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ABSTRACT

Current character-based approaches are not robust for cross doma&seGhand segmentation.
In this paper, we alleviate this problem by deriving a novel enhaneedatbrbased generative
model with a new abstract aggregate candidate-feature, which indicatesdivém candidate
prefers the corresponding position-tag of the longest dictionary matchind. Bince the
distribution of the proposed feature is invariant across domainsnodel thus possesses bette
generalization ability. Open tests on CIPS-SIGHAN-2010 show that the edhgaoerative
model achieves robust cross-domain performance for various OQafagmy rates and obtains
the best performance on three out of four domains. The enhaneaatgenmodel is then further
integrated with a discriminative model which also utilizes dictionary informafibis integrated
model is shown to be either superior or comparable to all other modeltetepothe literatue
on every domain of this task.
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1 Introduction

As words are the basic units for text analysis, Chinese word segmen@iu) (s critical for
many Chinese NLP tasks such as parsiigwever, current statef-the-art character-based
approaches fail to give robust performance for cross-domain @atsgnd Vogel, 2010; Huang
et al., 2010; Jiang and Dong, 2010; Wang et al., 2012, Sun et al), 2@%gite their acceptable
performance for in-domain tests. For example, with the same W& training corpus, the
best system in SIGHAN-2005 (Emerson, 2005) achieved a high iaidqmerformance (96.9%
in F-score) in opertests, while the best cross-domain performance for the medicine dorhain «
achieved 93.8%in CIPS-SIGHAN-2010 (Zhao and Liu, 2010) open tests.

Their poor performances result not only from the fact thatdomains have higher oof-
vocabulary (OOV) rates (please refer Table 1 in Section 3.1), but atedHeofact that various
domains frequently possess different tag distributions for the chanacter, especially for those
out-domain OOV words (which are also technical terms most of times). For example, “FR” (acid)
is a typical suffix of medical termsych as “}RER” (uric acid) and “%J£#” (amino acid), and
is frequently tagged as “E” in the medicine domain. However, it is usually a single-charact
word which means ‘sour’ in general text, and should be tagged as “S”. As a result, thossurface
features(such as character n-grams) adopted in the approaches mentioned ab®vadne
difficulty in identifying the correct postintag, which is a member oBginning Middle, End,
Singleton}(Xue, 2003), of a character within an OOV word in this case. Siagy technical
OOV words appear in the out-domain text, the performance thus degrad#y. skar instance,
when we test the main stream character-based discriminative approanadicine domain in
CIPS-SIGHAN-2010 contest, 27.7% of the wrong segmented words aret€d@y.

On the other hand, unlike surface features, the distribution of thEogedabstract feature
which checks if the given candidate prefers the correspondingiopesg of the longest
dictionary matching word, is almost invariant across different domg&imsanced discriminative
approaches (Low et al., 2005; Zhao et al., 2010) which adopt thisebfature thus show
better generalization capability in our cross-domain tests.

To adopt the above matching-longest-word feature, a dictionaegusred. It is well known that
the domain dictionary provides direct and reliable hints for deciding tls#tiggotags of
characters within a covered OOV word. Furthermore, unlike named entityjc@cterms of a
specific domain usually can be considerably covered by a domain dictid®iace domain
dictionaries are frequently available for NLP related projects (e.g., technicabhteanslation),
they can thus provide big help in real applications.

However, the above dictionary related feature utilized in discriminative ap@®gtow et al.,
2005; Zhao et al., 2010) cannot be directly adopted by a generative *matetefore, we
propose a newag-matching-statufeature for checking if the selected position-tag matches t
longest dictionary-matching-word and derive a noveénhanced character-based generativ
model The proposed feature not only induces an additional probabilistic fadgtaiso possesses
richer information in comparison with the one adopted in previous works

1 Unlike close test, the open test can use any language resource, not restricted to training data only.

293.8% only corresponds to 23.7% sentence accuracy rate (average 23.3 words per sentence in the medicine
corpus), evaluated from its associated 94.0% recall-rate, while 96.9% corresponds to 46.9% sentence accuracy.

