003), which
automatically searches for the values that minimize a given error measure (or maximize a given
translation quality measure) on a development set of parallel sentences. Theoretically, any
automatic measure can be used for this purpose; however, the most commonly used is BLEU
(Papineni et al., 2002). The search algorithm is a type of coordinate ascent: considering
n-best translation hypotheses for each input sentence, it updates the feature weight most likely
promising to improve the objective and iterates until convergence. The error surface is highly
non-convex and as the algorithm cannot explore the whole parameter space, it may converge to
a local maximum; in practise, it often produces good results (Bertoldi et al., 2009).

3 Domain adaptation in Statistical Machine Translation

Domain-adaptation is a very active research topic within the area of SMT. Three main topics
can be identified: (i) combination of in-domain and out-of-domain resources for training, (ii)
training data selection, and (iii) acquisition of specific-domain data. Below we briefly review
a selection of relevant work that falls into these topics.

The first attempt to perform domain adaptation was carried out by Langlais (2002), who
integrated in-domain lexicons in the translation model. Koehn and Schroeder (2007) integrate
in-domain and out-of-domain language models as log-linear features in Moses. Nakov (2008)
combines in-domain translation and reordering models with out-of-domain models. Finch and
Sumita (2008) use a probabilistic mixture model combining two models for questions and
declarative sentences with a general model.

Training data selection is another approach to domain-adaptation. The assumption is that
a general-domain corpus, if sufficiently broad, includes sentences that resemble the target
domain. Eck et al. (2004) present a technique for adapting the language model by selecting
similar sentences from available training data. Hildebrand et al. (2005) extended this approach
to the translation model. Foster et al. (2010) weigh phrase pairs from out-of-domain corpora
according to their relevance to the target domain.

Munteanu and Marcu (2005) extract in-domain sentence pairs from comparable corpora.
Daumé III and Jagarlamudi (2011) attempt to reduce out-of-vocabulary terms when targeting
a specific domain by mining their translations from comparable corpora. Bertoldi et al. (2009)
rely on large in-domain monolingual data to create synthetic parallel corpora for training.
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languages (L1-L2) dom set sentences L1 tokens / voc L2 tokens / voc
English–French gen train 1,725,096 47,956,886 73,645 53,262,628 103,436

dev 2,000 58,655 5,734 67,295 6,913
test 2,000 57,951 5,649 66,200 6,876

env dev 1,392 41,382 4,660 49,657 5,542
test 2,000 58,865 5,483 70,740 6,617

lab dev 1,411 52,156 4,478 61,191 5,535
test 2,000 71,688 5,277 84,397 6,630

med dev 1,064 16,807 3,484 18,932 4,865
test 2,000 31,725 5,268 34,884 7,331

English–Greek gen train 964,242 27,446,726 61,497 27,537,853 173,435
dev 2,000 58,655 5,734 63,349 9,191
test 2,000 57,951 5,649 62,332 9,037

env dev 1,000 27,865 3,586 30,510 5,467
test 2,000 58,073 4,893 63,551 8,229

lab dev 506 15,129 2,227 16,089 3,333
test 2,000 62,953 4,022 66,770 7,056

med dev 1,064 16,807 3,484 20,625 3,893
test 2,000 31,725 5,268 38,614 5,754

Table 1: Statistics of the training, development and test data sets from the domains used in the
experiments including the number of sentence pairs, tokens, and vocabulary size (voc).

Pecina et al. (2011) exploit automatically web-crawled in-domain resources for parameter
optimization and improving language models. Pecina et al. (2012) extend the work by using
the web-crawled resources to also improve translation models.

4 Experimental setup

Our experimental setup follows and extends the one used in Pecina et al. (2011). In addition
to the two evaluation domains (env, lab) used in that work, and in order to corroborate their
earlier findings, we also carry out experiments on medical domain data (med).

4.1 Data

Our general-domain system is trained on the Europarl parallel corpus (Koehn, 2005, v5)
extracted from the proceedings of the European Parliament and for the purposes of this work
considered to contain general-domain texts (it covers a very broad range of topics and it is
to a considerable extent spoken language). The general-domain development and test data
used for parameter optimization and testing, respectively, are adopted from the WPT 20051

machine translation shared task. These sets were extracted from the same source as Europarl
and contain 2,000 sentence pairs each.

