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ABSTRACT

We study a problem with pairwise ranking optimization (PRO): that it tends to yield too
short translations. We find that this is partially due to the inadequate smoothing in PRO’s
BLEU+1, which boosts the precision component of BLEU but leaves the brevity penalty
unchanged, thus destroying the balance between the two, compared to BLEU. It is also
partially due to PRO optimizing for a sentence-level score without a global view on the
overall length, which introducing a bias towards short translations; we show that letting
PRO optimize a corpus-level BLEU yields a perfect length. Finally, we find some residual bias
due to the interaction of PRO with BLEU+1: such a bias does not exist for a version of MIRA
with sentence-level BLEU+1. We propose several ways to fix the length problem of PRO,
including smoothing the brevity penalty, scaling the effective reference length, grounding the
precision component, and unclipping the brevity penalty, which yield sizable improvements
in test BLEU on two Arabic-English datasets: IWSLT (+0.65) and NIST (+0.37).

KEYWORDS: Statistical machine translation, parameter optimization, MERT, PRO, MIRA.

Proceedings of COLING 2012: Technical Papers, pages 1979-1994,
COLING 2012, Mumbai, December 2012.

1979



1 Introduction

Early work on statistical machine translation (SMT) has relied on generative training using
maximum likelihood parameter estimation. This was inspired by the noisy channel model
(Brown et al., 1993), which asked for calculating the product of two components, a language
model and a translation model, giving them equal weights. As mainstream research has
moved towards combining multiple scores, the field has switched to discriminative tuning
in a log-linear fashion. The standard approach has been to maximize BLEU (Papineni et al.,
2002) on a tuning dataset using a coordinate descent optimization algorithm known as
minimum error rate training (MERT), as proposed by Och (2003).

MERT has dominated the SMT field for years, until the number of parameters in the log-
linear model has gradually increased, in some cases to hundreds and even to hundreds of
thousands of scores, which has called for new tuning algorithms since MERT was unable to
scale beyond just a handful of parameters. Many alternatives to MERT have been proposed
over the years, but it is only recently that some of them have gained popularity in the
community, most notably, the margin infused relaxed algorithm (MIRA) (Chiang et al., 2008)
and pairwise ranking optimization (PRO) (Hopkins and May, 2011).

While the number of parameters that an optimizer can handle has become a major concern
recently, there are many other important aspects that researchers have paid attention
to, e.g., the performance of parameters when translating unseen test data, the speed of
convergence, the stability across multiple reruns, the objective function being optimized
(e.g., BLEU vs. an approximation of BLEU), the mode of learning (e.g., online vs. batch).

Here we study a different, and so far neglected, aspect: the characteristics of the translations
generated using weights found by different optimizers. More specifically, we focus on
the length with respect to the reference translations. It has been observed that while
optimizers like MERT and MIRA typically yield translation hypotheses with the right level of
verbosity, other optimizers such as PRO tend to generate translations that are too short.’
This phenomenon has not been analyzed in sufficient detail so far; yet, it is important since
generating short translation hypotheses is penalized by BLEU, which could mean missed
opportunities for better BLEU scores. Our contributions can be summarized as follows:

e We analyze the length issue with PRO in detail, we explore possible reasons, and we
propose several fixes. We achieve small but consistent improvements in BLEU for fixes
that yield longer hypotheses: up to 0.65 BLEU points absolute. We also find that the
better a fix approximates the target length, the higher the testing BLEU score.

o We find that the core of the problem is the function being optimized: sentence-level
BLEU+1 yields short translations, while corpus-level BLEU yields the right verbosity.

e We demonstrate that what matters is the objective function, not the optimization
algorithm. We show that similar translations — in terms of BLEU score and length —
can be generated using weights from different optimizers, e.g., PRO vs. MIRA, when
they are given the same objective function, e.g., sentence-level vs. corpus-level BLEU.

The remainder of this paper is organized as follows: Section 2 describes related work,
Section 3 explains the length issue with PRO and several methods we propose to fix it,
Section 4 describes our experiments and evaluation results, and Section 5 offers a more
general analysis and discussion. Finally, Section 6 concludes with directions for future work.

I That is why the Moses toolkit has an option to run a few iterations of MERT after PRO — to get the length right.
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2 Related Work

The dominant approach for parameters optimization in SMT is to use MERT (Och, 2003),
a batch tuning algorithm that iterates between two modes: (i) generating a k-best list of
translation hypotheses using the current parameters values, and (ii) parameter optimization
using the k-best lists from all previous iterations. MERT optimizes expected BLEU. It works
well for a small number of parameters, but suffers from scalability and stability issues (Foster
and Kuhn, 2009). Most importantly for our discussion, it tends not to have length biases;
this is also confirmed by our own experiments (see Table 4).

Various alternatives to MERT have been proposed, motivated primarily by scalability consid-
erations. One popular alternative is MIRA (Watanabe et al., 2007; Chiang et al., 2008, 2009),
which is a perceptron-like online tuning algorithm with passive-aggressive updates. It uses
an approximation to BLEU, where a sentence is scored in the context of a pseudo-document
formed from the n-gram statistics for the last few updates. MIRA can scale to thousands of
parameters and generally has no length bias (see Table 4).

Another recent, but already popular alternative to MERT is PRO (Hopkins and May, 2011),
which models parameter tuning as pairwise ranking optimization. This is a batch tuning
algorithm, which iterates between translation and optimization, just like MERT, but scales
to thousands of parameters. It uses an add-one smoothed sentence-level version of BLEU,
known as BLEU+1 (Lin and Och, 2004), and suffers from a length bias: the parameters it
finds yield translations that are too short compared to the references (see Table 4). Exploring
the reasons for this bias and proposing ways to solve it is the main focus of this paper.

