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ABSTRACT 

In this paper, we propose a weakly supervised system, YouCat, for categorizing Youtube videos 
into different genres like Comedy, Horror, Romance, Sports and Technology The system takes a 
Youtube video url as input and gives it a belongingness score for each genre. The key aspects of 
this work can be summarized as: (1) Unlike other genre identification works, which are mostly 
supervised, this system is mostly unsupervised, requiring no labeled data for training. (2) The 
system can easily incorporate new genres without requiring labeled data for the genres. (3) 
YouCat extracts information from the video title, meta description and user comments (which 
together form the video descriptor). (4) It uses Wikipedia and WordNet for concept expansion. (5) 
The proposed algorithm with a time complexity of O(|W|) (where (|W|) is the number of words in 
the video descriptor) is efficient to be deployed in web for real-time video categorization. 
Experimentations have been performed on real world Youtube videos where YouCat achieves an 
F-score of 80.9%, without using any labeled training set, compared to the supervised, multiclass 
SVM F-score of 84.36% for single genre prediction. YouCat performs better for multi-genre 
prediction with an F-Score of 90.48%. Weak supervision in the system arises out of the usage of 
manually constructed WordNet and genre description by a few root words.   

KEYWORDS : Youtube, Genre Prediction, Comments, Metadata, Wikipedia, WordNet  
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1 INTRODUCTION 

In recent times there has been an explosion in the number of online videos. With the gradually 
increasing multimedia content, the task of efficient query-based video retrieval has become 
important. The proper genre or category identification of the video is essential for this purpose. 
The automatic genre identification of videos has been traditionally posed as a supervised 
classification task of the features derived from the audio, visual content and textual features. 
Whereas some works focus on classifying the video based on the meta data (text) provided by the 
uploader (Cui et al., 2010; Borth et al., 2009, Filippova et al., 2011), other works attempt to 
extract low-level features by analyzing the frames, signals, audio etc. along with textual features 
(Ekenel et al., 2010; Yang et al., 2007). There have been some recent advances in incorporating 
new features for classification like the social content comprising of the user connectivity (Zhang 
et al., 2011; Yew et al., 2011), comments (Filippova et al., 2011), interest etc.  

All the above approaches pose the genre prediction task as supervised classification requiring a 
large amount of training data. It has been argued that a serious challenge for supervised 
classification is the availability and requirement of manually labeled data (Filippova et. al, 2010; 
Wu et. al, 2010; Zanetti et. al, 2008). For example, consider a video with the descriptor “It's the 
NBA's All-Mask Team!”. Unless there is a video in the training set with NBA in the video 
descriptor labeled with Sport, there is no way of associating NBA to Sport. It is also not possible 
to associate NBA to Basketball and then to Sport.   As new genre-related concepts (like new 
sports, technologies, domain-dependent terms etc.) appear every day the training set should 
expand incorporating all these new concepts, which makes training very expensive. As the 
number of categories or genres is increased the data requirement goes up compounded. The 
problem is enhanced by the noisy and ambiguous text prevalent in the media due to the slangs, 
acronyms etc. The very short text provided by the user, for title and video description, provide 
little context for classification (Wu et al., 2012). The focus of this paper is to propose a system 
that requires no labeled data for training and can be easily extended to identify new categories. 
The system can easily adapt to changing times, incorporating world knowledge, to overcome the 
labeled data shortage. It extracts all the features from the video uploader provided meta-data like 
the video title, description of the video as well as the user comments. The system incorporates 
social content by analyzing the user comments on the video, which is essential as the meta-data 
associated with a video is often absent or not adequate enough to predict its category. WordNet 
and Wikipedia are used as world knowledge sources for expanding the video descriptor since the 
uploader provided text is frequently very short, as are the user comments. WordNet is used for 
knowing the meaning of an unknown word whereas Wikipedia is used for recognizing the named 
entities (which are mostly absent in the WordNet) like “NBA” in the given example. In this work, 
we show how the textual features can be analyzed with the help of WordNet and Wikipedia to 
predict the video category without requiring any labeled training set.  

The only weak supervision in the system arises out of the usage of a root words list (~ 1-3 words) 
used to describe the genre, WordNet which is manually annotated and a simple setting of the 
parameters of the model. 
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The paper is organized as follows: Section 2 gives the related work and compares them with our 
approach. Section 3 discusses the unsupervised feature extraction from various sources. Section 4 
gives the algorithm for feature vector classification and genre identification. Section 5 discusses 
the parameter settings for the model. The experimental evaluations are presented in Section 6 
followed by discussions of the results in Section 7. Section 8 concludes the paper with future 
works and conclusions. 

