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ABSTRACT
One of the main issues in a word alignment task is the difficulty of handling function words that
do not have direct translations which we call unique function words. They are often aligned
to some words in the other language incorrectly. This is prominent in language pairs with very
different sentence structures. In this paper, we propose a novel approach for handling unique
function words. The proposed model monolingually derives unique function words from bilin-
gually generated treelet pairs. The monolingual derivation prevents incorrect alignments for
unique function words. The derivation probabilities are estimated from a large monolingual
corpus, which is much easier to acquire than a parallel corpus. Also, the proposed alignment
model uses semantic-head dependency trees where dependency relations between words be-
come similar in each language. Experimental results on an English-Japanese corpus show
that the proposed model achieves better alignment and translation quality compared with the
baseline models.

TITLE AND ABSTRACT IN JAPANESE

二言語の生成と単言語の派生によるアライメント
単語アライメントタスクにおける主な問題の一つは、機能語の中でも相手言語に対応する語
が存在しない機能語の扱いの困難さである。我々はこのような語を孤立機能語と呼ぶ。孤立
機能語は、相手言語の何らかの単語に不適切に対応付けられることが多く、これは特に文構
造が大きく異なる言語対において顕著である。本論文では、孤立機能語を扱うための新しい
手法を提案する。提案モデルは、二言語で生成された部分木ペアから、孤立機能語をそれぞ
れ単言語で派生することにより、孤立機能語が誤って対応付けられることを防ぐ。派生確率
は、対訳コーパスに比べて入手が容易である大規模単言語コーパスから推定する。また提案
モデルは、単語同士の依存関係が各言語で近くなるように、意味主辞依存構造木を用いる。
英日コーパスでの実験結果から、提案モデルはベースラインモデルと比べてより良いアライ
メントおよび翻訳精度を実現した。

KEYWORDS: monolingual derivation, semantic-head dependency tree, treelet alignment.

KEYWORDS IN JAPANESE: 単言語の派生,意味主辞依存構造木,木構造アライメント.
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1 Introduction

Alignment accuracy is crucial for providing high quality corpus-based machine translation sys-
tems because translation knowledge is acquired from an aligned training corpus. For similar
language pairs, alignment accuracy is high. Less than 10% alignment error rate (AER) for
French-English has been achieved by the conventional word alignment tool GIZA++, an im-
plementation of the alignment models called the IBM models (Brown et al., 1993), with some
heuristic symmetrization rules. However, for distant language pairs such as English-Japanese,
the conventional alignment method is quite inadequate (achieving an AER of about 20%).

There are two main issues in a word alignment task for distant language pairs: one is the
word order difference, while the other relates to function words. The word order issue
has to some extent been solved by using word dependency trees in the alignment model
(Nakazawa and Kurohashi, 2011). Most of the remaining alignment errors are related to func-
tion words such as English articles and Japanese case markers (Wu et al., 2011) because they
do not have counterparts in the other language. As an example, most of the errors in Figure 1
are related to function words: “has” and “は (topic-marker)” in example (A), and “although”,
“は (topic-marker)”, “を (ACC)” and “が (but)” in example (B).

Several previous works focused on alignment errors of function words. Isozaki et al. (2010)
inserted pseudo nodes in English sentences for Japanese function words. Wu et al. (2011)
removed the alignment of some function words to effectively acquire translation rules using
the underlying word alignment by GIZA++. Nevertheless, these methods for dealing with
function words are ad-hoc and based on hand-crafted rules.

In this paper, we propose a novel approach for handling function words. If there is a direct
translation for a function word, these words should be aligned with each other. For function
words that do not have any counterparts, the conventional model is supposed to align them
to NULL, but it does not always work well. They are often aligned to some words incorrectly.
In contrast with the conventional model, our model derives such function words from content
words in their own language. The derivation probabilities used in our proposed model are
estimated from a large monolingual corpus for each language. Thus, we do not require a
large parallel corpus. With this derivation model, we can reduce alignment errors for function
words, which leads to a better translation resources such as a phrase table, which is acquired
from a word-aligned parallel corpus. In the remainder of this paper, we use English-Japanese
language pairs for explanation. However, it should be noted that the proposed model is com-
pletely language independent.