The specific-domain development and test data for the env and lab domains were acquired by
domain-focused web-crawling within the PANACEA project2 and are available from the ELRA
catalogue3 under reference numbers ELRA-W0057 and ELRA-W0058. The entire acquisition
procedure is described in detail in Pecina et al. (2011). The test sets consist of 2,000 sentence
pairs each and the amount of sentence pairs in the development sets varies from 506 to 2,000.

1http://www.statmt.org/wpt05/
2http://www.panacea-lr.eu/
3http://catalog.elra.info/
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dev test English–French French–English English–Greek Greek–English
gen gen 49.12 0.00 57.00 0.00 42.24 0.00 44.15 0.00

env 28.03 −42.94 31.79 −44.23 20.20 −52.18 29.23 −33.79
lab 22.26 −54.68 27.00 −52.63 22.92 −45.74 31.71 −28.18
med 12.32 −74.92 15.33 −73.11 8.96 −78.79 14.79 −66.50

average −57.51 −56.65 −58.90 −42.82

Table 2: Results (in BLEU) of the systems tuned on general-domain and tested on the specific
domains (env, lab, med) compared with the results on the general domain (gen); the figures in
italics indicate the relative change (in percentage).

The med development and test data were extracted from the EMEA parallel corpus of texts from
the European Medicines Agency, distributed as a part of the OPUS corpus (Tiedemann, 2009).
A set of 3,500 parallel sentences in English, French, and Greek was randomly sampled from the
sentence-aligned corpus data and manually checked for translation quality. Correct sentences
were left untouched, sentences with minor errors were corrected, and those which required
major corrections or were misaligned were discarded completely. We aimed at acquiring at
least 3,000 correct sentence pairs: 2,000 for the test sets and the rest for the development sets.
Finally, the test and development sets contained 2,000 and 1,064 sentence pairs respectively.
All data sets used in our experiments contain one reference translation. Statistics are given in
Table 1.

4.2 System description

Our MT system is based on the Moses PB-SMT system (Koehn et al., 2007). For training, all
data sets are tokenized and lowercased using the Europarl tools. The original (non-lowercased)
target side of the parallel data is kept for training the Moses recaser. The lowercased versions of
the target side are used for training an interpolated 5-gram language model with Kneser-Ney
discounting using the SRILM toolkit (Stolcke, 2002). Translation models are trained on the
Europarl corpus, lowercased, and filtered on sentence level; we kept all sentence pairs having
less than 100 words on each side and with length ratio within the interval 〈0.11,9.0〉. The
maximum length for aligned phrases is set to seven and the reordering models are generated
using the following parameters: distance, orientation-bidirectional-fe. The resulting system
combines 14 feature functions, listed below.

1. distance reordering score
2-7. lexicalised reordering scores

8. language model score
9. inverse phrase translation probability

10. inverse lexical weighting
11. direct phrase translation probability
12. direct lexical weighting
13. phrase penalty
14. word penalty

The corresponding parameters are optimized on the development sets by MERT. For decoding,
test sentences are tokenized and lowercased. After translation, letter casing is reconstructed by
the recaser and extra blank spaces are removed in order to produce human-readable text.

2213



gen env lab med

EN−EL
EL−EN
EN−FR
FR−EN

0

200

400

600

800

(PPL)

20 50 100 200 500 1000

0

10

20

30

40

50

60

(PPL)

(BLEU)
EN−EL
EL−EN
EN−FR
FR−EN

Figure 1: Perplexity (PPL) of the source side of the test sets given the language models trained
on the source side of the training sets (left). Perplexity of the source side of the test data versus
BLEU scores of the corresponding systems tuned on general-domain development data (right).

5 Experiments

Translation quality in our experiments is automatically evaluated using BLEU (Papineni et al.,
2002) and all BLEU scores are reported as percentages.