2 RELATED WORK 

The video categorization works can be broadly divided under 3 umbrellas: 1. Works that deal 
with low level features by extracting features from the video frames like the audio, video signals, 
colors, textures etc. 2. Works that deal with textual features like the title, tag, video description, 
user comments etc. 3. Works that combine low-level features like the video frame information 
with the high-level text features. In this section, we discuss only those works that include text as 
one of the features.  Our work is similar to text classification but for a different application. 

Filippova et al. (2011) showed that a text-based classifier, trained on imperfect predictions of 
weakly supervised video content-based classifiers, outperforms each of them taken 
independently. They use features from the video title, description, user comments, uploader 
assigned tags and use a maximum entropy model for classification. 

Wang et al. (2010) considers features from the text as well as low-level video features, and 
proposes a fusion framework in which these data sources are combined with the small manually-
labeled feature set independently. They use a Conditional Random Field (CRF) based fusion 
strategy and a Tree-DRF for classification.  

The content features are extracted from training data in Cui et al. (2010) to enrich the text based 
semantic kernels to yield content-enriched semantic kernel which is used in the SVM classifier. 

Borth et al. (2009) combines the results of different modalities like the uploader generated tags 
and visual features which are combined using a weighted sum fusion, where SVM’s are used 
with bag of words as features. These categories are refined further by deep-level clustering using 
probabilistic latent semantic analysis. 

Query expansion is performed in Wu et al. (2012) by using contextual information from the web 
like the related videos and user videos, in addition to the textual features and use SVM in the 
final phase for classification. 

Some works have used user information like the browsing history along with other textual 
features. Zhang et al. (2006) develop a video categorization framework that combined multiple 
classifiers based on normal text features as well as users’ querying history and clicking logs. 
They used Naïve Bayes with a mixture of multinomials, Maximum Entropy, and Support Vector 
Machines for video categorization.   

Most of the works are similar to Huang et al. (2010) which use different text features and 
classifiers like the Naïve Bayes, Decision Trees and SVM’s for classification. 
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Yang et al. (2007) propose a semantic modality that includes concept histogram, visual word 
vector model and visual word Latent Semantic Analysis (LSA); and a text modality that includes 
titles, descriptions and tags of web videos. They use various classifiers such as Support Vector 
Machine(SVM), Gaussian Mixture Model(GMM) and Manifold Ranking (MR) for classification. 

Song et al. (2009) developed an effective semantic feature space to represent web videos 
consisting of concepts with small semantic gap and high distinguishing ability where Wikipedia 
is used to diffuse the concept correlations in this space.  They use SVM’s with fixed number of 
support vectors (n-ISVM) for classification. 

All the above works build on supervised classification systems, requiring labeled data for 
training, mostly using the Support Vector Machines. In this paper, we propose a system that 
requires no labeled data for training, which is the primary difference of our work with those 
surveyed. Also, the usefulness of Wikipedia and WordNet for concept expansion has not been 
probed much in earlier video categorization tasks, save a few. We use many of the ideas from the 
above works and integrate them into YouCat. 

3 FEATURE CONSTRUCTION 

Given a Youtube video url, the objective is to assign scores to it which represent its 
belongingness to the different genres. The video genres are categories like romance, comedy, 
horror, sports and technology. The genre names are pre-defined in the system along with a small 
set of root words for each genre. The root words act like a description of the genre. For example, 
funny and laugh act as the key characteristics of the comedy genre. This allows new genres to be 
easily defined in the system in terms of the root words as well as to have a fine distinction 
between the genres. 

A seed list of words is automatically created for each genre by searching a thesaurus using the 
roots words for that genre. A concept list is created for each genre with relevant words from the 
WordNet and named entities in Wikipedia, with the help of the seed list of the corresponding 
genre. Given a video descriptor consisting of the video title, the meta-description of the video and 
the user comments, the seed list and the concept list for each genre are used for finding 
appropriate matches in the video descriptor to predict appropriate tags or categories for the video 
using the scores. 