3 Itis required by the integrated approach given at Section 4.2.
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Several factors that might affect the performance of the new model are studies paper:
including the context information, the OOV coverage rate of the dictionagythanveight of the
new factor in the model. We evaluated our final system on the CIPBAN&010Bakeoff data.
The obtained results not only convincingly demonstrate the effectivehéss proposed model
for cross-domain CWS, but also achieve the best performan8®onof 4 domains in the open
test. Afterwards, the proposed enhanced generative model is integrateahetiter enhanced
discriminative model (Low et al., 2005) to further improve the greméince, and achieves the
best performance on all the tested corpora.

The remainder of this paper is organized as: Section 2 discusses howrpmiat® dictionary
information and section 3 describes the proposed models. Empirical resutts@mahalysis are
presented in section 4 and 5. Section 6 reviews the related work.

2 Dictionary related features

21 Word-ID or Word-Matching-Indicator?

Given a dictionary, there are two kinds of features that can be utilied: @, which are binary
features that fire only when the word matches one specific word, emtyord-Matching-
Indicator (e.g. TM defined in Section 2.3), which checks the relationship bettheeassigned
position tag of the current character and the dictionary words within éocaéxt. Since the
statistics of OOV words can never be learnt from the training corpus, pheagpes that adopt
word-ID as features (Zhang and Clark, 2007; Sun, 2010; Zhan@lank, 2011) cannot really
utilize the information of the OOV words kept in the dictionary. On the cgontthe word-
matching-indicator is applicable for both IV and OOV words kept in the dictiofidng feature
thus provides valuable information for those OOV words covered byglittienary. Therefore,
based on the positions of those dictionary matching wawds dictionary-related features (i.e.,
Dictionary Coverage StatuendTag Matching Statygo be specified later) are proposed in thi:
paper and they will be incorporated into the character-based generative model.

2.2 Dictionary Coverage Status

Let ¢ be thei-th character in a given sentence. To check whether there are aiebiguith
those dictionary matching words @t (and what kind of ambiguitie# has), we propose the
Dictionary Coverage Statueature which is a member ofNo-Dictionary-Word,No-Ambiguity,
Crossed-Ambiguit} Included-Ambiguity, Mixed-Ambiguity} that are defined below. This status
depends only on the given sentence and the dictionary, and is irretevérg position tag
assigned to the character. LBt be the given dictionary which only contains multi-characte
words, andG,; denotes the string frong to C; (including C; ), then the conditions for
“Included-Ambiguity and“Crossed-Ambiguity are defined below.

(A) Conditionsfor Included-Ambiguity (IA):
(1) Both ¢, and ¢, will be assignedIA” if they meet the following condition (Figure 1(a)):

Jj,1 >0k = j :{3[|7J1]rc[|4<:\4]} ch;
(2) Both ¢_, andc, will be assignedIA” if they meet the following condition (Figure 1(b)):
EIJ 'k > OYI 2 J :b[\il+j] ’C[I i 4]} < D.

4 Please note that ambiguity status is traditionally defined on words, but ours is defined on characters.
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FIGURE 2 — Cases for Crossed-Ambiguous characters (marked in grey)

(B) Conditionsfor Crossed-Ambiguity (CA):
(1) Both ¢, andc_, will be assigned‘CA” if they meet the following condition (see Figure

2(a)):
Jj,1 >0,0sk <j £ 5 Gt sDs
(2) Both ¢, andc, will be assignedCA” if they meet the following condition (Figure 2(b)):
3j,k>0,0<1 < :t[i:iﬂ] ’C[i—kili’]}g D.
Then Dictionary Coverage Status@t(denoted byDC; ) can be decided as follows:

No-Dictionary-Word, if no matching word is found
Included-Ambiguity, if only (A) is satisfied,;

DC, =1 Crossed-Ambiguity, if only (B) is satisfie
Mixed-Ambiguity, if both (A) and (B) are satisfie
No-Ambiguity, otherwise.

The above definition implicitly implies that a character which possessesnieepgsition-tag for
all associated dictionary matching words will be assigiéa Ambiguity”.