2 Semantic-head dependency tree
The proposed model utilizes word dependency trees on both the source and target
sides. Dependency trees are effective for language pairs with very different word orders,
such as English-Japanese, to achieve high quality alignment by absorbing the difference
(Nakazawa and Kurohashi, 2011). There are two types of word dependency trees: syntactic-
head and semantic-head. Our model adopts the latter. This section discusses the difference
between syntactic-head and semantic-head, and the reason why we choose the semantic-head
dependency tree.

The syntactic-head dependency tree has two main drawbacks. One is that distances between
content words are excessively large for agglutinative languages such as Japanese. The other
is that dependency relations differ because of the difference in head word definitions in each
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Figure 1: Alignment results of Nakazawa and Kurohashi (2011). Black boxes depict the system
output, while dark blue (Sure) and light blue (Possible) cells denote gold-standard alignments.
Cells demarcated by dotted lines are alignment errors related to function words.

language. On the other hand, in semantic-head dependency trees, function words giving ad-
ditional information to content words are placed as children of the content words, thus it
preserves the dependency relations between words over languages. In the semantic-head de-
pendency tree (on the right of Figure 2), “medical treatment↔ 治療”, “may↔ かも しれ
ない”, “not↔ ない” and “weight↔ 体重” are all children of “change↔ 変化”, while the
relations are not preserved in the syntactic-head dependency tree (on the left of Figure 2).
Because of these advantages, our model uses semantic-head dependency trees.

In this paper, English sentences are first parsed by nlparser (Charniak and Johnson, 2005)
which outputs phrase structures that are then converted into word dependency trees by defin-
ing the head word for phrases. The conversion rules follow Collins’ head percolation table
(Collins, 1999) with some modifications for acquiring semantic-head dependency trees. The
following head-specifying rules are examples in which the syntactic head (underlined) and the
semantic head (double underlined) is different.

• VP → MD VB (ex. "may change" in Figure 2)

• VP → VBZ JJ (ex. "is large")

Japanese sentences are usually parsed based on a unit called a basic phrase, which consists
of one content word followed by zero or more function words. In syntactic-head word de-
pendency trees, on the left of Figure 2, the head word is the last function word (or the
content word if there is no function word in a basic phrase), and other words depend on
their following words (Hajič et al., 2009). In semantic-head dependency trees, while func-
tion words showing a relationship between content words such as case markers are placed as
parents of content words, other function words are placed as children. We obtain semantic-
head dependency trees by modifying the rule file of the Japanese dependency analyzer KNP
(Kawahara and Kurohashi, 2006b).
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Figure 2: Examples of syntactic-head (left) and semantic-head (right) dependency trees. The
root of the tree is at the extreme left and words are placed from top to bottom. Japanese
content words are indicated by “*”.

Several related studies use the semantic-head dependency trees in machine translation
(Hong et al., 2009; Xu et al., 2009). They use English-side semantic-head dependency trees
for pre-reordering of English sentences in order to make the word order closer to that of
Subject-Object-Verb language sentences. The closer the word order is, the easier it is to train
the model. However, certain hand-crafted rules are needed for reordering, and pseudo words
are used to take care of function words. Compared with these studies, our proposed model uses
semantic-head dependency trees on both sides and does not reorder sentences, and therefore
it does not require any hand-crafted rules or pseudo words.

3 Handling function words
Although each language has a closed set of function words, the variety of function words differs
between languages. For example, in Figure 2, some function words have direct translations in
the other language (“may↔かもしれない”, “not↔ない” and “but↔が”), while others do
not (“the”, “は (topic marker)” and “により (by)”). The first case is less problematic, and any
alignment model can correctly detect the link. The second case represents the issue addressed
in this paper. We call function words that do not have direct translations unique function words.