5.1 Baseline system performance

Performance of the baseline system trained and tuned on the general-domain data and tested on
the same domain varies from 42.24 to 57.00 (row 1 in Table 2). Applying the baseline general-
-domain system on the specific-domain data leads to significant degradation of translation
quality (Banerjee et al., 2010; Wu et al., 2008). Pecina et al. (2011) reported an average
decrease of 44.3% when the general-domain system was applied to the env and lab domains
(see rows 2–3 in Table 2). Our experiments on the med domain show even more pronounced
decrease: e.g. in case of the English–French translation, BLEU drops from 49.12 to 12.32;
for English–Greek the change is from 42.24 to 8.96; other translation directions produce
similar results. The average decrease for all directions on the med domain is 73.33% relative
– the domain divergence between the training and test data from this domain is even more
pronounced than in the case of the other two domains. The average decrease taken over all
translation directions and all the domains is 53.97% relative.

5.2 Measuring domain divergence

From the results presented above, it is evident that the translation quality of a particular test
set depends on the extent to which its domain differs from the domain of the training data.
Quality is maximal when the domains match and decreases when the test data diverges from the
training data. To quantify this observation, we measure cross perplexity of the test data given
the training data. For each domain and translation direction, a language model of the same
order as the maximum phrase length (7) used in the SMT systems is trained on the source side
of the training data and applied to the source side of the test data. The results are presented in
Figure 1 (left).

As expected, the perplexity of the general domain test sets is the lowest. It ranges from 40 to
90 depending on the language. In case of the env and lab domains, perplexity is slightly higher:
on the env data it ranges from 100 to 190 and on the lab data from 80 to 160. Not surprisingly,
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test dev English–French French–English English–Greek Greek–English
env gen 28.03 0.00 31.79 0.00 20.20 0.00 29.23 0.00

env 35.81 +27.76 39.04 +22.81 26.18 +29.60 34.16 +16.87
lab gen 22.26 0.00 27.00 0.00 22.92 0.00 31.71 0.00

lab 30.84 +38.54 33.52 +24.15 28.79 +25.61 37.55 +18.42
med gen 12.32 0.00 15.33 0.00 8.96 0.00 14.79 0.00

med 18.47 +49.92 24.42 +59.30 14.57 +62.61 18.10 +22.38
average +38.74 +35.42 +39.28 +19.22

Table 3: The effect (measured by BLEU) of general-domain (gen) and in-domain (env, lab, med)
tuning. The figures in italics indicate relative improvement (in percentage) obtained from using
in-domain development data for optimization (with respect to tuning on general-domain data).

the perplexity scores obtained on the med domain are substantially higher; for most language
directions they exceed 700. The only exception is the French–English test set, for which the
score is as low as 370. This higher drop is consistent across the other domains (compare the
yellow bars with other language pairs in Figure 1, left) and in line with the higher decrease of
translation quality for this domain in terms of BLEU (see Section 5.1).

To complete the picture, we directly compare the perplexity scores with the translation quality
measured by BLEU and provide a plot in Figure 1 (right). It is quite obvious that the perplexity
scores on the logarithmic X axis (PPL) are highly correlated (inversely) with the BLEU scores
on the Y axis. Higher perplexity indicates lower translation quality. This finding is in line with
previous research on translation confidence estimation (Specia et al., 2011; He et al., 2010).

5.3 Parameter tuning on specific-domain development data

The baseline systems trained and tuned on general-domain data perform much worse on
specific domains. Pecina et al. (2011) reported that a surprisingly significant amount of loss
can be recovered by tuning on in-domain development data. The average relative improvement
measured on the env and lab domains reported in this work was 25.5%. Our results, including
those on the med domain, confirm the previous findings (see Table 3). The average relative
improvement of BLEU e.g. in English–French translation is 38.74%. Similar improvements are
obtained on French–English and English–Greek. Slightly lower improvements were achieved
on Greek–English, 19.22% on average. The overall average increase of BLEU is 33.16%
relative. Given that the development sets contain only several hundred sentence pairs each,
such improvement is remarkable.