There are many other tuning strategies, which fall outside of the scope of the current study,
but to many of which some of our general finding and conclusions should apply. This
includes improved versions of some of the above-mentioned algorithms, e.g., a batch version
of MIRA (Cherry and Foster, 2012), or a linear regression version of PRO (Bazrafshan et al.,
2012), but also many original algorithms that use a variety of machine learning methods
and loss functions. We refer the interested reader to some excellent recent overviews:
(McAllester and Keshet, 2011; Cherry and Foster, 2012; Gimpel and Smith, 2012).

To the best of our knowledge, no prior work has tried to study the reasons for the length
bias of optimizers like PRO. However, researchers have previously expressed concerns about
sentence-level BLEU+1, and some have proposed improvements, e.g., He and Deng (2012)
used different smoothing for higher-order n-grams, unclipped brevity penalty, and scaled
reference length. However, this was not done for the purpose of studying the length bias of
PRO; moreover, as we will see below, the use of BLEU+1 is not the only reason for this bias.

3 The Length Bias with PRO
We explore the following hypotheses about the length bias with PRO:

e PRO’s optimization: The bias could be due to the optimization mechanism of PRO.

e BLEU+1: PRO uses BLEU+1, where the add-one smoothing is applied to the precision
component but does not touch the brevity penalty, which introduces an imbalance.

o Sentence-level optimization: PRO uses a (smoothed) sentence-level BLEU instead
of corpus-level BLEU, which could make it hard to get the global corpus length right.
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3.1 Possible Reason 1: The Optimization Mechanism of PRO

PRO is a batch optimizer that iterates between (i) translation: using the current parameter
values, generate k-best translations, and (ii) optimization: using the translations from all
previous iterations, find new parameter values. The optimization step has four substeps:

1. Sampling: For each sentence, sample uniformly at random I' = 5000 pairs from the
set of all candidate translations for that sentence from all previous iterations.

2. Selection: From these sampled pairs, select those for which the absolute difference in
their BLEU+1 scores is higher than a = 0.05.

3. Acceptance: For each sentence, accept the = = 50 selected pairs with the highest
absolute difference in their BLEU+1 scores.

4. Learning: Assemble the accepted pairs for all sentences into a single set and use it to
train a ranker to prefer the higher-scoring sentence in each pair.
While sampling is unlikely to introduce a bias, selection and acceptance could do so.

Selection could filter too many pairs for some of the sentences, leaving for them less than =
pairs for the acceptance step; such sentences would be under-represented compared to those
for which there are Z pairs accepted. If these under-represented sentences are generally
longer then their references, this could yield a bias towards shorter translations.

Similarly, by focusing on the pairs with the highest differentials, the acceptance step would
over-represent pairs with big differences in sentence lengths, e.g., a sentence that is extremely
long/short compared to the reference would have a very low BLEU+1 score, and thus it will
have a high differential when paired with any other sentence. If at some iteration, the k-best
list is populated with overly long sentences, they would keep getting accepted in subsequent
iterations of PRO, and thus the classifier will keep learning that being shorter is better.

Given the above discussion, we propose the following experiments with PRO:

e PRO, no threshold. At the selection step, keep everything, i.e., no selection step.

e PRO, random accept. At the acceptance step, accept the pairs at random, as opposed
to accepting those with the highest differentials in BLEU+1, i.e., no acceptance step.

e PRO, no threshold, random accept. Combination of the previous two.

3.2 Possible Reason 2: BLEU+1

The other possible reasons are related to BLEU; thus, we should have a look at its definition:
1
N N
BLEU = BP - (l_[pn) (1
n=1

BLEU has two components: (1) brevity penalty (BP), and (2) precision component (PC),
the geometric mean of n-gram precisions p,, 1 < n < N. The BP is defined as follows:

1 ifc>r
BP = exp(l—f) ifc<r @)

where c is the length of the candidate, and r is the effective reference corpus length.
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BLEU is defined at the corpus-level, and p,, r and c are sums over all corpus sentences:
- b=
the references for sentence i, and h;, is the number of n-grams in the hypothesis;?
e ¢ =Y. ¢;, where ¢; is the length of the candidate translation for sentence i;
e r =Y. r;, where r; is the reference length for sentence i; in case of multiple reference
translations, this is the closest reference sentence length.

, where m;,, is the number of n-gram matches between a translation and

While BLEU is defined at the corpus level, PRO works at the sentence level and thus needs to

optimize sentence-level BLEU for each sentence i. Such a version of BLEU can be obtained
by redefining p,, r and c to look at sentence i only: p, = Z’l", c=c,andr=r;.

in

Using such a sentence-level version of BLEU is problematic though since it can easily become
zero. This is because of the product of n-gram precisions in the geometric mean of the
precision component of BLEU: if some p,, is zero, the whole product will be zero. In particular,
it is easy to see that BLEU will be zero for any hypothesis without 4-gram matches. This is
undesirable for optimization purposes since it does not allow to distinguish (a) a hypothesis
translation that has no matches at all from (b) one that has unigram, bigram and trigram
matches but no 4-gram matches; intuitively, the latter should be preferred over the former.