One solution, adopted by almost all the existing alignment models, is to align unique function
words to NULL. However, it is difficult to judge whether a unique function word has to be
NULL-aligned or not, and often causes alignment errors as shown in Figure 1. Also, the NULL-
aligned words behave as gaps between aligned words, making it harder to capture relations
between aligned words. In Figure 2, “により (by)” is a gap between “治療 (medical treatment)”
and “変化し (change)” whereas counterparts have a direct parent-child relation.

Another solution is to enhance the alignment model so as to handle a larger unit than a word,
and include the unique function words in neighboring alignments. For example, “weight↔
体重” can include the Japanese “は (topic marker)” and become “weight↔ 体重 は”. How-
ever, this solution can lead to a less appropriate parameter estimation for an alignment model
because “weight↔体重” and “weight↔体重は” are treated as different alignment patterns
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while the two patterns have essentially no difference.

The novel solution to this problem proposed in this paper is to derive unique function words
from neighboring words monolingually. In the monolingual derivation model, “は (topic
marker)” can be derived from “体重 (weight)” without changing the original treelet pair “weight
↔体重”, and therefore the model achieves good estimation of parameters. Note that it is also
possible to derive “は (topic marker)” from “変化 し (change)” because they are contiguous
in the tree structure. Another advantage of the monolingual derivation model is that it can
reduce the gaps between alignments, and preserve the dependency relations between treelets
over languages. For example, the model can derive “により (by)” from “変化し (change)” or “
治療 (medical treatment)” and let the dependency relation between “変化し (change)” and “治
療 (medical treatment)” be direct parent-child like their English counterparts. This is effective
for estimating the dependency relation probability described in Section 4.3.

4 Model overview
The proposed model is an extension of that proposed by Nakazawa and Kurohashi (2011). This
earlier model was overcoming the long-distance reordering issue by incorporating dependency
trees. However, it was suffering from alignment errors for function words, which our new
model solves by incorporating a monolingual derivation model. First we describe the generative
story for the joint alignment model in the same manner as in previous work (Marcu and Wong,
2002; DeNero et al., 2008; Nakazawa and Kurohashi, 2011).

1. Generate ℓ concepts from which bilingual treelet pairs are generated independently.
2. For each treelet pair, derive zero or more treelets monolingually from each treelet in the

treelet pair.
3. Combine the treelets in each language so as to create parallel sentences.

The number of concepts ℓ (> 0) is parameterized using a geometric distribution

P(ℓ) = p$ · (1− p$)
ℓ−1 (1)

where p$ is a constant. Each concept generates a bilingual treelet pair from an unknown
distribution θT . We call the treelet pair the core alignment denoting it as 〈eC , fC〉. Either one
of the treelets in a treelet pair can be NULL, which represents an unaligned treelet. Unaligned
treelets must be composed of exactly one word (NULL-alignment restriction).

Each treelet eC and fC derives sets of treelets {deC
} and {d fC

} monolingually which basically
consist of unique function words. The numbers of monolingual derivations |{deC

}| and |{d fC
}|

(≥ 0) are parameterized using a geometric distribution

P(|{deC
}|) = pd · (1− pd)

|{deC
}|, P(|{d fC

}|) = pd · (1− pd)
|{d fC
}| (2)

where pd is a constant. Each derivation is drawn from a known multinomial distribution ϕeC

and ϕ fC
, as explained in Section 4.2. We use the notation e to represent the combination of eC

and {deC
}, and f for fC and {d fC

}. Thus 〈e, f 〉 contains 〈eC , fC 〉, {deC
} and {d fC

}.
Finally, the treelet pairs are combined in each language. We denote the relation of treelets on
the e-side as DE = {( j → k)}, where ( j → k) denotes that treelet e j depends on treelet ek,
and on the f -side as DF . D refers to DE and DF as a whole. With these notations, the joint
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Figure 3: Example showing the calculation of the bilingual generation probability and mono-
lingual derivation probability.

probability for an aligned sentence pair is defined as:

P(ℓ, {〈e, f 〉}, D) = P(ℓ)·P(D|{〈e, f 〉})·
∏
〈e, f 〉


θT (〈eC , fC 〉) · P(|{deC

}|) ·
∏
deC

ϕeC
(deC
) · P(|{d fC }|) ·
∏
d fC

ϕ f (d fC )


 .