For example, given a character sequenteszA:4)” (university biology and a set of dictionary-
matching-words §K2%” (university) “XK2%Z4” (undergraduate)}, for characters?’ and
“4#£”, condition (A.1) is satisfied , but condition (B) is not; theref DC, and DC, should be set
to “Included-Ambiguity. On the other hand, if the dictionary-matching-words &r& 44",
“£4)” (biology)}, then condition (B.1) is satisfied, but condition (Ahist; DC, and DC, thus
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should be set t6Crossed-Ambiguity. However, if we have all the three matching words{
T CREAT, “EH)7), then both condition (A.1) and condition (B.1) are satisfiec
therefore,DC, and DC, should be set t6Mixed-Ambiguity” in this case. Furthermore, if the
matching words are“fk%:” , “4:44}, then DC, and DC,would be“No-Ambiguity”. Last,
DC, and DC, are always‘No-Ambiguity” for all above three different case

2.3 TagMatching Status

To indicate the relationship between the tag assignexl tmd tlose dictionary matching words
which covercC , we introduce th&@ag Matching Statufeature (the abstract aggregasadidate-
feature, and is abbreviated @ from now on), which is a member oF §llowing-Longest-
Word, Only-Following-Shorter-Word, Not-Following-AfWord, Inapplicabl that are defined
below. Denote the set of dictionary matching words that begin @viths Dg ={G;,| ., € O ,
the set of dictionary matching words that encl@seas D,, ={q,,| G, € D j<i<k , and the set
of dictionary matching words that end witl, as D¢ ={q ;| ¢;;; € O . If ¢ is tagged as,
thenTM, can be decided as follows:

(1) If byUD,, UD. =&, which indicates that this character is not covered by any dictionz
word, thenTM, is set to“Inapplicablé.

(2 If b, =9, andD, UD,, UD; # & (whereD, is the set of dictionary matching words
corresponding td, ; for example,D, will be Dy, if t =B . Please note thdds =&, since
the adopted dictionary only contains multi-character wordgich indicates that the
assigned tag does not follow any dictionary matching word, Tdnis set to “Not-
Following-Any-Word”;

(3) If vwe(D,UD, UD,),3w'eD, :len(w) > ler(W, thenTM, is set to“Following-Longest-
Word”. It indicates that the assigned tag matches the corresponding positioh ttagy
longest dictionary matching word at that character;

(4) Otherwise, TM; is set to“Only-Following-Shorter-Word It indicates that the assigned tac
does not match the corresponding position-tag of the longest dictionarlyimgateord at
that character, but matches that of some shorter words.

For example, when we consider the second charaéten the sequencek %" and assume
that the dictionary matching words are}{*:>, “K*:/:7}: if the tag assigned to%’ is “M”,
thenTM, will be “Following-Longest-Word; if it is “E”, thenTM, will be “Only-Following-
Shorter-Word; if it is “B” or “S”, TM, would be“Not-Following-Any-Word’. Therefore, this
candidate-feature is associated with each candidate of the position-tagigfiofveo dictionary
word covers this character, th@M, will be set to“Inapplicablg regardless of which tag is
assigned to*’ (i.e., we do not want to disturb the original model in this case).

3 Proposed models

3.1 Enhanced generative model

Wang et al. (2009) proposed a character-based generative model for CWiS,isvable to
handle the dependency of character-bigrams within words andjiveist good balance for the
performance of IV words and OOV words. Their approach adopts #raatbr-tag-pair trigram
model, and obtains the desired position-tag sequghes follows:
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v =agmaq [P (e 1] lfe.13) @

where[c, t]; is the associated character-tag-pair sequéaidée given character sequence.

To alleviate the data sparseness problem, we pre-convert the given charagentstrits
correspondingunit string before segmentation, where the unit denoteBl-&tring (which is a
string mixed with foreign/Arabiselected-punctuationd characters, such a$HTML5”,
“www.google.com”, etc.), a CN-String (which is a string @hineseNumbers consisting of
Chinese digit-characters such ‘a& fi-t-t = (65772), etc.), or a single Chinese characte
Therefore, a unit is either a Chinese character or a foreign/numerical expessdifined above,
and is represented by either a Chinese-Character-ID or a MetalDy(pe-, FN-type or CN-type)
in the model.