A popular strategy to solve the problem, which is also adopted by PRO, is to use an add-one

smoothed version of BLEU, called BLEU+1, where p,, is redefined as follows: p, = ':L:ll

There are two observations we can make about BLEU+1: (i) while it alters the precision
component, it leaves the brevity penalty unchanged, and (ii) it is strictly positive.®

Let us start with the first observation. Adding one to m;, implies the need to add an extra
n-gram to the reference translation — an n-gram that matches the candidate translation.
This can be seen in the extreme case of a perfect match between the hypothesis and the
reference: then, the additional match between the hypothesis and the reference, which is
accounted for in m;,, would also require an additional word in the reference. However, the
brevity penalty is not altered to account for this additional n-gram. Consider the special case
of unigrams: if we assume that the reference contains an extra unigram, then it should be
longer by one word. And vice versa, adding one extra word to the reference would increase
the number of n-grams it contains by one for each n, 1 < n < N, which is exactly what
BLEU+1 assumes in its precision smoothing.

Let us try to analyze the impact of BLEU+1 on the hypothesis length. We have seen that
BLEU+1 sees the precision component of a longer reference, but it pays the brevity penalty
with respect to a shorter one. Because BLEU+1 boosts the precision component while
leaving the BP intact, the relative weight of BP decreases compared to the original BLEU.
This means that there could be potential gain from staying shorter if this can boost precision
even further: the BP price to be paid for this would be relatively lower than it was in BLEU.
Thus, high-scoring shorter hypotheses are more likely with BLEU+1 than with BLEU.

2 More precisely, let g, be an arbitrary n-gram, and let #.(i, g,) be the number of times g,, occurs in the candidate
translation for sentence i. Let also #,(i, g,) be the maximum number of occurrences of g, in any reference
translation for sentence i. Then, we can define m;,, = Zgn min(#c(i, n)s #r(i,g,,)) and h;, = Zgn #:(1,8n)-

3While BLEU+1 in PRO is strictly positive, there are definitions in the literature that allow it to become zero,
e.g., Lin and Och (2004) do not smooth the unigram counts, which makes BLEU+1 zero in case of no matches at
all. Experimenting with their version of BLEU+1 is left for future work; it would still need a fix for BP though.
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Let us now consider the second observation: that BLEU+1 is strictly positive. While there is
nothing wrong with this per se, it suggests a different way to restore the balance between
BP and PC: by “grounding” BLEU+1 so that it is zero when there are no matches at all.
This can be achieved by subtracting from the precision component of BLEU+1 the score for

that component when there are no matches. Thus, the “grounded” precision component of
1

BLEU+1 changes from PC = (l_[N m‘"“)ﬁ toPC = (l_[N Dt )ﬁ - (l_[N ! )ﬁ.

n=1 h;,+1 n=1 h; +1 n=1 h; +1
Given the above discussion, we propose the following fixes for the sentence-level BLEU+1:

e BLEU, PC-unsmoothed. Just use BLEU. The idea is that if add-one smoothing in
BLEU+1 is causing length problems, they should go away if unsmoothed BLEU is used
instead. While unsmoothed BLEU will make many pairs of hypotheses indistinguish-
able, both having a score of zero, many other pairs with at least one non-zero-score
hypothesis will still remain, and they should be enough to train the classifier of PRO.
BLEU+1, grounded. “Ground” the PC of BLEU+1 by subtracting from it its value
when there are no matches. Given the asymmetry of add-one smoothing in BLEU+1,
which boosts the PC for shorter sentences more than for longer ones for the same
number of matches, “grounded” BLEU is slightly more biased towards longer sentences.
BLEU+1, BP-smoothed. Use add-one smoothing not only for the precision component
but also for the length of the reference translation, i.e., use r = r; + 1, in addition to

Pn= ':"”:11 . The idea here is to smooth the PC and the BP consistently, thus maintaining

the balance between them: if we assume an extra n-gram in the reference, then we
should also assume that the reference contains an extra word.

e BLEU+1, BP-smoothed, grounded. Combination of the previous two: smooth the
reference length in BP and also ground the precision component of BLEU+1 .

3.3 Possible Reason 3: Sentence-Level Optimization

Another possible reason for the length issue with PRO could be a bias due to a sentence-
level version of BLEU being optimized as opposed to using a corpus-level BLEU. If, for
whatever reason, being a bit shorter than the reference is preferable to being a bit longer,
e.g., because sentence-level BLEU+1 penalizes longer sentences more than shorter ones, then
the candidate translation for each sentence will try to stay on the short side as opposed to
getting longer than the reference translation. These length differences might be minimal at
the sentence level, but they would accumulate and would eventually yield a larger difference
at the corpus level. The crucial observation is that if each and every sentence looks at its
length in isolation, it would be reluctant to getting longer than its reference (since this
would harm its sentence-level BLEU), even if this could improve corpus-level BLEU.

One possible way to address the problem is to introduce in the sentence-level brevity penalty
information about the ratio of the corpus-level length and the effective reference corpus
length from the previous iteration of PRO. For example, if the corpus length was shorter
than the effective reference corpus length, then we could scale the sentence-level reference
lengths r; on the current iteration accordingly, so that proportionally higher brevity penalty
be paid for being too short; and vice versa, if on the previous iteration the corpus length
was too long, we could scale the reference length so that no penalty be paid for staying
proportionally shorter; this idea was previously explored by He and Deng (2012).
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Another possibility is to unclip the brevity penalty, as proposed by He and Deng (2012), by
allowing it to get bigger than 1, thus effectively becoming a “bonus” for longer sentences. If
there is a bias in sentence-level BLEU+1 towards shorter translations, i.e., longer hypotheses
are penalized by the precision component more heavily than shorter hypotheses are penalized
by BB then turning the brevity penalty into a bonus for longer hypothesis should encourage
them; note, however, that they will still be discouraged by the decrease in the score for the
precision component, which should act as a counter-balance.