3.1 Data Pre-Processing 

3.1.1 Seed List Creation using Root Words 

A set of tags is pre-defined in the system along with a set of 1-3 root words for each tag. A seed 
list of words is created for each genre (defined in the system) which captures the key 
characteristics of that category. For Example, “love”, “hug”, “cuddle” etc. are the characteristics 
of the Romance genre. Root words of the genre are taken and all their synonyms are retrieved 
from a thesaurus. The root words list and the genre names are pre-defined in the system. Table 1 
shows the root-words list for the five genres used in this work. An automatic breadth-first search 
is done on the thesaurus based on the root words to retrieve only the most relevant synonyms or 
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associated concepts. For example, the word Laugh is taken for its genre Comedy and all its first 
level synonyms are retrieved which are again recursively used to retrieve their level-one 
synonyms till a certain depth. A thesaurus is used for this purpose which gives every day words 
and slangs. In our work, the following thesaurus1 retrieves the words rofl, roflmao, lol etc. when 
the word Laugh is looked up from the Comedy genre. A snapshot of the seed lists with number of 
words in the lists is shown in Table 2. 

The set of root words can help in fine genre distinction as the seed list will have only associated 
concepts. For example if the Transport genre is sub-categorized into Road and Railways, the 
corresponding root words {car, road, highway, auto} and {train, rail, overhead wire, electricity, 
station} will distinguish between the two. 

Input: Youtube Video URL 

 

 

 

 

                                                                 

 

 

 

 

 

                                     

            Output: Tagp, Tagq,… Tagt 

Fig. 1. System Block Diagram 

Comedy 

Horror 

Romance 

Sport 

Technology 

comedy, funny, laugh 

horror, fear, scary 

romance, romantic 

sport, sports 

tech, technology, science 

Table 1. Root Words for Each Genre 

 

                                                           
1 www.urbandictionary.com/thesaurus.php 

System Defined  
Tag1, Tag2, Tagn 

Title, Meta 
Description, 
User Comments 

Seed-ListTag1, Seed-
ListTag2, … Seed-ListTagn 

Tag Prediction 

WordNet  

Word :Synset Vector, 
Gloss of 1st Sense 

Wikipedia  

Concept-ListTag1, Concept-ListTag2, … 
Concept-ListTagn 

Named Entity : Wiki Definition 

  T
he

sa
ur

us
 

Root-WordsTag1, 
Root-WordsTag2, 
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Comedy (25) 

 

Horror (37) 

 

Romance (21) 

 

Sports (35) 

 

Tech (42) 

funny, humor, hilarious, joke, comedy, roflmao, laugh, lol, rofl, 
roflmao, joke, giggle, haha, prank 

horror, curse, ghost, scary, zombie, terror, fear, shock, evil, devil, 
creepy, monster, hell, blood, dead,  demon 

love, romantic, dating, kiss, relationships, heart, hug, sex, cuddle, 
snug, smooch, crush, making out 

football, game, soccer, basketball, cheerleading, sports, baseball, 
FIFA, swimming, chess, cricket, shot 

internet, computers, apple, iPhone, phone, pc, laptop, mac, iPad, 
online, google, mac, laptop, XBOX, Yahoo 

Table 2. Snapshot of Seed List for Each Genre 

3.1.2 Concept Hashing 

Each word (used as a key for hashing) in the WordNet, that is not present in any seed list, is 
hashed with the set of all its synsets and the gloss of its first sense.  

A synset is a set of synonyms that collectively disambiguate each other and give a unique sense 
to the set. For example, the word dunk has the synsets - {dunk, dunk shot, stuff shot; dunk, dip, 
souse, plunge, douse; dunk; dunk, dip}. Here the first synset {dunk, dunk shot, stuff shot} has the 
sense of a basketball shot. The meaning of a synset is clearer with its gloss. A gloss2 is the 
definition or example sentences for a synset which portrays the context in which the synset or 
sense of the word can be used. For example, the gloss of the synset {dunk, dunk shot, stuff shot} 
is {a basketball shot in which the basketball is propelled downward into the basket}.  

Technically, we should have taken only the words in the synset of its most appropriate sense. But 
we do not perform word sense disambiguation3 to find out the proper synset of the word. Taking 
only the first sense provides fewer contexts while classifying the feature vector, and so the 
information from all the senses of a given word is used. The gloss of the first sense is frequently 
used, as in many cases the first sense is the best sense of a word (Macdonald  et al., 2007).  

Wikipedia is necessary for named entity recognition, since the WordNet does not contain most of 
these entries. All the named entities in Wikipedia with the top 2 line definition in their 
corresponding Wiki articles are stored in a hashtable. For example, NBA is stored in the hashtable 
with its definition from the Wikipedia article as {The National Basketball Association (NBA) is 
the pre-eminent men's professional basketball league in North America. It consists of thirty 
franchised member clubs, of which twenty-nine are located in the United States and one in 
Canada.}.   