(3)

In Figure 3, we show an example of the calculation of bilingual generation probability and
monolingual derivation probability for each treelet pair (ignoring P(|{deC

}|) and P(|{d fC
}|) for

ease of understanding). For the core alignment 〈not, ない 〉, there is no derivation, and only
bilingual generation probability θT (〈not,なかった 〉) is used. For 〈change, 変化 〉, there are
two derivations from “変化 (change)”; “により (by)” and “し (light verb)”. Therefore, we need
to calculate two monolingual derivation probabilities in addition to the bilingual generation
probability.

The remainder of this section gives the details of the bilingual generation probability θT , mono-
lingual derivation probability ϕ and dependency relation probability P(D).

4.1 Bilingual generation probability

When generating bilingual treelets, we first need to decide whether to generate an unaligned
treelet (with probability pN ) or an aligned treelet pair (with probability 1−pN ). Aligned treelet
pairs are generated from an unknown probability distribution θA, which obeys the Dirichlet
process (DP):

θA(〈eC , fC 〉) ∼ DP(MA,αA), (4)
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where MA is the base distribution and αA is a concentration parameter. The base distribution
is defined as:

MA(〈eC , fC〉) = [Pe(eC)PWA( fC |eC) · Pf ( fC)PWA(eC | fC)]
1
2

Pe(eC) = pt · (1− pt)
|e|−1 ·
� 1

ne

�|eC |
Pf ( fC) = pt · (1− pt)

| f |−1 ·
� 1

n f

�| fC |
, (5)

where PWA is the translation probability computed by IBM model1 (Brown et al., 1993), and
ne and n f are the numbers of word types in each language. θA does not give a weight to an
unaligned treelet.

Unaligned treelets are generated from another unknown probability distribution θN :

θN (〈eC , fC〉) ∼ DP(MN ,αN )

MN (〈eC , fC〉) =

¨
PWA(eC |NULL) if fC = NULL

PWA( fC |NULL) if eC = NULL
.

(6)

θN does not give a weight to an aligned treelet pair. Note that an unaligned treelet is always
composed of only one word in our model. Finally, θT can be decomposed as:

θT (〈eC , fC〉) = pNθN (〈eC , fC〉) + (1− pN )θA(〈eC , fC 〉). (7)

The earlier study (Nakazawa and Kurohashi, 2011) only considered treelets as alignment
units. However, this is inadequate for semantic-head dependency trees, since a set of sib-
ling function words is often considered as an alignment unit. In Figure 2, for example, sibling
“かも しれ ない (may)” in Japanese should be aligned to the English “may”. Therefore, our
model allows siblings to be a core alignment unit when the siblings are contiguous in the word
sequence. We suppose the term “treelet” includes siblings in this paper.

4.2 Monolingual derivation probability
We only explain the e-side derivations in this section, since the f -side is the same. We calculate
the monolingual derivation probability using a large monolingual corpus. Derivations deC

are
conditioned on the treelet eC from which they were derived:

ϕe(deC
) = p(deC

|eC). (8)

For example, ϕmedical t reatment(the) = p(the|medical treatment). However, using a treelet as
a condition is vulnerable to the data sparseness problem. We use an anchor word in eC as
the condition instead of eC . The derivation is connected to the anchor word in the word
dependency tree:

p(deC
|eC)≈ p(deC

|A(eC , deC
)). (9)

The function A(eC , deC
) returns the anchor word in eC for deC

. For example,
A(medical treatment, the) is “treatment”.

p(deC
|A(eC , deC

)) are calculated as follows:

p(deC
|A(eC , deC

)) =
Count(deC

, A(eC , deC
))∑

d Count(d, A(eC , deC
))