5.4 Analysis of model parameters

The only component that changes when the system is tuned on in-domain data are the weights of
the feature functions in the log-linear model optimized by MERT. The reordering, language,
and translation models all remain untouched (trained on general-domain data). Recall that the
parameter space searched through by MERT is large and the error surface highly non-convex,
therefore the resulting weight vectors might not be globally optimal and there might be other
(i.e. different) weight vectors which perform equally well or even better. For this reason, the
actual parameter values are not usually investigated. However, our experiments (Figure 2,
left) show that the parameter values and their changes observed when switching from general-
-domain to specific-domain tuning are in fact highly consistent, indicating interesting trends.
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EN–FR gen env lab med
gen – 0.25 0.12 0.15
env 0.25 – 0.82 0.89
lab 0.12 0.82 – 0.89
med 0.15 0.89 0.89 –

FR–EN gen env lab med
gen – 0.10 0.15−0.12
env 0.10 – 0.92 0.86
lab 0.15 0.92 – 0.92
med −0.12 0.86 0.92 –

EN–EL gen env lab med
gen – 0.17 0.28 0.18
env 0.17 – 0.81 0.73
lab 0.28 0.81 – 0.76
med 0.18 0.73 0.76 –

EL–EN gen env lab med
gen – −0.29 0.19−0.20
env −0.29 – 0.72 0.71
lab 0.19 0.72 – 0.81
med −0.20 0.71 0.81 –

Figure 2: Visualization of model weights of the four systems in the twelve evaluation scenarios;
the black bars refer to model weights of the systems tuned on general-domain (gen) development
sets while the grey bars refer to the model weights of the systems tuned on specific-domain
development sets (env, lab, med) (left). Cosine similarity of the system feature vectors (right).

First, we analyse parameters of the systems tuned on the general-domain data (black bars):

1. The high weights assigned to h11 (direct phrase translation probability) indicate that the
phrase pairs in the systems’ translation tables apply well to the development data which
are from the same domain as the training data; a high reward is given to translation
hypotheses consisting of phrases with high translation probability (i.e. good general-
-domain translations).

2. The low negative weights assigned to h13 (phrase penalty) imply that the systems prefer
hypotheses consisting of fewer but longer phrases.

3. Reordering in the hypotheses is not rewarded (weights of the reordering models h1–h7 are
assigned values around zero). In some cases (e.g. for English–French and French–English),
reordering is even slightly penalized (some weights of h1–h7 are negative).

4. The weight of h14 (word penalty) is negative for translations from English and slightly
positive for translations to English. This reflects the fact that translation from English
prefers shorter hypotheses and translation to English prefers longer hypotheses.
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test dev EN–FR FR–EN EN–EL EL–EN Average
gen gen 4.37 3.46 3.76 2.35 3.49
env gen 3.00 2.49 2.69 2.18 2.59

def 2.33 2.12 2.12 2.03 2.15
env 2.16 1.77 2.17 1.54 1.91

lab gen 2.82 2.45 2.97 2.43 2.67
def 2.24 2.09 2.30 2.21 2.21
lab 2.05 1.83 2.46 2.30 2.16

med gen 2.00 1.71 1.74 1.43 1.72
def 1.62 1.52 1.47 1.41 1.51
med 1.54 1.20 1.38 1.21 1.33

Table 4: Average phrase lengths in translations of all test sets (in all directions) by systems
tuned on general (gen) and specific domains (env, lab, med) and with the default weights (def).

Now, we compare these findings with the systems tuned on the specific domains (grey bars).

1. The weights of h11 (direct phrase translation probability) decrease rapidly, in some scenar-
ios this weight is very close to zero. The translation tables do not provide enough good
quality translations for the specific domains and the best translations of the development
sentences consist of phrases with varying translation probabilities.

2. Hypotheses consisting of few (and long) phrases are not rewarded anymore (weights of
h13 are higher); in most cases they are penalized and hypotheses consisting of more (and
short) phrases are allowed or even preferred.

3. In almost all cases the reordering feature weights (features h1–h7) increased substantially
and for specific-domain data the model significantly prefers hypotheses with altered word
order (which is consistent with the two preceding observations).

4. Language model weights (h8) do not change substantially, its importance remains similar
on general-domain and specific-domain data.