Most of the named entities in practice are not unigrams like Michael Jordon. If the unigrams in 
this named entity are expanded separately, a different sense for each would be retrieved. This is 
not desirable. In this work, we use a simple heuristics method based on capitalization of the 

                                                           
2 http://en.wikipedia.org/wiki/WordNet 
3 http://en.wikipedia.org/wiki/Word-sense_disambiguation 
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letters to identify the named entities. Any sequence of consecutive words such that each of them 
starts with a capital letter, and the sequence does not start or end with any Stop Word is 
considered a named entity. Stop Words are allowed within this sequence, provided the number of 
such Stop Words between any two consecutive words is less than or equal to two. Thus named 
entities like United States of America, Lord of the Rings, Bay of Bengal etc. are recognized. This 
method captures a lot of false positives. One such example can be the usage of capitalization in 
the social media in the form of pragmatics to express the intensity of emotions (Example: I just 
LOVED that movie). However, false positives are not a concern in our case as such entries, if 
valid, will only add to the concept lists. The named entity is considered as a single token and 
treated just like the unigrams. 

3.2 Concept List Creation 

Let w be any given word and its expanded form given by WordNet (set of all its synsets and the 
gloss of its first sense) or Wikipedia (top 2 line definition) be denoted by �′. Let �′� be the jth 
word in the expanded word vector. Let 	����� and 		

�� be the seed list and root words list, 
respectively, corresponding to the kth genre. The genre of w is given by 

��
	���� = �	������ �	���∈�����,	���∈�  !��
 

              …#$%��&

	1 

Here, � is an indicator function which returns 1 if a particular word is present in the seed list or 
root words list corresponding to a specific genre and 0 otherwise. In the given example, with the 
pre-defined 5 genres (Table 1), dunk and basketball both will be classified to the Sports genre as 
they have the maximum matches (“shot”, “basketball”) from the seed list corresponding to the 
Sports genre in their expanded concept vector. 

Finally, a concept list is created for each genre containing associated words in the WordNet 
(ignoring those in the seed lists) and named entities in the Wikipedia. 

3.3 Video Descriptor Extraction 

Given a video url, the video title, the meta description of the video and all the user comments on 
the video from Youtube are retrieved. A stopwords list is used to remove words like is, are, been 
etc. A lemmatizer is used to reduce each word to its base form or lemma. Thus “play” , “played”, 
“plays”, “ playing” are reduced to its lemma “play”. 

Consider the sentence in a video descriptor, “It was an awesome slam dunk in the NBA finals by 
Michael Jordan”. None of the words here is present in any seed list. But dunk and NBA are 
present in the concept list corresponding to Sports genre and thus the given sentence is associated 
to Sports. The association (Sports via Basketball) can also be captured by considering the named 
entity Michael Jordon in Wikipedia.  
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4 FEATURE VECTOR CLASSIFICATION 

Let the video descriptor f consist of n words, in which the j th word is denoted by wordj. The root 
word list, seed list and the concept list for the (!)  genre are denoted by		

�� , �����  and 
	*

*�+�� respectively. The score of , belonging to a particular 	��
	�� is given by, 

�*
	��, ∈ ��
	��; �., �/, �0� = 	�. × ∑ �� ���∈�  !�� + �/ × ∑ �� ���∈������ 	+ �0 ×
∑ �� ���∈4 54�6!��  

																																																																					�ℎ�	�				�0 	< �/ 	< �. 																														… #$%��&

	2 

Here, � is an indicator function that returns 1 if a word is present in the root words list, seed list 
or concept list corresponding to ��
	��	and 0 otherwise. Weights �., �/	�
�		�0	 are assigned 
to words present in the root words list, seed list and the concept list respectively. The weight 
assigned to any root word is maximum as it has been specified as a part of the genre description 
manually. Lesser weightage is given to the words in the seed list as they are automatically 
extracted using a thesaurus.  The weight assigned to concept list is the least to reduce the effect of 
topic drift during concept expansion (Manning et al., 2008). The topic drift occurs due to the 
enlarged context window, during concept expansion, which may result in a match from the seed 
list of some other genre than the one it actually belongs to.  