After the character string has been pre-converted into the unit stringncesporate the
dictionary related features proposed in Section 2 into the generative mddetmmmulate it as
follows:

u; DW")

P([u t TM];|DW)
=argmay ——————— (2
q P(u'| DW")

=argmaxP (u,t,T™ ”DV\{" )

t"=argmax ¢ T™M;
[

where DW denotes the set of dictionary words that cover (i-th unit).
P([u t TM]7|DW") is then approximated by " P(lutT™] |[utTM]3, DW) and its

associated factor is further derived as follows:

P([u t T™], [[u t TM] S, DW)
=P(T™, [[u, ] ,, TM'3, DW)x P([u § [[y t TM]'3;, DW) (3)
~ P(TM, | MWL, ,DC U, )xP([u ] |[u §3

where MWL, denotes theMlaximum Word Lengthof the words that coves,, DC, (Dictionary
Coverage StatysandTM, (Tag Matching Statysare defined at Section 2.2 and Section 2.
respectively The first termP(TM, | MWL, ,DC, ,u',) is the tag matching factor, which is mainly
introduced to give guidance in the case that the second R€irmd, |[u 1.73) (the original
generative model) cannot give reliable prediction when the associated charadiigrday is
unseen in the training corpus.

Equation (3) weighs the tag matching factor and the character-tag trigctor equally.

However it is reasonable to expect that they should be weighted differently awgdedtheir

contribution. We thus combine these two factors via log-linear interpolatioich is shown as
follows:

5 Selected punctuations include those members from {'+, -, *,‘/’, ", ‘%’, ‘@’}.
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Scord f) = axlog R[ u} I[ u}?) @
+(1-a)logP (TM, [MWL, DC, i, )

Where « is the weighting coefficient to be decided from the development g0 amr <1.0.

3.2 Enhanced integrated model

To incorporate the dictionary information into the discriminative approact, étoal. (2005)
added two additional features (which are features (d) and (e) in the fadidist) to the widely
adopted primitive templates described in (Ng and Low, 2004), and usedtdhenance the
original discriminative model (Xue, 2003):

(a) C,(n=-2,-1,0,1,2), @)MW ¢t ;
(b) C,C,, (n=-2-102); @Gt (n=-10)

n

(c) C,C;

Let W denote the longest dictionary word that coveysthen MWL, denotes the length o,
andt', denotes the corresponding tagcein W.

Since the enhanced generative model cannot utilize the features from futtewt,cavhich is a
common drawbaclof generative approael (Wang et al., 2010), following the approach o
(Wang et al., 2011) we further integrate the enhanced generative model with the ab
enhanced discriminative model via log-linear interpolation, shown as follows

Scord f) = fx[axlog Rl uk|[ ult>)
+(1-a)logP (TM; MWL, DC, y', )] ®)
+(@1-B)xlog(P (¢ [y . MWL, ')

Wherea and g are two weighting coefficients to be decided from the developmentuset,
O<ea,p<1.0.

4  Experiments

All experiments are conducted on the corpora provided by SIGE®0S(Emerson, 2005) and
CIPS-SIGHAN201( (Zhao and Liu, 2010)Both the in-domain test and cross-domain tests a
trained on PKU-Newsfrom CIPS-SIGHAN-2010. The PKU-News testing corpus of SIGHAN
2005 is adopted for in-domain test, while the corpora of CIPS-SIKER@L0 are used for cross-
domain tests. There are four different domains: Literature (denote&.psComputer Cmp.),
Medicine Med.) and FinanceKin.). To obtain the weights of different factors in Equations (£
and (5), we randomly selected 1% from the original training coagufie development set, anc

6 CIPS-SIGHAN-2010 is the first cross-domain Chinese Word Segmentation (CWS) bake-off competition which
involves 18 systems. To our knowledge, this data-set is the most well-known and widely adopted (also publically
available) one for cross-domain CWS test.

7 The PKU-News training data of CIPS-SIGHAN-2010 is the same with the PKU training data of SIGHAN-2005.
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regard the remaining part ¢éhe new training set. The updated corpora statistics are sabwr
TABLE 1.