. (10)
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Anchor Derivations Anchor Derivations
the P:treatment, P:treatment change 体重 P:は, P:は変化
medical P:treatment, P:treatment change は L:体重, P:変化
treatment L:the, L:medical, P:change 治療 P:に, P:により, P:により変化
may P:change に L:治療, P:より, P:より変化
not P:change より L:に, L:治療に, P:変化
change L:treatment, L:the treatment, L:medical

treatment, L:the medical treatment, L:may,
L:not, R:weight, R: the weight

変化 L:は, L:体重 は, L:より, L:に
より, L:治療 に より, R:し, R:
ない, R:かも, R:しれ, R:ない

the P:weight, P: change weight し P:変化
weight P:change, L: the ない P:変化

Table 1: The English derivations (left) and Japanese derivations (right) acquired from the
sentences in Figure 3. ’P’, ’L’ and ’R’ denote, respectively, Parent, pre-child (dependent from
the Left), and post-child (dependent from the Right).

Count(deC
, A(eC , deC

)) denotes the frequency with which deC
is connected to A(eC , deC

) in the
monolingual corpus. Taking each sentence in Figure 3 as an example sentence in the mono-
lingual corpus, we can enumerate the derivations shown in Table 1 from the sentences. A
derivation must be contiguous as a tree, and we do not consider sibling derivations. We dis-
tinguish three types of derivations: parent, pre-child (dependent from the left) and post-child
(dependent from the right).

This lexicalized derivation is excessively specific. For example, the highest probability deriva-
tions from “Ph.D.” acquired from the English Web corpus (Kawahara and Kurohashi, 2006a)
are “a”, “student”, “thesis” in order. Consequently, using only lexicalized derivation can cause
many derivation errors. We consider not only the lexicalized derivation probability, but also
another probability using part-of-speech (POS) is used as the condition. Using the notation
Apos(eC , deC

) for the POS of the anchor word, the monolingual derivation probability is defined
as:

p(deC
|eC) = [p(deC

|A(eC , deC
)) · p(deC

|Apos(eC , deC
))]

1
2 . (11)

p(deC
|Apos(eC , deC

)) is also acquired from the large monolingual corpus in the same manner as
p(deC
|A(eC , deC

)). We take the geometric mean of the two probabilities because this eliminates
noisy derivations of lexicalized probabilities while keeping the derivation preferences for each
word.

Note that we do not need to discriminate between content words and function words in the
enumeration of derivations and the calculation of derivation probabilities. Generally, the
neighboring words of function words are content words. The vocabulary size of content words
is much larger than that of function words. Therefore, the number of derivation patterns from
function words is quite large, causing their probabilities to be very small. The probabilities nat-
urally prefer deriving function words from content words than deriving content words from
function words.

4.3 Dependency Relation Probability
Our model considers dependency relations between treelets and assigns a weight to each re-
lation following the previous work (Nakazawa and Kurohashi, 2011). Here, each treelet in-
cludes both core and derivation treelets, and treelets in a treelet pair have the same index, for
example, the counterpart of e j is f j .
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The dependency relations are considered on each e and f side in the same manner, thus
we only explain the e-side. First, we find the nearest aligned parent treelet, which we call
relational parent, for each treelet in e-side. The relational parent is searched by ascending the
dependency tree to the root node until an aligned treelet is found. The number of unaligned
treelets on the path to relational parent from e j is denoted as N(e j). N(e j) = 0 if the relational
parent is the direct parent of e j . We consider an imaginary root as the relational parent for the
root treelet of a sentence.

Suppose the relational parent treelet of e j is ek. Then, we consider where their counterparts,
f j and fk respectively, are on the dependency tree of the other side. We can assume that f j
tends to depend on fk because the dependencies between concepts hold across languages. The
dependency relation probability reflects this tendency. We define the function rel(e j , ek) which
returns a dependency relation between the counterparts of the two arguments, in other words,
dependency relation between f j and fk. We express a dependency relation as the shortest path
from f j to fk. For simplicity, we indicate the path with a pair of non-negative integers, where
the first is the number of steps going up (U p) the dependency tree and the other is the number
going down (Down). For example, in Figure 3, traveling from “medical treatment” to “weight”
requires 1 step going up (to reach “change”) and 1 step going down, so the dependency relation
is (U p, Down) = (1, 1).