These findings are highly consistent across domains and language pairs. The weight vectors
of the systems tuned on specific-domain data are quite similar but differ substantially from
the parameters obtained by tuning on general-domain. This observation can be quantified
by measuring cosine similarity (see Figure 2, right) as proposed by Hopkins and May (2011).
Lower scores, as in the first rows/columns of each table, indicate low similarity of the vectors –
specific-domain tuned weights differ a lot from the general-domain tuned ones; and vice versa –
specific-domain tuned parameters are quite similar when compared to each other.

5.5 Analysis of phrase-length distribution

From the analysis presented above, we conclude that a PB-SMT system tuned on data from the
same domain as the training data strongly prefers to construct translations consisting of long
phrases. Such phrases are usually of good translation quality (local mistakes of word alignment
disappear), fluent (formed by consecutive sequences of words), and recurrent (frequent in data
from the same domain); therefore they form good translations of the input sentences and are
preferred during decoding. This is, of course, a positive behaviour when the system translates
sentences from the same domain. However, if this is not the case and the input sentences
contain no or very few longer phrases from the translation tables, the system is not able to
construct good translations from shorter phrases.
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Figure 3: Phrase-length distribution in English–French translations by systems tuned and tested
(dev/test) on various combinations of general (gen) and specific (env, lab, med) domains.

To support this hypothesis we analyse the phrase length distribution actually seen in the
translation of the test sets. The average phrase lengths estimated for various combinations of
tuning and test domains and all language pairs are shown in Table 4. The highest values are
observed for translations of general-domain test sets by systems tuned on the same domain: 3.49
on average across all language pairs. The scores for systems trained on general and tuned and
tested on specific-domain data are significantly lower and range from 1.21 to 3.00, depending
on the domain and language pair. Figure 3 presents complete phrase-length distribution in
English–French translations by systems tuned and tested on various combinations of general
and specific domains. Generally, a higher divergence of the test domain from the training
domain leads to shorter phrases being used in translation. However, when the systems tuned
on general-domain are applied to specific domains, the average phrase lengths are consistently
longer than for specific-domain tuning. The systems are tuned to prefer long phrases (Table 4)
but the translation quality is lower (Table 3). This situation can be interpreted as overtraining,
the model overfits the training (and tuning) data and on different data fails to form the best
possible translations (given the translation, reordering, and language models).

5.6 Overfitting reduction

The optimal solution in case of such overfitting is to employ a sufficient amount of specific-
-domain development data, effectively tuning the system to using shorter phrases (see Figure 3).
However, if such tuning data is not available (which is quite a realistic scenario in many
applications) we explore the following alternatives: simply side-step parameter tuning (no
tuning at all), or tune on a different domain, or use smaller amounts of development data, or
reduce the maximum phrase length in decoding. All these methods work surprisingly well and
are discussed in the following subsections.

5.6.1 No parameter tuning

Essentially, there are two options how to set the weight vectors without tuning. Either we can
use the default weights set by Moses (h1,...,7 = 0.3, h8 = 0.5, h9,...,13 = 0.2, h14 = −1) or a flat
vector (h1,...,14 = 1). We explored both options and the results are given in Table 5 (see the
rows denoted def and flat, respectively, in the development data column). In all scenarios,
both options outperform the systems trained and tuned on general-domain data. In some
cases (e.g. English–Greek translations in all the specific domains), the results are very close
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test dev English–French French–English English–Greek Greek–English
env gen 28.03 0.00 31.79 0.00 20.20 0.00 29.23 0.00

env 35.81 +27.76 39.04 +22.81 26.18 +29.60 34.16 +16.87
lab 36.16 +29.00 38.78 +21.99 26.13 +29.36 33.85 +15.81
med 32.40 +15.59 36.89 +16.04 24.89 +23.22 34.01 +16.35
def 34.94 +24.65 34.05 +7.11 26.09 +29.16 31.33 +7.18
flat 32.22 +14.95 37.66 +18.46 21.91 +8.47 32.84 +12.35