. Word oov

Corpora | Domain | Characters Tokens Types Rate
Training News 1,820,456 1,109,947 | 55,303 N/A

Develop. News 99,381 60,585 11,216 0.028

News 172,733 104,372 13,148 0.058

Lit. 50,637 35,736 6,364 0.069

Testing Cmp. 53,382 35,319 4,150 0.152

Med. 50,969 31,490 5,076 0.110

Fin. 53,253 33,028 4,918 0.087

TABLE 1 - Corpus statistics for CIPS-SIGHARB10

Besides, the SRI Language Modelling Toolkit (SRILMBtolcke, 2002) is used to train
P([u 1, |[u 1) with the modified Kneser-Ney smoothing method (Chen and Goodm:
19%). Also, the Factored Language Model in SRILM is adopted to tre
P.(T™M |MWL, ,DC ,u,) , and P_(TM |MWL ,DC ,u,) sequentially back-off to
P..(TM. | MWL, ,DC, ), where the subscript8F” and“GT” denote back-off and @d-Turing
estimations, respectively. For the discriminative approach, the ME Pagkagigled by Zhang
Le is adopted for training. Last, all adjustable weights are first selected asddlon the
development set. Those obtained optimal values are then fixed and applietestitigeset.

4.1 Enhanced generative model

411  Effect of having character context

It is observed that tag matching status is less reliable when there are sietiersrg matching
words for the given character. Therefore, the character castiextoduced to help disambigeat
them. To show the influence of character context information, we test two differdmanced
generative modeldhe first one adopts the fact&f(TM, | MWL, ,DC ) (denoted as G1), and the
second one adopts the fac®(T™M, | MWL, ,DC, ,u'_,) (denoted a&2; with character context).
In addition, the performance of the original generative model (denotedashBseline) is also
shown for comparison. The dictionary adopted here contains all the traioidg and the testing
words excluding the named entities (which are usually not covgrddrbain dictionaries)

TABLE 2 shows that character context effeclyvémproves the performance for four out of five
domains in F-score (except the Computer domain), which maisljtes from the inconsistent
segmentation criteria between the News training set and the computer testigy satample,
18.3% of“yli/&” (just like) occurrences are segmented as a single word, and 81L.tfém are
segmented into two single-character wotgh” (just) and“/&” (be) under similar context in the
training set. However, this string is always treated as a single wahe i@omputer testing set
When the context is not considered, G1 prefers the longer word ae®l @givrect answer for all
the occurrences in the Computer corpus. While the context is consi@&edll prefer to follow
those occurrences the training set and thus give wrong result most of the time.

8 http://www.speech.sri.com/projects/srilm/
9 http://homepages.inf.ed.ac.uk/lzhang10/maxent.html
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Model News Lit. Cmp. Med. Fin. OA

B 0.952 | 0.928 | 0.929 | 0.904 | 0.950 | 0.939
Gl 0.959 | 0.951 | 0.969 | 0.963 | 0.971 | 0.962
G2 0.968 | 0.953 | 0.966 | 0.964 | 0.973 | 0.965

TABLE 2 — Effect of adopting character context in F-score (testing-set)

Character-

Corpus Tag-Bigram B Gl G2
News seen 0.018 0.030 0.016
unseen 0.183 0.045 0.045
Lit seen 0.028 0.030 0.022
) unseen 0.203 0.046 0.047
Crp Seen 0.026 0.017 0.015
) unseen 0.183 0.014 0.016
Med. Seen 0.024 0.016 0.012
unseen 0.251 0.022 0.023
Fin Seen 0.019 0.018 0.011
) unseen 0.155 0.015 0.017

TABLE 3-Tagging error rates for seen/unseen cases in the testing-set

Overall, G2 outperforms B and G1 by 2.6% and 0.3%, respectively.phieisomenon can be
explained by classifying the tagging errors into two groups acapidinvhether the associated
character-tag bigram is seen or not in the training &L 8 3 shows that the original character-
tag trigram factor (i.e., B) works well when the bigram is seehjt performs poorly when this
bigram is unseen. On the other hand, G1 (without context) maodgts the performance for
unseen cases. However, G2 (with context) also boosts the performaseericases. Therefore,
it will not let the newly added tag-matching factor contaminate the originalrrigradel when
associated character-tag bigrams are seen. The above observations Ihatld d®mvelopment-set
and testing-set. G2 is thus adopted for the enhanced generative moiétgrated model.

412  Effect of dictionary coveragerate

Since no dictionary can cover all OOV words for real applications, we wdaddiknow how
this enhanced generative model performs under different dictionary covextege We extract
two dictionaries: the first one (D1) includes all the training words; and trendeane (D2)
contains all the OOV words in the testing set (excluding named entifieB)E 4 gives the
results for various combinations of D1 and D2 with= 0.5, where the first ro/None” denotes
that no dictionary (even D1) is adopted; also, the last colt®#i’ gives the overall performance
of various domains (except News).