Finally, if optimizing sentence-level BLEU causes problems, we could just get rid of it and use
some kind of corpus-level BLEU instead. This is what MIRA does (Chiang et al., 2008): even
though it is an online algorithm and makes updates on a per-sentence basis, it does not use
a sentence-level BLEU, but instead it calculates the BLEU score for the current sentence in
the context of a pseudo-corpus that tracks the n-gram statistics of the model-best derivations
from the last few updates. We could adopt a similar strategy here as well.

Given the above, we propose the following fixes/substitutes for the sentence-level BLEU+1:

e BLEU+1, unclipped. Use an unclipped brevity penalty: BP = exp (1 — E)

e BLEU+1, scaled. Scale the reference length with the inverse length ratio (ILR) from
the previous iteration of PRO, i.e., define r = r;-ILR, where ILR=¢"/r' =, c// Y. !,
where ¢’ and r’ are the corpus-level candidate and reference lengths from the previous
iteration, respectively; we define LR = 1 for the first iteration of PRO.

BLEU+1, unclipped, scaled. Combination of the previous two: BLEU+1 with un-
clipped brevity penalty and also with scaled reference length. This combination is
advocated by He and Deng (2012).*

Corpus-level BLEU, MIRA-style. This is BLEU calculated using a background pseudo-
corpus, similar to the way this is done in MIRA. In our case, this pseudo-corpus
is initialized with an exponentially decaying sum over the sufficient statistics for
the one-best hypotheses from all previous iterations of PRO: taken with a weight
of 0.9 for the last iteration,”> with a weight of 0.92 for the iteration before it, etc.
Then, the BLEU score for a candidate sentence is calculated by adding its sufficient
statistics to the sufficient statistics for the background pseudo-corpus. Each time PRO
samples, selects, and accepts a pair of hypotheses to use for training its classifier,
we immediately update the pseudo-corpus by adding to it the sufficient statistics for
the higher-scoring sentence, i.e., the positive example, in the pair. Thus, while the
pseudo-corpus is initialized with the statistics from previous iterations, it soon gets
dominated by statistics for the positive examples that are being accepted as training
sentence pairs at the current iteration, since there are more of them than there are
one-best hypotheses from previous iterations.® As in MIRA, our pseudo-document
is time-dependent and thus can adjust dynamically to changing sentence lengths by
encouraging or discouraging longer translations depending on what kinds of sentences
have been accepted already.

“He and Deng (2012) further add to the combination a sophisticated smoothing for the precision component;
however, in our experiments, the combination of all three changes to BLEU of theirs did not work well with PRO,
yielding extremely long translations and an absolute loss of seven BLEU points on the NIST datasets.

5The value of 0.9 was found to work well in general, but many other values yielded a similar result since the
BLEU score gets dominated by examples from the current iteration very quickly, making this value irrelevant.

5We only allow up to 25 iterations, which means there could be up to 24 accumulated one-best hypotheses per
sentence, while we accept up to = = 50 pairs per sentence.
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4 Experiments and Evaluation

We compare variations of three parameter optimization algorithms: MERT, PRO, and MIRA.
In all experiments, we use the phrase-based SMT model (Koehn et al., 2003) as implemented
in the Moses toolkit (Koehn et al., 2007), and we report evaluation results over two datasets:
NIST, which has four reference translations, and IWSLT, with a single reference translation.

In order to be able to directly compare the candidate/reference length ratios on the develop-
ment and on the testing datasets, we need to make sure that we use the same tokenization
when calculating BLEU on tuning and on testing. Such differences can arise because many
standard scoring tools, e.g., those of NIST, work on detokenized text, which they retokenize
again internally; this retokenization typically differs from the one used by the SMT system.
As a result, the optimizer and the final scorer would most certainly see different tokeniza-
tions, and more crucially, this could affect the length ratios and thus the brevity penalty.
Thus, we report BLEU scores calculated using the multi-bleu scoring tool, which uses the
supplied tokenization and does no retokenization; we supplied it with references that were
tokenized and truecased using the same models that were used for training and tuning.”

Finally, in order to avoid stability issues, we report results averaged over three runs.

4.1 Experimental Setup

Preprocessing: We tokenized the English side of all bi-texts and the monolingual data for
language modeling using the standard tokenizer of Moses. We further truecased this data by
changing the casing of each sentence-initial word to its most frequent casing in the training
corpus; for lines containing ALL CAPS, we did this for each word. We segmented the words
on the Arabic side using the ATB segmentation scheme: we used MADA (Roth et al., 2008)
for NIST, and the Stanford word segmenter (Green and DeNero, 2012) for IWSLT.

Training. We built separate directed word alignments using IBM model 4 (Brown et al.,
1993), we symmetrized them with the grow-diag-final-and heuristic of Moses, and we
extracted phrase pairs of length up to seven. We scored these pairs using maximum likelihood
with Kneser-Ney smoothing, to build a phrase table with five standard scores: forward and
reverse phrase translation probabilities, forward and reverse lexical translation probabilities,
and phrase penalty. We also built a lexicalized reordering model (Koehn et al., 2005):
msd-bidirectional-fe. For language modeling, we trained a separate 5-gram Kneser-Ney
smoothed model on each corpus (target side of a training bi-text or monolingual dataset);
we then interpolated these models minimizing the perplexity on the target side of the tuning
dataset. Finally, we built a log-linear model including the language model probability, the
word penalty, and the parameters from the phrase and the reordering tables.