The score of a video belonging to a particular genre is, 

�*
	��:&��
 ∈ ��
	��; +. , +/, +0� = +. × �*
	��,;<!=� ∈ ��
	��� + 
	+/ × �*
	��,>�!?	@?!? ∈ ��
	��� + +0 × �*
	��,A BB�5!� ∈ ��
	���													 

                                                                   					…#$%��&

	3 

Here	+., 	+/ , 		+0  denote the weight of the feature belonging to the title, meta data (meta 
description of the video) and user comments respectively where	+. > 	+/ > 	+0.  This is to assign 
more importance to the title, then to the meta data and finally to the user comments.  The genre to 
which the video belongs is given by, 

:&��
E�5�� = �	����� 	�*
	��:&��
 ∈ ��
	��� 
																																																																																	… #$%��&

	4 

This assigns the highest scoring genre as the desired category for the video. However, most of the 
popular videos in Youtube can be attributed to more than one genre. Thus to allow multiple tags 
to be assigned to a video, a thesholding is done and the prediction is modified as:  

:&��
E�5�� = (, &,	�*
	��:&��
 ∈ ��
	��� ≥ H																		 
�ℎ�	�	H = 1

(	��*
	��:&��
 ∈ ��
	���
�

 

																																																																											… #$%��&

	5 

If the score of the video for any genre is greater than the average score of all the genres, then it is 
assigned as a possible tag for the video. In case the genre scores for the 5 categories are 
something like {400, 200, 100, 50, 10} with avg=152, then the first 2 genres are chosen. If any of 
the genre score is very high compared to the others, the average will rise decreasing the chance of 
other genres being chosen.  Algorithm 1 describes the genre identification steps in short. 
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Pre-processing: 

1. Define Genres and Root Words List for each genre 

2. Create a Seed list for each genre by breadth-first-search in a Thesaurus, 
using root words in the genre or the genre name  

3. Create a Concept List for each genre using all the words in WordNet (not 
present in Seed Lists) and Named Entities in Wikipedia using Equation 1 

Input: Youtube Video Url 

1. Extract Title, Meta Description of the video and User Comments from 
Youtube to form the video descriptor 

2. Lemmatize all the words in the descriptor removing stop word. 

3. Use Equations 2-4 for genre identification of the given video 

Output: Genre Tags 

Algorithm 1. Genre Identification of a Youtube Video 

5 PARAMETER SETTING  

The upweighting of document zones by giving more weightage to some portions of the text than 
others is common in automatic text summarization and information retrieval (Manning et al., 
2008). A common strategy is to use extra weight for words appearing in certain portions of the 
text like the title and use them as separate features, even if they are present in some other portion 
of the text (Giuliano et al., 2011). As a rule-of-thumb the weights can be set as integral multiples, 
preferably prime, to reduce the possibility of ties (Manning et al., 2008).  

We follow this line of thought in our work and upweight certain portions of the text like the title, 
meta data, user comments separately. We also assign different weight to words belonging to 
different lists according to importance.  

There are 6 parameters for the model we used: �., 	�/, 	�0, +., +/, +0. The parameters can be 
best trained if some label information is available. However, in the absence of any label 
information, we adopt a simple approach to parameter setting as mentioned above. We took the 
first set of integers, satisfying all the constraints in Equations 2 and 3, and assigned them to the 6 
parameters:  �. = 3, 	�/ = 2,�0 = 1, 	+. = 3, +/ = 2, +0 = 1. 

Semi-Supervised Learning of Parameters 

This work does not evaluate this dimension for parameter learning, since our objective has been 
to develop a system that requires no labeling information. However, if some category information 
is available, a robust learning of parameters is possible. 

Equation 1 and 2 can be re-written as: 

�*
	�J,�6 �<!< 5 ∈ ��
	��; �., �/, �0K = 	�. × L.,�6 �<!< 5 + �/ × L/,�6 �<!< 5	+ �0 × L0,�6 �<!< 5 

�*
	��:&��
� ∈ ��
	��; +. , +/, +0� = M�= ∑ +6 �<!< 5 ∑ �� ×� L�,�6 �<!< 56 �<!< 5  
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= ∑ ∑ �<�� L�<� 			��ℎ�	�	�<��< = +< × ��� 
N	, M� = O.Q�	��ℎ�	�	O = R�.,.� 	�.,/� …�0,0� ST×.

; 	, Q� = [L.,�. 	L/,�. …	L0,�0 ].×T 
N	, W = OX. Q 

This is a linear regression problem which can be solved by the ordinary least squares4 method by 
minimizing the sum of the squared residuals i.e. the sum of the squares of the difference between 
the observed and the predicted values (Bishop et al., 2006). The solution for W is given by 
O = �QXQ�Y.Q;W 

A regularizer can be added to protect against over-fitting and the solution can be modified as: 
O = �QXQ + Z[�Y.Q;W					�ℎ�	�	Z	&�	�	+�	�����		�
�	[	&�	�ℎ�	&��
�&�\	���	&x. 