Finally, we assign the dependency relation probability to a triplet of non-negative integers
R f = (N , U p, Down). The dependency relation probabilities for the e-side are drawn from an
unknown probability distribution θe f and for the f -side from θ f e, with both obeying the DP:

θe f (Re) ∼ DP(Me f ,αe f ) Me f (Re) = pe f · (1− pe f )N+U p+Down−1

θ f e(R f ) ∼ DP(M f e,α f e) M f e(R f ) = p f e · (1− p f e)N+U p+Down−1. (12)

Using the notations and definitions above, the dependency tree-based reordering model
P(D|{〈e, f 〉}) is decomposed as:

P(D|{〈e, f 〉}) =
∏
〈e, f 〉
θe f (Re) · θ f e(R f ). (13)

5 Model training
We train the model by means of a collapsed Gibbs sampling, which has been used in some
recent NLP works (Nakazawa and Kurohashi, 2011; DeNero et al., 2008). In a Gibbs sampling,
we first need to initialize the states of the training data, such as the boundaries between treelets
and their alignments, and also initialize the latent variables according to the initial states of the
data. Starting with the initial state, we generate many samples sequentially from the last state
by changing a small local point. Normalizing the counts in the samples yields the parameter
estimations.

5.1 Initialization
We initialize the states of the training data by heuristically merging bi-directional alignment
results of the standard word alignment tool GIZA++. Many machine translation studies use
heuristics to combine the two alignment results, one of which is called grow-diag-final-and
(Koehn et al., 2007). Our heuristic is similar to this, but the difference is that we combine
the two results based on dependency trees, and not on word sequences. The initialization is
carried out by the following steps:
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Figure 4: Illustration of the sampling operators. A solid circle represents a single word, while
a treelet is depicted surrounded by a broken line. A gray treelet represents a derivation. A
link directly connected to a word denotes that the treelet must consist of exactly one word,
whereas other treelets can consist of one or more words including derivations.

1. Take the intersection of the two results.
2. In the union of the two results, accept alignment points connected to at least one ac-

cepted point in terms of the dependency tree (corresponds to grow-diag).
3. In the union of the two results, accept alignment points between two unaligned words

(corresponds to final-and).

Initial boundaries of treelets and their alignments, and also the counts of treelet pairs and
dependency relations are thus acquired. Note that there is no derivations after the initialization
step.

5.2 Sampling operators
Our sampler repeatedly uses the six operators illustrated in Figure 4, to generate samples.
Each application of an operator generates one new sample. We could, of course, use all the
generated samples. However, since successive samples are almost the same, except for one
local part, it is futile keeping all the samples. Thus, for each iteration, we keep only one
sample, which is the final outcome after applying all the operators to all the possible points in
all the sentence pairs in the training corpus.

SWAP
The SWAP operator exchanges the counterparts of two treelets, which may have derivations.
There are two cases: [SWAP-1] both treelets are aligned, and [SWAP-2] one of the two treelets
is unaligned and the other consists of exactly one word.

TOGGLE
The TOGGLE operator adds or removes an alignment. If f j and ek are both unaligned treelets,
TOGGLE links the two treelets. Alternatively, if f j and e j are aligned, TOGGLE cuts the link
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and makes each of the treelets unaligned. Because of the NULL-alignment restriction, f j and
e j must consist of exactly one word.

MERGE
The MERGE operator combines a one-to-one alignment with the neighboring alignment as
derivations from each treelet, or separates derivations from each treelet as an independent
alignment.

BOUNDARY
The BOUNDARY operator moves the boundary between two treelets by one word. This opera-
tor does not change the type (core or derivation) of the boundary word.

TRANSFORM
The TRANSFORM operator changes the type of a word from core to derivation or vice versa.

EXPAND
The EXPAND operator expands or contracts an aligned treelet. If an unaligned treelet is next
to an aligned one, EXPAND merges the unaligned and aligned treelets, either as a part of core
treelet or derivation treelet. As the opposite direction, it excludes a marginal node from a
treelet, and to make the excluded node unaligned.

