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ABSTRACT 

Current character-based approaches are not robust for cross domain Chinese word segmentation. 
In this paper, we alleviate this problem by deriving a novel enhanced character-based generative 
model with a new abstract aggregate candidate-feature, which indicates if the given candidate 
prefers the corresponding position-tag of the longest dictionary matching word. Since the 
distribution of the proposed feature is invariant across domains, our model thus possesses better 
generalization ability. Open tests on CIPS-SIGHAN-2010 show that the enhanced generative 
model achieves robust cross-domain performance for various OOV coverage rates and obtains 
the best performance on three out of four domains. The enhanced generative model is then further 
integrated with a discriminative model which also utilizes dictionary information. This integrated 
model is shown to be either superior or comparable to all other models reported in the literature 
on every domain of this task. 

 
KEYWORDS : Chinese Word Segmentation, Cross-Domain, Robust Feature, Utilize Dictionary 

1653



1 Introduction 

As words are the basic units for text analysis, Chinese word segmentation (CWS) is critical for 
many Chinese NLP tasks such as parsing. However, current state-of-the-art character-based 
approaches fail to give robust performance for cross-domain tests (Gao and Vogel, 2010; Huang 
et al., 2010; Jiang and Dong, 2010; Wang et al., 2012, Sun et al., 2012), despite their acceptable 
performance for in-domain tests.  For example, with the same PKU-News training corpus, the 
best system in SIGHAN-2005 (Emerson, 2005) achieved a high in-domain performance (96.9% 
in F-score) in open1 tests, while the best cross-domain performance for the medicine domain only 
achieved 93.8%2  in  CIPS-SIGHAN-2010 (Zhao and Liu, 2010) open tests.  

Their poor performances result not only from the fact that out-domains have higher out-of-
vocabulary (OOV) rates (please refer Table 1 in Section 3.1), but also from the fact that various 
domains frequently possess different tag distributions for the same character, especially for those 
out-domain OOV words (which are also technical terms most of times). For example, “酸” (acid) 
is a typical suffix of medical terms, such as “尿酸” (uric acid) and “氨基酸” (amino acid), and 
is frequently tagged as “E” in the medicine domain. However, it is usually a single-character 
word which means „sour‟ in general text, and should be tagged as “S”. As a result, those surface 
features (such as character n-grams) adopted in the approaches mentioned above have more 
difficulty in identifying the correct position-tag, which is a member of {Beginning, Middle, End, 
Singleton}(Xue, 2003), of a character within an OOV word in this case. Since many technical 
OOV words appear in the out-domain text, the performance thus degrades sharply.  For instance, 
when we test the main stream character-based discriminative approach for medicine domain in 
CIPS-SIGHAN-2010 contest, 27.7% of the wrong segmented words are OOV terms. 

On the other hand, unlike surface features, the distribution of the proposed abstract feature, 
which checks if the given candidate prefers the corresponding position-tag of the longest 
dictionary matching word, is almost invariant across different domains. Enhanced discriminative 
approaches (Low et al., 2005; Zhao et al., 2010) which adopt this abstract feature thus show 
better generalization capability in our cross-domain tests.  

To adopt the above matching-longest-word feature, a dictionary is required. It is well known that 
the domain dictionary provides direct and reliable hints for deciding the position-tags of 
characters within a covered OOV word. Furthermore, unlike named entity, technical terms of a 
specific domain usually can be considerably covered by a domain dictionary. Since domain 
dictionaries are frequently available for NLP related projects (e.g., technical manual translation), 
they can thus provide big help in real applications. 

However, the above dictionary related feature utilized in discriminative approaches (Low et al., 
2005; Zhao et al., 2010) cannot be directly adopted by a generative model3. Therefore, we 
propose a new tag-matching-status feature for checking if the selected position-tag matches the 
longest dictionary-matching-word, and derive a novel enhanced character-based generative 
model. The proposed feature not only induces an additional probabilistic factor but also possesses 
richer information in comparison with the one adopted in previous works. 

                                                           
1   Unlike close test, the open test can use any language resource, not restricted to training data only. 
2 93.8% only corresponds to 23.7% sentence accuracy rate (average 23.3 words per sentence in the medicine 

corpus), evaluated from its associated 94.0% recall-rate, while 96.9% corresponds to 46.9% sentence accuracy. 
3 It is required by the integrated approach given at Section 4.2. 
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Several factors that might affect the performance of the new model are studied in this paper: 
including the context information, the OOV coverage rate of the dictionary, and the weight of the 
new factor in the model. We evaluated our final system on the CIPS-SIGHAN-2010 Bakeoff data. 
The obtained results not only convincingly demonstrate the effectiveness of the proposed model 
for cross-domain CWS, but also achieve the best performance on 3 out of 4 domains in the open 
test. Afterwards, the proposed enhanced generative model is integrated with another enhanced 
discriminative model (Low et al., 2005) to further improve the performance, and achieves the 
best performance on all the tested corpora. 

The remainder of this paper is organized as: Section 2 discusses how to incorporate dictionary 
information and section 3 describes the proposed models. Empirical results and error analysis are 
presented in section 4 and 5. Section 6 reviews the related work. 