6 EVALUATION 

6.1 Data Collection 

The following 5 genres are used for evaluation: Comedy, Horror, Sports, Romance and 
Technology. 12,837 videos are crawled from the Youtube following a similar approach like (Cu 
et al., 2010; Wu et al., 2012; Song et al., 2009). Youtube has 15 pre-defined categories like 
Romance, Music, Sports, People, Comedy etc. These videos are automatically categorized in 
Youtube based on the user-provided tags while uploading the video and the video description. 
We crawl the videos directly from those categories using the Youtube API. Table 3 shows the 
number of videos from each genre.  

Comedy Horror Sports Romance Tech Total 

2682 2802 2577 2477 2299 12837 

Table 3: Number of Videos in Each Genre 

Only the 1st page of user comments is taken with comment length less than 150 characters.  Short 
length comments are chosen as they are typically to the point, whereas long length comments 
often stray off the topic. The user comments are normalized by removing all the punctuations and 
reducing words like “loveeee” to “ love”. The number of user comments varied from 0 to 800 for 
different videos. Table 4 shows the average number of user comments for the videos in each 
genre. 

Comedy Horror Sports Romance Tech 

226 186 118 233 245 

Table 4: Average User Comments for Each Genre 

The first integer values satisfying the constraints in the equations are taken as parameter values, 
which are set as: �. = 3, 	�/ = 2,�0 = 1, 	+. = 3, +/ = 2, +0 = 1. 

                                                           
4 http://en.wikipedia.org/wiki/Ordinary_least_squares 
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6.2 Baseline System 

All the words in the video descriptor consisting of the title, meta-description of the video and the 
user comments are taken as features for the SVM. A Multi-Class Support Vector Machines 
Classifier5 with various features, like combination of unigrams and bigrams, incorporating part-
of-speech (POS) information, removing stop words, using lemmatization etc., is taken as the 
baseline. Table 5 shows the baseline system accuracy with various features. A linear kernel is 
used with 10-fold cross validation. SVM with lemmatized unigrams and bigrams as features, 
ignoring stop words, gave the maximum accuracy of 84.36%. 

SVM Features F1-
Score(%) 

All Unigrams 82.5116 

Unigrams+Without stop words 83.5131 

Unigrams+ Without stop words +Lemmatization 83.8131 

Unigrams+Without stop words  +Lemmatization+ POS Tags 83.8213 

Top Unigrams+Without stop words +Lemmatization+POS Tags 84.0524 

All Bigrams 74.2681 

Unigrams+Bigrams+Without stop words+Lemmatization 84.3606 

Table 5: Multi-Class SVM Baseline with Different Features 

6.3 YouCat Evaluation 

Experiments are performed on the videos with and without user comments as well as with and 
without concept expansion, to find out their effectiveness in video categorization. The system 
does not tag every video. It will not tag a video if it does not find a clue in the video descriptor 
that is present in the seed list or the concept list (i.e. the scores are all zero); or when there are ties 
with scores for multiple genres being equal. The precision, recall and f1-score for each genre are 
defined as: 

+	�*&�&

 = 
%�]�		
,	:&��
�	*
		�*�^\	������

%�]�		
,	:&��
�	������ × 100 

	�*�^^ = 
%�]�		
,	:&��
	*
		�*�^\	������

%�]�		
,	:&��
�	+	���
�	&
	�ℎ�	��
	� × 100 

,.	�*
	� = 	2 ∗ +	�*&�&

 ∗ 	�*�^^+	�*&�&

 + 	�*�^^  

Graph 1 shows the incremental f1-score improvement for each of the genres with and without 
concept expansion as well as with and without incorporating user comments. It also shows the 
genre-wise f1-score improvement for multi-genre prediction model.  

                                                           
5 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
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The prediction is taken to be correct if the originally labeled tag is one of the predicted tags in a 
multi-genre prediction model. It may seem that the performance improvement for multiple genre 
identification, in our case, is trivial to achieve as the system can achieve 100% accuracy by 
simply assigning all the given genres to a video. This is because the prediction is taken to be 
correct if any of the predicted tags matches with the labeled tag. Thus an important performance 
measurement parameter is the number of predicted tags for each video. Table 6 shows the 
average number of predicted tags for each video in each genre, with and without user comments. 