Tuning. We tuned the weights in the log-linear model by optimizing BLEU (Papineni et al.,
2002) on the tuning dataset, using MERT, PRO, or MIRA. We allowed optimizers to run for
up to 25 iterations, and we allowed them to extract 1000-best lists for each iteration.

Decoding. On tuning and testing, we dropped unknown words (this has yielded slightly
shorter translations) and we used monotone-at-punctuation decoding (this had no impact
on the translation length). On testing, we further used cube pruning and minimum Bayes
Risk decoding (the latter yielded slightly longer translations).

7still, for comparison purposes, we also report BLEU calculated with respect of the original references using
NIST v13a, after detokenization and recasing of the system’s output (shown in small script in the tables).
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4.2 Datasets

We experimented with the Arabic-English datasets from two machine translation evaluation
campaigns: (1) the NIST 2012 Open Machine Translation Evaluation®, and (2) the IWSLT
2011 Evaluation Campaign on Automatic Talk Translation (Federico et al., 2012).

1. NIST: We trained the phrase and the reordering tables on all training datasets from
NIST 2012 (except for UN), we tuned on MTO06 and tested on MT09. For language
modeling, we built a separate LM from the English side of each training dataset, and
from each year of the English GigaWord; we then interpolated them into a single LM.

2. IWSLT: We trained the phrase and the reordering tables on the TED training dataset, we
tuned on dev2010, and we tested on tst2010. Since there was a small mismatch in the
source/reference length ratios between dev2010 and tst2010, we also experimented
with reversed tuning/testing, tuning on tst2010 and testing on dev2010; this is to see
the impact of the test set length ratio being a bit longer and also being a bit shorter
than the tuning dataset ratio. We used two LMs: one trained on the English side of
TED, and another one that is an interpolation of Europarl and WMT11 News.

4.3 Evaluation Results

We experimented with MERT, MIRA, PRO, and the various fixes thereof that were introduced
in Section 3. The results of these experiments are shown in Tables 1, 2, 3, and 4. In these
tables, the first column describes the method, followed by (1) the BLEU scores and (2) the
length ratio of the candidate corpus-level translation to the effective reference corpus length,
which are calculated (i) for the tuning dataset using multi-bleu,” (ii) for the test dataset
using multi-bleu, and (iii) for the test dataset using the NIST scoring tool v13a.

The most important column in these tables is column three, which reports the candi-
date/reference length ratio for the tuning dataset as calculated using multi-bleu. We
will be observing the impact of the various fixes we propose on this ratio: the closer it gets
to 1.0, the better the fix should be; this will be verified by the value in the following column
four, which shows the BLEU score on the test dataset calculated using multi-bleu.

4.3.1 Testing Possible Reason 1: The Optimization Mechanism of PRO

Table 1 explores possible reason 1 from Section 3, i.e., that there may be a bias in the
optimization mechanism of PRO. It compares the original PRO to (a) PRO with no threshold
for the selection step (default: filter pairs whose difference in BLEU+1 is less than a threshold:
a = 0.05), (b) PRO with random acceptance for the acceptance step (default: accept the
pairs with the highest absolute difference in BLEU+1), and (c) combination of (a) and (b).

We can see in Table 1 that the length ratio in column three stays relatively stable for the
different versions of PRO for all testing datasets. Note, however, the notable exception of
IWSLT for (c), which exhibits a large increase in the length ratio: from 0.958 to 0.967.

Shttp://www.nist.gov/itl/iad/mig/openmt12.cfm

INote that the results for the tuning dataset are obtained not using the BLEU score for the last iteration of the
respective optimizer, but by translating the development set one more time — using the weights that the tuning
algorithm has found. This is because, for some of the optimizers, the final tuning weight calculation might use
weights from previous iterations, e.g., PRO accumulates and interpolates weights, while our version of MIRA,
Batch-MIRA (Cherry and Foster, 2012), returns the weights from the iteration that yielded the highest BLEU score
(using this option was suggested by the authors of Batch-MIRA; we found that it also worked best for our datasets).
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Tune: multi-bleu Test: multi-bleu Test: NIST vi3a

Method BLEU  len ratio | BLEU len ratio || sLev  ien rato
NIST dataset (tune: MT06, eval: MT09)

PRO 45.65 0.981 | 48.45 0.976 || 4780 o978

PRO, no threshold 4562  0.981 | 48.39 g0 0.975 || wrs oo

PRO, accept random 45.55 0.979 | 48.11(_g33) 0.973 || 4745 o7

PRO, no threshold, accept random | 45.58  0.981 | 48.23(_ 9y 0.970 || w750 oors
IWSLT dataset (tune: dev2010, eval: tst2010)

PRO 26.96 0.958 | 26.34 0.965 || 2530 o973
PRO, no threshold 26.94 0.959 26.24(_0‘10) 0.966 2518 0.975
PRO, accept random 26.97  0.958 | 26.29(_g05) 0.965 || 2526 o7

PRO, no threshold, accept random | 26.87  0.967 | 26.29_y0s5) 0.975 || 2524 ooss
IWSLT dataset — reversed (tune: tst2010, eval: dev2010)

PRO 26.08  0.952 | 26.45 0.945 || 2545 o046
PRO, no threshold 26.05 0.952 26'51(+0406) 0.945 2549 0.947
PRO, accept random 26.11 0.953 | 26.48(,003) 0.946 || 2546 o940

PRO, no threshold, accept random | 26.06  0.954 | 26.36(_g9) 0.946 || 2555 094

Table 1: Testing possible reason 1: bias in the optimization mechanism of PRO.