lab gen 22.26 0.00 27.00 0.00 22.92 0.00 31.71 0.00
env 30.13 +35.35 33.21 +23.00 28.36 +23.73 37.57 +18.48
lab 30.84 +38.54 33.52 +24.15 28.79 +25.61 37.55 +18.42
med 27.04 +21.47 30.77 +13.96 26.85 +17.15 37.52 +18.32
def 29.26 +31.45 29.73 +10.11 28.48 +24.26 34.95 +10.22
flat 27.16 +22.01 32.24 +19.41 25.13 +9.64 35.79 +12.87

med gen 12.32 0.00 15.33 0.00 8.96 0.00 14.79 0.00
env 18.74 +52.11 23.75 +54.92 13.89 +55.02 17.88 +20.89
lab 18.91 +53.49 23.73 +54.79 13.69 +52.79 17.62 +19.13
med 18.47 +49.92 24.42 +59.30 14.57 +62.61 18.10 +22.38
def 18.20 +47.73 21.15 +37.96 13.82 +54.24 16.70 +12.91
flat 17.06 +38.47 23.02 +50.16 11.99 +33.82 17.71 +19.74

Table 5: Translation quality (in BLEU) of the general-domain systems tuned and tested on
various domains. The figures in italics indicate relative improvement (in percentage) over the
system tuned on general domain. The figures in bold denote the best performing combination
for each test domain and translation direction and those which are not significantly different
(Koehn, 2004, p = 0.05).

to those of systems tuned on specific-domain data. The overall average relative improvement
of the systems with default parameters over the systems tuned on general domain is 24.75%
(compare with 33.16% obtained from specific-domain tuning). The average phrase length in
translations produced by such systems falls between the scores of general-domain-tuned and
specific-domain-tuned systems (see rows with def in the development data column in Table 4).
The systems with the flat weight vectors achieve an average relative improvement of 21.70%.
However, they outperform the systems with the default parameters always when the translation
direction is to English; the systems with the default parameters are better when translating
from English.

5.6.2 Cross-domain tuning

It seems that the problem of the overfitted general-domain models and their poor performance
on specific domains can be reduced by “diverting” the systems away from the general domain
they are tuned to translate – but not necessarily towards a particular specific domain. To analyse
this hypothesis we perform “cross-domain” tuning, i.e. tuning on specific domains different
from the test domains. The results are shown in Table 5 (see the rows where the test and
development domain do not match). In all scenarios the cross-domain tuned system performs
better than the un-tuned ones. In a few cases the systems tuned on a cross domain perform
even better than the in-domain ones: e.g. the EN–FR system tuned on the lab domain and tested
on the env and med domains or the EL–EN system tuned on the env domain and tested on the
lab domain, however, in most such cases the improvement is not statistically significant. The
overall average relative gain over the systems tuned on general domain is 27.62% (compare
with 24.75% obtained from no tuning and 33.16% from in-domain tuning).
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Figure 4: Translation quality (BLEU) of French–English systems tuned on data of varying size.

Similar results were observed also on mixtures of two domains (e.g. tuned on lab+env and
tested on med). In general, we can conclude that cross-domain tuning is a reasonable solution
when no in-domain development data is available (and the domains differ in a similar way).

5.6.3 Tuning on small development data

In the previous two scenarios we did not use any specific-domain development data for tuning,
but were able to get very close to the performance of the systems tuned on a specific domain.
Specific-domain parallel data is scarce, for many domains not available at all and must be
prepared by manual translation of monolingual in-domain sentences. We investigate how much
development data is needed. The only technical requirement is that MERT, the parameter
optimization method, must converge in a reasonable number of iterations. For this reason,
typical development sets contain about 1,000 – 2,000 sentence pairs (compare e.g. the size of
development sets provided for the WMT4 translation shared tasks). We vary the amount of
sentences in our development sets, tune the systems, test their performance on the test sets and
plot learning curves to capture the dependency of translation quality (in terms of BLEU) against
gradually increasing the size of development data.