6 Alignment experiments
We conducted alignment experiments on the English-Japanese corpus to show the effectiveness
of the proposed model.

6.1 Settings
For the experiments, we used the JST1 paper abstract corpus. This corpus was cre-
ated by NICT2 from JST’s 2M English-Japanese paper abstract corpus using the method of
Utiyama and Isahara (2007). This corpus consists of 996K parallel sentences: 24.7M words in
English and 27.5M words in Japanese. Unfortunately, this corpus is not publicly available now,
but they will become available in the near future.

As gold-standard data, 500 sentence pairs were annotated by hand using two types of an-
notations: sure (S) alignments and possible (P) alignments (Och and Ney, 2003). The unit
of evaluation was the word. We used precision, recall, and alignment error rate (AER) as
evaluation criteria. All the experiments were run on the original forms of words. The hyper
parameters for our model used in the experiments are as follows: p$ = 0.1, pd = 0.9, pN = 0.1,
pt = 0.8, αA = 100, αN = 100, α f e = 100, αe f = 100, p f e = 0.5, pe f = 0.5. They are borrowed
from the previous work (DeNero et al., 2008; Nakazawa and Kurohashi, 2011) and changed
a little. The training time was about 1 day using 200 CPU cores. It is much slower than
the word-sequence-based models because considering tree structures is computationally more
complex.

The derivation probabilities were calculated from English and Japanese Web corpora each
consisting of 550M sentences (Kawahara and Kurohashi, 2006a). We limited the maximum
size of a derivation treelet to three words. We only consider top-20 frequent derivations for
each word and POS.

1http://www.jst.go.jp/
2http://www.nict.go.jp/
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English sentences were converted into phrase structures using Charniak’s nlparser
(Charniak and Johnson, 2005), and then they were transformed into dependency structures
by rules defining head words for phrases (Collins, 1999). Japanese sentences were converted
into dependency structures using the morphological analyzer JUMAN (Kurohashi et al., 1994)
and the dependency analyzer KNP (Kawahara and Kurohashi, 2006b).

For comparison, we used GIZA++ (Och and Ney, 2003), which implements the well-known
word-based statistical alignment model of the IBM Models. We conducted word alignment
bidirectionally with the default parameters and merged them using the grow-diag-final-and
heuristics (Koehn et al., 2003). We also tested the BerkeleyAligner3 (DeNero and Klein, 2007)
in the unsupervised training mode with default settings.

6.2 Experimental result and discussion
The experimental results are given in Table 2. “Syntactic-head” is the alignment accuracy of the
baseline system by Nakazawa and Kurohashi (2011), while “Semantic-head w/o derivation”
is the result of using the baseline model on semantic-head dependency trees. The results of
incorporating the monolingual derivation are given in the bottom two rows, where “all” means
that we evaluated all the alignments including derivations, while “core” means that we only
evaluated the core alignments.

As mentioned in Section 1, the baseline model has already shown much better alignment
accuracy than the conventional models, GIZA++ and BerkeleyAligner. There was a slight
improvement using semantic-head dependency trees (0.36% absolute AER reduction).

The proposed model further improved the alignment accuracy. Compared with the baseline
model, we achieved 0.6% and 1.34% improvement in absolute AER by evaluating all the align-
ments and only the core alignments respectively. The relative error reduction in AER is about
10% for the core alignment, which can be considered as a significant improvement. The reason
of the further AER decrease when using only the core alignments is as follows: although the
monolingual derivation can prevent from incorrect alignments for unique function words, it
sometimes causes over derivations. This is discussed in detail later.

Figure 5 shows the alignment results by the proposed model for sentences in Figure 1. The
proposed model reduced the alignment errors for unique function words by deriving them
monolingually, and found correct alignments which the baseline system failed to find.