These results are inconclusive but they show that, at least for one dataset, the length bias in
PRO was influenced by its selection and acceptance steps.'® Overall, multi-bleu in column
4 stays stable, with a slight degradation in some cases, which is not surprising and can be
attributed to PRO training its classifier on less reliable examples in these cases — ones with
smaller BLEU+1 differentials, which risks focusing on tiny, unimportant distinctions.

4.3.2 Testing possible Reason 2: Bias in the Smoothing of BLEU+1

Table 2 explores possible reason 2 from Section 3, i.e., that the length issue may be caused
by the smoothing in BLEU+1; see also Section 3.2 for more detail. It compares the results
for the original PRO to a version (a) without smoothing of the precision component, (b) with
grounding of the precision component, (c) with smoothing of the brevity penalty, and
(d) with both BP-smoothing and PC-grounding.

Several interesting observations can be made about this table. First, we can see that using
unsmoothed BLEU instead of BLEU+1 yields consistent improvements of the length ratio
for all datasets; it also improves multi-bleu and NIST v13a scores. This suggests that the
smoothing in BLEU+1 could indeed be one of the causes for the length problem. A similar
trend can be seen for grounded BLEU+1, which performs slightly better, both in terms of
length ratio and in terms of multi-bleu and NIST v13a scores. This suggests that part of the
problem could be the balance between the precision component and the brevity penalty
in BLEU+1: grounding reduces the absolute value of the precision component, which was
inflated by BLEU+1, and thus helps restore a balance between the two components that
is closer to that in BLEU. Moreover, grounded BLEU+1 has the advantage of assigning a
non-zero value to any sentence with at least one unigram match, while unsmoothed BLEU
assigns a zero score to many sentences, which could leave PRO with less training examples.

10 However, there could be other reasons, e.g., the kind of classifier PRO uses, the fact that it samples from all
previous steps, etc.; exploring these possibilities is left for future work.
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Tune: multi-bleu Test: multi-bleu Test: NIST vi3a

Method BLEU  len ratio | BLEU len ratio || BLEv en ratio
NIST dataset (tune: MT06, eval: MT09)

PRO 45.65 0.981 | 48.45 0.976 || 4780 o978

PRO, PC-unsmoothed 45.83 0.987 | 48.58(,013) 0.985 | 4757 osse

PRO, PC-grounded 45.82 0.986 48.62”0‘17) 0.985 47.96  0.986

PRO, BP-smoothed 45.76 0.988 48‘65(4_0‘20) 0.985 4803  0.988

PRO, BP-smoothed, PC-grounded | 45.70  0.992 | 48.79,034) 0.991 || 4s16 o953
IWSLT dataset (tune: dev2010, eval: tst2010)

PRO 26.96  0.958 | 26.34 0.965 || 2520 o097
PRO, PC-unsmoothed 27.05  0.970 | 26.46(,012) 0.979 || 2538 00w
PRO, PC-grounded 27.13  0.975 | 26.48(,0.14) 0.984 || 255 oom
PRO, BP-smoothed 27.10 0.987 26.38”0‘04) 0.995 2521 1.002

PRO, BP-smoothed, PC-grounded | 27.16  0.996 | 26.33(_y 1) 1.004 || 2504 10
IWSLT dataset — reversed (tune: tst2010, eval: dev2010)

PRO 26.08  0.952 | 26.45 0.945 || 2543 o946
PRO, PC-unsmoothed 26.09 0.953 26.49(4_0'04) 0.946 2547 0.947
PRO, PC—grounded 26.24 0.967 26.75(+0'30) 0.959 2571 0.960
PRO, BP-smoothed 26.38 0.991 | 27.10¢4065 0.982 | 2007 o083

PRO, BP-smoothed, PC-grounded | 26.41 1.003 | 27.07(1062) 0.995 || 2004 o009

Table 2: Testing possible reason 2: bias in the smoothing of BLEU+1.

Using add-one smoothing for the brevity penalty of BLEU+1 yields even better results on
NIST and IWSLT-reversed: for IWSLT-reversed, the length ratio jumps from 0.952 to 0.991,
and multi-bleu on the test dataset gains +0.65 absolute. The improvements in the length
ratio are comparable for IWSLT-forward (from 0.958 to 0.987), and are more modest for
NIST (from 0.981 to 0.988), where there is less room for improvement because of the higher
baseline and because of the multiple reference translations. Overall, BP-smoothing works
better than grounding, which suggests that smoothing with add-one both the precision
component and the brevity penalty is a good way to restore the balance between them.

Finally, the combination of BP-smoothing and grounding yields even further improvements in
the length ratios: 0.992 for NIST, 0.996 for IWSLT, and 1.003 for IWSLT-reversed. This adds
+0.14 additional multi-bleu points to NIST, but slightly hurts IWSLT in both directions. This
suggests that while grounding helps improve the balance between the precision component
and ultimately the brevity penalty even further, it does this at the cost of deteriorating the
estimates for the precision component, and thus the result in terms of multi-bleu is mixed.

Overall, as the length ratio gets closer to 1 on tuning, it does so on testing as well; this
typically also yields an improvement in both multi-bleu and NIST v13a — we have achieved
absolute multi-bleu improvements of up to +0.34 for NIST and +0.65 for IWSLT-reversed.