The general shapes of the curves are consistent across all translations (and domains) and
thus we provide the curves for the English–French translation direction only (see Figure 4).
Increasing the size of development sets is beneficial only in case the domains of development
and test data are the same. The curve of the system tuned and tested on the general domain
reaches a plateau for about 500 sentence pairs. In case of in-domain tuning for specific domains,
the plateau is reached much earlier. Usually, as few as 100–200 sentence pairs are enough to
get optimal results. This is encouraging, as tuning on specific-domains yields best results and
fortunately requires only very limited amounts of bilingual data (and expense). Development
sets of more than 400–600 sentences pairs do not improve translation quality at all and make
the tuning process take longer. The systems tuned on the general domain and tested on specific
domain do not benefit from the development data at all. The relatively high BLEU scores
achieved with no tuning (zero development data size) decrease with increasing size of the
development sets.

4http://www.statmt.org/wmt12/
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Figure 5: Translation quality (BLEU) of French–English systems with varying max phrase length.

5.6.4 Limiting phrase length

In the last experiment presented in this paper we limit the maximum phrase length allowed
during training and decoding and study how system performance changes. The systems tuned
on general-domain prefer longer phrases which, however, do not occur frequently in the specific-
-domain test sets. Our baseline systems, trained and tuned on general domain with maximum
phrase length set to seven, translate general-domain test sets with an average phrase length of
3.49 (see Table 4). However, for the systems tuned and tested on in-domain data, this score is
as low as 1.80. Figure 5 illustrates how the translation quality changes when the maximum
phrase length varies from one to seven. The only case when longer phrases improve translation
quality is for the systems trained, tuned and tested on the same (general) domain. In all other
cases, the results for phrases up to three words long are as good as for longer phrases. If the
domain of the test data does not match the domain of training and tuning data, the maximum
phrase length set to three is enough in all scenarios. Longer phrases lead to degradation of
translation quality and increase time for training and decoding, as well as memory requirements
for building and storing the translation models. A similar result was reported already by Koehn
et al. (2003). They observed that limiting the maximum length of a phrase to only three words
achieved top performance. However, current state-of-the-art SMT systems usually benefit from
longer phrases than three (see e.g. the top curve in Figure 5 which refers to a general-domain
system applied to a general-domain test set), and our result applies only to scenarios where the
training and test domains do not match; in that case setting the maximum phrase length to
three is sufficient.

6 Conclusions

In this work, we have analysed domain adaptation of PB-SMT by tuning parameters of the
underlying log-linear model. We confirmed the observation from previous research that systems
trained and tuned on general domain perform poorly on specific domains. This finding is not
very surprising, but the amount of loss and the fact that it is observed consistently in many
evaluation scenarios was unexpected. We found that perplexity of the source side of the test
data given the source side of the training nicely correlates with the translation quality.

Further, we confirmed that tuning the systems trained on general domain on specific target
domain data recovers a (often) spectacular amount of the loss. We carried out a detailed
analysis of the model parameters and phrase length distribution in translations of the test data
and found that a system trained and tuned on general domain strongly prefers long and few
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phrases in the output translations and therefore underperforms on specific domains where such
phrases do not occur frequently. By contrast, the same systems tuned on specific-domain data
form output translations from shorter phrases, allow more reordering and perform significantly
and consistently better on specific domain data.

We investigated possible solutions for (common) scenarios when no or very little in-domain
data is available for parameter tuning. Skipping tuning, i.e. using the default model parameters,
performs surprisingly well and always outperforms systems tuned on general domain. Based
on this observation, this should be preferred over general domain tuning if the test domain
differs substantially. Cross-domain tuning on a different set also offers a good solution when
no in-domain development data is available, especially when the domains differ in a similar
way (e.g. measured by perplexity). This step has the effect of disassembling the original
general-domain system towards shorter phrases and it does not matter much which different
development set to use.

The analysis of learning curves of the tuning process showed that in-domain tuning of the
general-domain systems requires about 100–200 sentence pairs to achieve decent translation
quality (in terms of BLEU, the gain obtained from tuning on more data was negligible). We
also experimented with limiting the maximum phrase length of decoding. The results showed
that setting this parameter to three is sufficient for translating data from specific domains;
longer phrases in this case do not improve translation quality and increase computational
requirements of the translation systems. The last two results (limiting phrase length and using
sufficient amounts of development data) have efficiency implications of paramount importance
in industrial application scenarios.
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