There are two main causes of alignment errors in the proposed model. One is the granularity
of the derivation probability. We used the product of the two probabilities, lexicalized and
POS-based, to take advantage of them, but this is insufficient. For example, in the sentence
fragment “the possibility that ...”, the proposed model failed to derive the unique word “that”
from “possibility”. In another fragment “the patient who ...”, the proposed model failed to
derive “who” from “patient”. The reason for these failures is the low probability in the POS-
based derivation. The possible solution for the granularity problem is to use word classes
where each word class contains the words which have similar derivation distribution. For
example, some abstract nouns such as “possibility” and “fact” tend to derive appositive “that”,
and person-category nouns tend to derive a relative “who”.

The other cause of alignment errors is the over derivation typically created by the noise in
a parallel sentence and parsing error. On the left of Figure 6, the fragment of the Japanese

3http://code.google.com/p/berkeleyaligner/
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Alignment model Pre. Rec. AER
GIZA++ & grow-diag-final-and 83.00 83.01 16.99
BerkeleyAligner 85.69 74.13 20.32
Syntactic-head (baseline) 88.59 83.78 13.66
Semantic-head w/o derivation 88.82 84.28 13.30
Semantic-head w/ derivation (all) 87.83 85.81 13.06
Semantic-head w/ derivation (core) 90.51 84.49 12.32

Table 2: Results of English-Japanese alignment experiments.
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Figure 5: Alignment results by the proposed model. The solid and open squares depict core
alignments and derivations, respectively.

sentence “音 列 の (of tone sequence)” has no corresponding part in the English sentence. “音
列 (tone sequence)” is correctly aligned to NULL, but the function word “の (of)” is incorrectly
derived from “法 (method)”. On the right of Figure 6, the Japanese “HDMI は” should not
depend on “異なる (different)”, but on “使用 (use)”. Because of this parsing error, the topic
marker “は” is incorrectly derived from “異なる (different)”. One possible short-term solution
for the parsing problem is to use the n-best parsing results in the model. An alternative solution
was proposed by Burkett et al. (2010), who described a joint parsing and alignment model that
exchanges useful information between the parser and aligner.

7 Translation experiments
We conducted English-to-Japanese and Japanese-to-English translation experiments on the
same corpus used in the alignment experiments. We translated 500 paper abstract sentences
from the JST corpus. Note that these sentences were not included in the training corpus. We
use Joshua4, a Java-based opensource implementation of the hierarchical decoder, version 4.0
(Ganitkevitch et al., 2012) with default settings. It was tuned using another 500 development
sentence pairs.

Table 3 shows the BLEU (Papineni et al., 2002) scores for the translations. The proposed
4http://joshua-decoder.org
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Figure 6: Alignment errors of the proposed model caused by a NULL part (left) and a parsing
error (right).

Alignment model En→ Ja Ja→ En
GIZA++ & grow-diag-final-and 23.84 17.75
Syntactic-head (baseline) 24.16 17.83
Semantic-head w/o derivation 24.11 18.06
Semantic-head w/ derivation (all) 24.55† 18.46†‡
Semantic-head w/ derivation (core) 24.45 17.76

Table 3: BLEU scores for English-to-Japanese and Japanese-to-English translation experiments.
† and ‡ marks indicate significant difference by bootstrap resampling (Koehn, 2004) from the
decoder using GIZA++ & grow-diag-final-and alignment and baseline alignment respectively
(p < 0.05).

model using all the alignments including derivations achieved the best translation quality. We
believe this improvement is due to the reduction in function word alignment errors. The BLEU
score decreased when only core alignments were used. This is because the exclusion of the
derivations increased the ambiguity of the translation rules.

Conclusion and future work
In this paper, we proposed a novel approach for handling unique function words based on
semantic-head dependency trees. The proposed model monolingually derives unique function
words from bilingually generated treelet pairs. The derivation probabilities are acquired from
a large monolingual corpus for each language. We showed that semantic-head dependency
trees are more effective than syntactic-head dependency trees for high quality alignment, and
that the treelet derivation model can reduce alignment errors for function words resulting in
better translation quality.

To further validate the effectiveness of the proposed model, we need to apply our model to
other language pairs, including the Korean language, which is also an agglutinative language.
In addition, we need to resolve the issues discussed in Section 6.2.
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