 

 

 

 

 

 

 

 

 

 

 

SGP: Single Genre Prediction, MGP: Multiple Genre Prediction 

Graph 1: Genre-wise F1-Score Improvement for Different Models 

Genre Average Tags/Video 
Without User Comments 

Average Tags/Video 
With User Comments 

Romance 1.45 1.55 

Comedy 1.67 1.80 

Horror 1.38 1.87 

Sports 1.36 1.40 

Tech 1.29 1.40 

Average 1.43 1.60 

Table 6: Average Predicted Tags/Video in Each genre 

Table 7 shows the confusion matrix when single genre prediction is done with User Comments, 
Wikipedia & WordNet. Table 8 shows average f1-score for the different models used.  

 

1876



 

Genre Romance Comedy Horror  Sports Tech 

Romance 80.16 8.91 3.23 4.45 3.64 

Comedy 3.13 77.08 3.47 9.03 7.29 

Horror 10.03 9.34 75.78 3.46 1.38 

Sports 0.70 7.30 0 89.05 2.92 

Tech 0.72 5.07 0.36 1.81 92.03 

Table 7: Confusion matrix for Single Genre Prediction 

Model Average 

F1 Score 

Multi-Class SVM Baseline: With User Comments 84.3606 

Single Genre Prediction : Without User Comments + Without Wikipedia & 
WordNet  

68.76 

Single Genre Prediction : With User Comments + Without Wikipedia & WordNet 74.95 

Single Genre Prediction : Without User Comments + With Wikipedia & WordNet 71.984 

Single Genre Prediction : With User Comments+ With Wikipedia &WordNet 80.9 

Multi Genre Prediction : Without User Comments + With Wikipedia & WordNet 84.952 

Multi Genre Prediction : With User Comments + With Wikipedia & WordNet 91.48 

Table 8: Average F1-Score of Different Models 

7 EVALUATION 

7.1 Multi-Class SVM Baseline 

The SVM has been taken as the baseline as it is found to perform the best in text classification 
and video categorization works. Ignoring stop words in the feature vector improved the accuracy 
of SVM over the all-unigram feature space. Further accuracy improvement is achieved by 
lemmatization. This is because all the related unigram features like laugh, laughed, laughing etc. 
are considered as a single entry laugh, which reduces the sparsity of the feature space.  

The part-of-speech information further increased accuracy, as they help in crude word sense 
disambiguation. Consider the word haunt which has a noun synset and gloss as {haunt, hangout, 
resort, repair, stamping ground -- (a frequently visited place)}. It also has 3 verb synsets where 
the first verb sense is {haunt, stalk -- (follow stealthily or recur constantly and spontaneously to; 
"her ex-boyfriend stalked her"; "the ghost of her mother haunted her")}. Using POS information, 
the word haunt will have two entries now corresponding to Noun_haunt and Verb_haunt. 
Although the second sense is related to the Horror genre, the first sense is not which can only be 
differentiated using the POS tags. 
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Top unigrams help in pruning the feature space and removing noise which helps in accuracy 
improvement. Using only bigrams however decreases the accuracy as many unrelated pairs are 
captured which do not capture the domain characteristics. Using bigrams along with unigrams 
gives the highest accuracy. This is because the entities like Michael Jordon can be used as 
features as a whole, unlike in unigrams. 

7.2 Overall Accuracy 

Our system could not beat the multi-class SVM baseline of 84.36% in single genre prediction; 
but it nevertheless achieved an f1 score of 80.9%, without using any labeled data for training. 
The multiple genre prediction, however, beats the baseline with 91.48% f1 score. 

7.3 Effect of User Comments 

The user comments often introduce noise through the off-topic conversations, spams, abuses etc.; 
the slangs, abbreviations and pragmatics prevalent in the user posts make proper analysis 
difficult. However, an improvement of 6 percentage point and 9 percentage point in the f1 score 
for single genre prediction (without and with concept expansion respectively) using the 
comments, suggest that the greater context provided by the user comments provide more clues 
about the genre to help in genre identification. The corresponding improvement in the multiple 
genre prediction using concept expansion is around 7 percentage point. 

When concept expansion is not used, user comments contribute a performance improvement of 5 
percentage point in Romance, 1 percentage point in Sports and a huge 26 percentage point in 
Comedy. This suggests that the user information mostly helps in identifying funny videos, as 
well as romantic videos to some extent. Horror videos undergo mild performance degradation by 
incorporating user comments. Using concept expansion, user comments contribute an accuracy 
improvement of 6 percentage point in Romance, a huge 30 percentage point in Comedy and 2 
percentage point in the other genres. 