It can be seen that the improvements with the dictionary informatiamtfie training set are not
obvious (None vs. D1)The reason is that the original character-tag trigram model alrea
handles IV words well enough and the information of IV words seenhsndanto this model.
However, when the dictionary starts to cover OOV words, the performasee sharply
according to the OOV coverage rate. Anyway, the enhanced model alwggsfouns the
original model even when the dictionary only covers a few OOV words.
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Dict. News | Lit. Cmp. | Med. Fin. OA

None 0.952 | 0.928 | 0.929 | 0.904 | 0.950 | 0.928
D1 0.953 | 0.930 | 0.929 | 0.907 | 0.951 | 0.929
+20%D2 | 0.955| 0.933 | 0.934 | 0.919 | 0.955| 0.935
+40%D2 | 0.958 | 0.939 | 0.940 | 0.931 | 0.959 | 0.942
+60%D2 | 0.961 | 0.943 | 0.949 | 0.941 | 0.964 | 0.949
+80%D2 | 0.964 | 0.948 | 0.958 | 0.952 | 0.968 | 0.956
+D2 0.968 | 0.953 | 0.966 | 0.964 | 0.973 | 0.964

TABLE 4 - F-score versus different OOV coverage rates for the enhanced character-based
generative model (testing-se®A: overall performance of dse four cross-domains. Boldface
indicates the best result under each column.

Dict. News | Lit. Cmp. | Med. Fin. OA

D1 0.935| 0.901 | 0.895 | 0.861 | 0.933 | 0.914
+20%D2 | 0.940 | 0.909 | 0.908 | 0.880 | 0.940 | 0.923
+40%D2 | 0.945| 0.918 | 0.924 | 0.901 | 0.947 | 0.932
+60%D2 | 0.950 | 0.928 | 0.937 | 0.923 | 0.955 | 0.942
+80%D2 | 0.955| 0.938 | 0.952 | 0.945 | 0.962 | 0.952
+D2 0.961 | 0.949 | 0.967 | 0.969 | 0.969 | 0.962

TABLE 5- F-score versus different OOV coverage rates for the word-based trigresi

Nonetheless, not every model possesses the robustness for véeiomady coverage rate. For
example, the corresponding result of the word-based generativentnigoalel®, given at BsLE

5, shows that it is quite fragile in comparison with our modethis model, all words kept in the
dictionary are used to construct the word lattice in the decoding prodesse DOV words will
be treated as unseen events and given a very low score. Howeverhé seen that although the
results with full dictionary are satisfactory, the performance drops draratidaile the OOV
coverage rate decreas@sis indicates that this model is quite sensitive to those OOV woduvés,
to its incapability of identifying OOV wordseyond the dictionary. This model is thus not useft
for real applications, as it is impossible to know the corresponding dictionaeyage rate in the
testing set in advance. Therefore, checking the robustness of dictlmaseg- models for
different dictionary coverage rates is important in selecting an appropriate model.

413  Effect of varying weights

The F-scores of the enhanced generative model versus vatioualues (the weight of
P(ud,|[u13 in Equation(4) are evaluated on the development set, and are shown
FIGURE 3. It can be seen that all the curves are flat near their peaks, which indhedtésis
enhanced model is not sensitive to whighvalue is picked. Besides, although the performanc
decreases when the OOV coverage rate dropsg thecations of peaks for various curves are
almost the same (all arod « =0.4). This indicates that the beat value is not sensitive to the
OQV coverage rate.

10 This well-known model adopts the form : WSeqg= arg ma)ﬂzl P(w | W; | (Wangetal, 2012).
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4.2  Enhanced integrated model

Since the original generative model and the discriminative modebanel to complement each
other (Wang et al., 2011), it is expected that the enhanced generative moded anticthced
discriminative model (Low et al., 2005), which is re-implemented, should also leongmt each
other This inference is supported by the statistics that these two approachesrép@® 9% of
their errors in the literature domain (similarly in other domainkgrefore, integrating these two
models is expected to achieve a better result too. For the enhanced integraggdvendict the
weight & of P([u 1, |[u 1 to be 0.4 (according to section 4.1.3). Afterwards, we adjust t
weight of the enhanced generative model and the enhanced discrimapgineach on the same
development set.IBURE 4 gives F-scores with different dictionaries versus varigusalues.
Thep locations of peaks for various curves are also almost the same (ald#@re0rv7) for
various dictionary coverage rates. This indicates thag theeight is not sensitive to the OOV
coverage rate. This figure also shows that the peak of the integratid isirobust for different
dictionary coverage rates.