4.3.3 Testing Possible Reason 3: Sentence-Level Optimization

Table 3 explores possible reason 3 from Section 3, i.e., that the length issue may be due
to sentence-level optimization. It compares the results for the original PRO to a version
that (a) scales the reference length with the inverse document-level length ratio from the
previous iteration of PRO, (b) unclips the brevity penalty, and (c) a combination thereof.
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Tune: multi-bleu

Test: multi-bleu

Test: NIST vi3a

Method BLEU len ratio BLEU len ratio || BEU e ratio
NIST dataset (tune: MT06, eval: MT09)

PRO 45.65 0.981 48.45 0.976 || 4750 o097

PRO, scaled 45.72  0.984 | 48.50(,00s5) 0.979 4787 0981

PRO, unclipped 45.78 0.992 48.81”0‘36) 0.990 48.18  0.992

PRO, unclipped, scaled | 45.83  0.993 | 48.82(,937) 0.991 || 410 oo

IWSLT dataset (tune: dev2

010, eval: tst2010)

PRO 2696 0.958 26.34 0.965 || 2530 o9
PRO, scaled 27.07 0.975 26.39(4_0'05) 0.984 2531 0.991
PRO, unclipped 26.54 1.024 25.63(70'71) 1.035 24.34  1.040
PRO, unclipped, scaled | 26.38  1.030 | 25.43(_g9y)  1.042 || 2014 10

IWSLT dataset — reversed (tune:

tst2010, eval: dev2010)

PRO 26.08  0.952 26.45 0.945 || 2543 o046
PRO, scaled 26.29 0.972 26.75(4_0‘30) 0.962 2573 0.963
PRO, unclipped 25.65 1.033 26.40(_0‘05) 1.021 2534 1.021
PRO, unclipped, scaled | 25.53 1.037 26-09(—0.36) 1.028 2502 1.028

Table 3: Testing possible reason 3: sentence-level optimization.

We can see that scaling does a great job at improving the length ratio, especially for IWSLT
(in both directions), where it improves from 0.958/0.952 to 0.975/0.972; the effect is more
limited for NIST - from 0.981 to 0.984, probably because of the higher baseline and due to
the multiple reference translations. Scaling also yields small but consistent improvements in
the multi-bleu/NIST-v13a scores on the tuning and the test datasets: up to +0.30 multi-bleu
for IWSLT-reversed (but only +0.05 on the other two datasets).

We can further see that unclipping the brevity penalty in BLEU+1 yields a much larger
increase in the length ratio, but this has mixed effect on the multi-bleu score: for NIST, the
length ratio improves from 0.981 to 0.992, which yields a gain of +-0.36 multi-bleu points
absolute, but for IWSLT, the ratio jumps over 1, which yields a drop in the multi-bleu score.

The combination of unclipping and scaling yields an even higher length ratio, which helps
NIST a bit, but hurts IWSLT even further as its length increases even more over 1.

Next, we experimented with sentence-level vs. corpus-level BLEU for PRO. The results are
shown in Table 4. We can see that switching to corpus-level BLEU (calculated with respect
to a pseudo-document, similarly to MIRA; see Section 3) yields a perfect length ratio of 1
on all tuning datasets, which is on par with the length ratios of MIRA and MERT, which also
optimize corpus-level BLEU. This also improves the tuning multi-bleu for all datasets, and
the testing multi-bleu by 4+0.14 for NIST and by +0.29 for INSLT-reverse; however, there is
a drop of -0.14 for IWSLT-forward because of a test length ratio that goes over 1 — due to a
difference in the source/target length ratios between the tuning and the test sets for IWSLT.

We further tested the impact of doing the reverse: plugging a sentence-level BLEU+1 score
as an objective in a corpus-level optimizer that generally has no length bias — MIRA. The
results are shown in Table 4. We can see that MIRA with sentence-level BLEU+1 yields
short reference translations just like PRO. This suggests that optimizing for sentence-level
BLEU+1 yields short translations, regardless of the optimizer that is being used.
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Tune: multi-bleu | Test: multi-bleu || res: nstviza || Avg. sent-BLEU

Method BLEU lenratio | BLEU lenratio || siev ienraio tune test
NIST dataset (tune: MTO06, eval: MT09)
PRO 45.65 0.981 48.45 0.976 4780 0.978 46.20 47.75

MIRA, sent-BLEU+1 | 45.51 0.986 | 48.18 0.983 ws2 osss || 46.07  47.40
PRO, corpus-BLEU 45.83 1.000 | 48.59 0.999 | w8 1o; 45.83 47.59

MIRA 4526 1.006 | 48.26 1.006 || 4 1000 || 45.52 47.36

MERT 45.58 0.997 | 48.48 0.997 || 4772 o99s 45.56 47.44
IWSLT dataset (tune: dev2010, eval: tst2010)

PRO 26.96 0.958 | 26.34 0.965 2530 0973 32.03 31.43

MIRA, sent-BLEU+1 | 26.93  0.983 | 25.81 0.994 || 262 o9 || 31.64 30.69
PRO, corpus-BLEU 27.06 1.000 | 26.20 1.011 us w07 || 31.50 30.89

MIRA 27.28 1.002 26.09 1.012 2478 1017 31.62 30.85

MERT 27.24 1.005 25.84 1.017 2453 1020 31.63 30.68
IWSLT dataset — reversed (tune: tst2010, eval: dev2010)

PRO 26.08 0.952 26.45 0.945 2543 0.946 31.35 31.70

MIRA, sent-BLEU+1 | 26.25 0.974 26.75 0.965 2569 0.966 31.37 31.97
PRO, COI])US-BLEU 26.15 1.000 26.74 0.989 2572 0.990 30.73 31.12
MIRA 26.54 0.998 | 27.09 0.988 || 208 oo | 31.16 31.71
MERT 26.33  1.003 | 26.88  0.992 || s o0 | 30.94 31.43

Table 4: Sentence-level vs. corpus-level BLEU: experiments with PRO, MIRA, and MERT.