7.4 Effect of Concept Expansion 

In the genre identification task, using a seed set for each genre runs the risk of topic drift. This 
may occur as a concept may be identified to belong to an incorrect genre due to off-topic words 
by considering a larger context. However, less weightage is given to concept expansion than to a 
direct match in the seed list to alleviate this risk. In single genre prediction using concept 
expansion, an f1 score improvement of 3 percentage point (when user comments are not used) 
and 6 percentage point (when user comments are used) show that Wikipedia and WordNet help 
in identifying unknown concepts with the help of lexical and world knowledge.  

When user comments are not used, concept expansion contributes a performance improvement of 
3 percentage point in Romance, 4 percentage point in Comedy, Sports and 7 percentage point in 
Tech. This suggests that the external knowledge sources help in easy identification of new 
technological concepts. Horror videos undergo mild performance degradation. Using the 
comments, concept expansion contributes an improvement of 8 percentage point in Comedy and 
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9 percentage point in Tech. Again, the performance improvement in Comedy using Wikipedia 
can be attributed to the identification of the concepts like Rotfl, Lolz, Lmfao etc. 

7.5 Average Number of Tags per Video in Multiple Genre Prediction 

The number of predicted tags in multiple genre identification for each video, on an average, is 
1.43 and 1.6 in the two cases (without and with user comments). This suggests that mostly a 
single tag and in certain cases bi-tags are assigned to the video.  It is also observed that the 
average number of tags per video increases when user comments are used. This is due to the 
greater contextual information available from user comments leading to genre overlap. 

7.6 Confusion between Genres 

The confusion matrix indicates that Romantic videos are frequently tagged as Comedy. This is 
often because many Romantic movies or videos have light-hearted Comedy in them, which is 
identifiable from the user comments. The Horror videos are frequently confused to be Comedy, 
as users frequently find them funny and not very scary. Both Sports and Tech videos are 
sometimes tagged as Comedy. The bias towards Comedy often arises out of the off-topic 
conversation between the users in the posts from the jokes, teasing etc. Overall, from the 
precision figures, it seems Sports and Tech videos are easy to distinguish from remaining genres. 

7.7 Issues 

Many named entities in the Youtube media, especially unigrams, are ambiguous. Incorrect 
concept definition retrieval from the Wikipedia, arising out of ambiguity may inject noise into the 
system or can be ignored. For Example, a Sports video with the title “Manchester rocks” refers to 
the Manchester United Football Club. But Wikipedia returns a general article on the city of 
Manchester in England. None of the words in its definition matches any word in seed word lists 
and the entity is ignored.  

Considering only WordNet synsets gives less coverage. Considering the gloss information helps 
to some extent. For example, if the word “shot” is not present in the seed list for Sports, then 
“dunk” cannot be associated to the Sports genre. But this association can be properly captured 
through the gloss of the WordNet first sense of “dunk” (- a basketball shot in which the 
basketball is propelled downward into the basket). However, it runs the risk of incorporating 
noise. Consider the word good and the gloss of one of its synsets {dear, good, near -- with or in a 
close or intimate relationship}. Here the word “good” is associated to Romance due to the 
presence of “relationship”, which is incorrect. 

Uploader provided video meta-data is typically small and require concept expansion to extract 
useful information. User comments provide a lot of information but incorporate noise as well. 
Auto-generated bot advertisements for products, off-topic conversation between users, fake urls, 
mis-spelt words, different forms of slangs and abbreviations mar the accuracy. For example, an 
important seed word for the Romance genre will not be recognized if “love” is spelt as “luv”, 
which is common. 
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8 CONCLUSION 

In this work, we propose a weakly supervised system, YouCat, for predicting possible genre tags 
for a video using the video title, meta description and the user comments. Wikipedia and WordNet 
are used for expanding the extracted concepts to detect cue words from a genre-specific seed set 
of words. The weak supervision arises out of the usage of a root words list (~ 1-3 words) used to 
describe the genre, usage of WordNet which is manually tagged and the simple parameter setting 
for the model. There are a number of parameters which have been simplistically set. Tuning the 
parameters using labeled data may improve the accuracy. An accuracy of 80.9% in single genre 
prediction and 91.48% in multiple genre prediction is obtained without using any labeled data, 
compared to the supervised multi-class SVM baseline of 84.36% in single genre prediction. The 
accuracy suffers due to the inherent noise in the Youtube media arising out of the user comments 
and incorrect concept expansion due to ambiguity. A pre-processing filter that allows only 
relevant user comments about the video and a WSD module will boost the performance of the 
system. This work is significant as it does not use any manually labeled data for training and can 
be automatically extended for multiple genres with minimal supervision. This work also exhibits 
the usefulness of user information and concept expansion though WordNet and Wikipedia in 
video categorization. 
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