Last, to fairly compare different models in a more realistic conditiongTabhows the results of
the enhanced discriminative model (denoted by ED) and the integratesl (dedoted by EI)
with an external dictionary (which roughly corresponds to 65% D2 coveatgyén TABLE 4, and
is specified in the next section). Note that our ED result (0.968) is abiitttéfferent from that
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reported in (Low et al., 2005), which gives 0.965 F-score witmaler dictionary that i part
of ours (see the next section). It can be seen that our enhategr@ted model achieves the bes
results on all five corpora.

News Lit. Cmp. Med. Fin.
SBest | 0.969 0.955 0.950 0.938 0.960
ED 0.968 0.951 0.946 0.938 0.961
EG 0.967 0.946 0.950 0.944 0.962
El 0.973 0.955 0.951 0.944 0.963

TABLE 6 - F-scoeson the testing sets. SBest: best results from SIGHAN 2005 (News) a8d Cl
SIGHAN 2010 (other domains). Boldface indicates the best result.

4.3 Comparison with other state-of-the-art systems

To provide publically accessible dictionaries for open comparison, we cen@igeneral
dictionaly downloaded from the Interrétand another technical dictionary extracted from Wiki
as ourexternaldictionary. The first general dictionary is also adopted by (Low et @5)2Bor
simplicity, we adopted the same dictionary (the union of above two dictishdde all five
different domains. This external dictionary includes 458,165 word#tal which roughly
corresponds to 65% D2 coverage rat&@ ABLE 4. Since the external dictionary is expected to t
collected by the user in real applications, dictionary words should be consigtehtsiher own
segmentation criterion. Therefore, to give true evaluation for reflectingeétiesituation, words
in the dictionary are first transformed into their corresponding ones accaoding same criteria
adopted in various given corpora. For examplé)% &%t (immune system) is converted into
“HufE>” (immune) and* &R 4 (system) according to the gold criterion adopted in CIP!
SIGHAN-2010Q

The results of the enhanced generative model (denoted by EG) with the externahdictiod
the SIGHAN best results in each domain are also givenaBLE 6. They are summarized as
follows: Low et al. 2005 added the dictionary informatido the discriminative approach and
adopted additional corpora. They achieved the best result (0.969 F-eodP&U News comps

in the open test of SIGHAN-2005. On the other hand, Huang e2G10(adopted HMM and
some rules to post-process the output of the CRF discriminative appfdeghachieved the best
in the Literature domain in CIPS-SIGAHN-2010. Last, (Gao and Vogel, 2Gi@ipined several
classifiers with a large margin classifier and won the best on other thremirgrdomains. It
shows our enhanced generative model achieves the best results oouh@efour cross-
domains, and our enhanced integrated model outperforms all thexsys{gorted in the literature.

To further check if the difference between various models listed ifle Bails really statisticat
significant, we adopt the bootstrapping technique (Koehn, ;20dng et al., 2004Yo conduct
the significant tests/Ve follow the work of (Wang et al., 2010) and take the re-samplagyte
be 2,000. 95% confidence interval is adopted in our tegBLET7 shows that our enhanced
generatie model is superior to the enhanced discriminative model in overall axisop on
those four cross-domains. Furthermore, the enhanced integratgel is either superior or
comparable to all other models.

11 http://ccl.pku.edu.cn/alcourse/nlp/2010/word_freq_list.rar
12 http: //dumps.wikimedia.org/zhwiki/20111017/zhwiki-20111017-all-titles-in-ns0.gz
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TABLE 7 - Statistical significance test of F-Score among various systems. SBestedéts of
the SIGHAN 2005 (News) and the CIPS-SIGHAN 2010 (othefs): means that A is
significantly better than B;<” means A is worse than B+’ means that they are not different.