Note, however, that the length ratio with sentence-level MIRA does not drop all the way
down to that of PRO, which also uses sentence-level optimization; this suggests once again
that part of the bias may be coming from the optimization mechanism of PRO (which we
have explored above as possible reason 1). This difference is larger for IWSLT than for NIST,
which means that this bias is less pronounced with multiple reference translations.

The last two columns in Table 4 show the average sentence-level BLEU score, calculated for
the tuning and the testing datasets. We can see that, on the tuning dataset, sentence-level
optimizers score consistently higher than corpus-based ones on sent-BLEU, but they are
not very competitive on corpus-BLEU; this suggests a mismatch of objectives. Note, also
the relatively big difference between corpus-BLEU (i.e., multi-bleu — columns 2 and 4)
and sent-BLEU (which uses no smoothing — columns 8 and 9) for IWSLT (about 4-5 BLEU
points absolute), and the much smaller difference for NIST (0-1 BLEU points). One possible
explanation is that with multiple references, average sent-BLEU approximates corpus-BLEU
better; this is yet another possible reason for the length issue with PRO being less pronounced
with NIST compared to IWSLT.

5 Discussion

Our experiments suggest that the length issue of PRO is due primarily to optimizing for
sentence-level BLEU+1, which (i) cannot “see” the global length ratio, and (ii) uses a
biased smoothing in BLEU+1, which boosts the precision part of the score, but leaves the
brevity penalty intact, thus destroying the balance between the two. This is confirmed by an
experiment where we plugged sentence-level BLEU+1 in MIRA. We have also found that
part of the bias may be coming from the optimization mechanism of PRO.
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We have proposed a number of ways to fix the length ratio of PRO by fixing BLEU+1, some of
which have worked fairly well, e.g., smoothing the brevity penalty and scaling the effective
reference length. Other fixes such as grounding the precision component and unclipping the
brevity penalty were less helpful. Moreover, some combinations thereof have yielded too
long length ratios, which had a negative impact on multi-bleu for IWSLT, but not for NIST.

Given our experimental results, we cannot make a universal recommendation about which
fixes would work best for all datasets, but, in practical terms, we would recommend trying
different fixes and choosing the one for which the length ratio is closest to 1 on the tuning
dataset. Following this advice for Tables 2 and 3, we would select BLEU+1 with unclipped
BP and scaled reference length for NIST (tuning length ratio of 0.993), and BLEU+1 with
BP-smoothing and PC-grounding for IWSLT (tuning length ratio of 1.003), yielding +0.37
multi-bleu for NIST and +0.62 for IWSLT-reversed on the test dataset.

Coming back to our title: optimizing for sentence-level BLEU+1 yields short translations.
This is true for the tuning dataset that the optimizer sees, but we can make no claims about
the lengths of the test-time translations. This is because they can differ from the tuning set a
lot in terms of verbosity, and the optimizer has no control over this.!! However, if the tuning
and the testing datasets have similar source/reference ratios (which is the best guess in the
absence of other information), we expect that the claim would also hold for the test set.!?

6 Conclusion and Future Work

We hope that the present study will be useful for those who want to use optimizers such as
PRO and MIRA, which can handle many features, but feel frustrated that certain idiosyn-
crasies cause MERT to still yield the best test BLEU scores in certain cases. Here we have
pointed out that one cause for this are poor length ratios in the resulting translations, which
we have attributed to the use of sentence-level BLEU+1 as an objective function. We have
thus suggested a number of simple modifications, which do improve the length ratio in
practice, ultimately yielding better BLEU scores, while also preserving the sentence-level
nature of BLEU+1, which makes optimizers simpler conceptually and implementation-wise.

In future work, we plan a more systematic study of the relationship between optimizers
and objective functions with respect to the target/reference length ratio, which would be
extended with other optimizers such as TER (Snover et al., 2006) and METEOR (Lavie and
Denkowski, 2009). Overall, we see two promising general directions in which the present
study can be extended. First, explore the relationship between sentence-level and corpus-
level optimization and the possibility to combine them. Second, study the characteristics of
translations generated using weights from different optimizers: while here we have only
touched length, we believe there are many other important aspects that are worth exploring.
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For example, the average source/reference length ratio for our NIST tuning dataset MTO6 is 1.248, which is
very close to that for MT09, which is 1.252, and thus translation/reference length ratios are very close as well;
however, this is not so for MT05, where the source/reference ratio is only 1.183; thus, tuning on MT06 and
testing on MTO5 yields translations that are too long even for standard PRO. There is also some imbalance in the
source/reference length ratios of dev2010 vs. tst2010 for IWSLT, and thus we experimented with reversing them.

12The internal scoring tool segmentation and the recasing have an influence as well; though, we have seen in
columns 6-7 of all tables that (1) the length ratios are quite close, and (2) the relative improvements in terms of
BLEU are quite correlated for multi-bleu and for the NIST scoring tool v13a.
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