5 Error analysisand discussion

Following the work of (Sun, 2010), we get the upper bounduwfenhanced generative mode|
(EG) and enhanced integrated model (El) by regarding each factor indegg@ndent modgel
which is showrin TaeLE 8. Compared with the results imALE 6, we can find that there is still
a large room to further improve our proposed models.

Model News Lit. Cmp. Med. Fin.
EG 0.984 0.973 0.971 0.968 0.978
El 0.986 0.976 0.973 0.970 0.980

TABLE 8 - F-score upper bound for EG and El models

Furthermore, we collect and analyse the remaining errors generatked bghanced integrated
model on the Medicine corpus, which contains a large nhumber of techninaldad is most far
away from the upper bound. It is found that 66.6% (out 883), of error words are related to
OOV (not seen in the training-set). Amon@#h 922 OOV errors758 (82.2%) of them are not
covered by the dictionary and 401 (52.9%) ouf768 are technical terms. Therefore, it agair
confirms how important a dictionary is. AlsB8 (21.9%) of tbse uncovered terms are with
prefix/suffix. For example, “i&5 AR (radiography) is an OOV word with suffixk” (technique),
while the word“i& 5 (radiograph) is contained in the dictionary. Howevteis wrongly split
into “i& 52 and“AR”, since the longest word in the dictionary is preferred. This probliéirbe
our future work.

6 Related work

The word-based generative model (Gao et al., 2003; Zhang et al., 2@08)assical approach
for CWS. However, this approach needs an additional module to ireo@OV words.

Therefore, the character-based discriminative model (Xue, 2003; Low etGH;, Zang et al.,

2006; Jiang et al., 2008; Zhao et al., 2010) has become the main streamits capability in

handling OOV words.

However, the character-based discriminative model cannot give satisfpetéwymance for IV
words. Wang et al. (2010) thus proposed a generative model tosfigrtihlem. Afterwards, they
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further proposed an integrated model to integrate generative and discrimiapgfitoaches, as
these two approaches complement each other.

On the other hand, dictionary information has been utilized in the disetir@rapproach in the
previous works of (Low et al., 2005; Zhao et al., 2010). Howethery focus on improving the
in-domain word segmentation accuracy, while we investigate how the damanmant feature
(based on dictionary information) helps for cross-domain tasks. Bedigesgffect of varying
OOV words coverage rates is studied in this paper for the first time.

In addition to dictionary feature, Zhao and Kit (2007; 2008), Sun an@®11) too, also adopted
the accessor variety feature to gain better generalization ability. Since thisefean be
extracted from unlabelled corpora, it is suitable to be adopted for domain adapAaéin, all
their works focus on in-domain performance. Other worksfti@ts on in-domain performance
also include (Zhang and Clark, 2007), (Fu et al., 2008), (Jiang €088), (Lin, 2009), (Xiong
et al., 2009), and (Zhang and Clark, 2011).

Last, (Ben-David et al., 2007) pointed out that a good feature representaticdomain
adaptation should minimize the difference between its distributions inesand target domains.
The proposed abstract feature is also inspired by their conclusion.

Our approach differs from those previous works in several virsst, we do not simply add the
dictionary matching information as an additional feature under the Maximtrnopiriramework.
In contrast, we derive a new generative model with dictionary information stdirting the
problem formulation, and solve the problem in a principled way. Set¢badobustness of the
proposed model for varying dictionary coverage rate is first studiedtaaked in this paper. As
explained in Section 4.1.2, this issue is important for selecting a nurdelal applications.

7 Conclusion

Current character-based approaches are not robust for cross doma&seGhard segmentation,
because those surface features adopted in the model frequently pliffses® tag distributions
for the same character in various domains. This paper thus progposag abstract aggregate
candidate-feature, which indicates if the assigned tag follows the cordasggiosition-tag of
the longest dictionary matching word. With this novel domain invariant featve then derive
an enhanced generative model for cross-domain CWS to solve tHerprioba principled way.
Experiments show that the proposed approach is robust for ¥afi@QV coverage rates and
outperforms the best system in three out of five corpora.

The proposed model is further integrated with an enhanced discrimiapfiveach because they
complement each other. With the help of a publically accessible external dictiexgeyiments
on the SIGHAN-2005 and CIPS-SIGHAN-2010 show that our integratecbaph outperforms
all the systems in open test and achieves the best F-score in each amngss five different
specified domains.
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