2 Dictionary related features 

2.1 Word-ID or Word-Matching-Indicator? 

Given a dictionary, there are two kinds of features that can be utilized: word-ID, which are binary 
features that fire only when the word matches one specific word entry, and Word-Matching-
Indicator (e.g. TM defined in Section 2.3), which checks the relationship between the assigned 
position tag of the current character and the dictionary words within local context. Since the 
statistics of OOV words can never be learnt from the training corpus, the approaches that adopt 
word-ID as features (Zhang and Clark, 2007; Sun, 2010; Zhang and Clark, 2011) cannot really 
utilize the information of the OOV words kept in the dictionary. On the contrary, the word-
matching-indicator is applicable for both IV and OOV words kept in the dictionary. This feature 
thus provides valuable information for those OOV words covered by the dictionary. Therefore, 
based on the positions of those dictionary matching words, two dictionary-related features (i.e., 
Dictionary Coverage Status and Tag Matching Status, to be specified later) are proposed in this 
paper, and they will be incorporated into the character-based generative model. 

2.2 Dictionary Coverage Status 

Let ic  be the i-th character in a given sentence. To check whether there are ambiguities with 
those dictionary matching words at ic  (and what kind of ambiguities it has), we propose the 
Dictionary Coverage Status feature, which is a member of {No-Dictionary-Word, No-Ambiguity, 
Crossed-Ambiguity4, Included-Ambiguity, Mixed-Ambiguity} that are defined below. This status 
depends only on the given sentence and the dictionary, and is irrelevant to the position tag 
assigned to the character. Let D  be the given dictionary which only contains multi-character 
words, and [ : ]i jc  denotes the string from ic  to jc (including jc ), then the conditions for 
“Included-Ambiguity” and “Crossed-Ambiguity” are defined below. 

(A) Conditions for Included-Ambiguity (IA): 
(1) Both ic  and 1ic   will be assigned “IA” if they meet the following condition (Figure 1(a)):  

[ : ] [ : ], 0, :{ , }i j i i k i lj l k j c c D      ; 

(2) Both 1ic   and ic  will be assigned “IA” if they meet the following condition (Figure 1(b)): 

[ : ] [ : ], 0, :{ , }i i j i k i lj k l j c c D      . 

                                                           
4 Please note that ambiguity status is traditionally defined on words, but ours is defined on characters. 
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FIGURE 1 – Cases for Included-Ambiguous characters (marked in grey) 

FIGURE 2 – Cases for Crossed-Ambiguous characters (marked in grey) 

(B) Conditions for Crossed-Ambiguity (CA): 
(1) Both ic  and 1ic   will be assigned “CA” if they meet the following condition (see Figure 

2(a)):  

[ : ] [ : ], 0,0 :{ , }i j i i k i lj l k j c c D       ; 

(2) Both 1ic   and ic  will be assigned “CA” if they meet the following condition (Figure 2(b)): 

[ : ] [ : ], 0,0 :{ , }i i j i k i lj k l j c c D       . 

Then Dictionary Coverage Status at ic  (denoted by iDC ) can be decided as follows: 

i

No-Dictionary-Word, if no matching word is found;

Included-Ambiguity, if only (A) is satisfied;

DC = Crossed-Ambiguity, if only (B) is satisfied;

Mixed-Ambiguity, if both (A) and (B) are satisfied;

No-Ambiguity,  otherwise.






 

The above definition implicitly implies that a character which possesses the same position-tag for 
all associated dictionary matching words will be assigned “No-Ambiguity”. 

For example, given a character sequence “大学生物” (university biology) and a set of dictionary-
matching-words {“大学” (university), “大学生” (undergraduate)}, for characters „学‟ and 
“生”, condition (A.1) is satisfied , but condition (B) is not; therefore, 2DC  and 3DC should be set 
to “Included-Ambiguity”. On the other hand, if the dictionary-matching-words are {“大学生”, 
“生物” (biology)}, then condition (B.1) is satisfied, but condition (A) is not; 2DC  and 3DC  thus 
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should be set to “Crossed-Ambiguity”. However, if we have all the three matching words {“大
学ā,Ā大学生ā,Ā生物”}, then both condition (A.1) and condition (B.1) are satisfied; 
therefore, 2DC  and 3DC  should be set to “Mixed-Ambiguity” in this case. Furthermore, if the 
matching words are {“大学ā,Ā生物”}, then 2DC  and 3DC would be “No-Ambiguity”. Last, 

1DC  and 4DC are always “No-Ambiguity” for all above three different cases. 

2.3 Tag Matching Status 

To indicate the relationship between the tag assigned to ic  and those dictionary matching words 
which cover ic , we introduce the Tag Matching Status feature (the abstract aggregate candidate-
feature, and is abbreviated as TM from now on), which is a member of {Following-Longest-
Word, Only-Following-Shorter-Word, Not-Following-Any-Word, Inapplicable} that are defined 
below.  Denote the set of dictionary matching words that begin with ic  as [ : ] [ : ]{ | }i j i jBD c c D  , 
the set of dictionary matching words that enclose ic  as [ : ] [ : ]{ | , }M j k j kD c c D j i k    , and the set 
of dictionary matching words that end with  ic  as [ : ] [ : ]{ | }E j i j iD c c D  . If ic  is tagged as it , 
then iTM  can be decided as follows: 

(1) If B M ED D D  , which indicates that this character is not covered by any dictionary 
word, then iTM  is set to “Inapplicable”.  

(2) If  ,  and 
it B M ED D D D   (where

it
D  is the set of dictionary matching words 

corresponding to it ; for example, 
it

D will be BD , if it B . Please note that SD  , since 
the adopted dictionary only contains multi-character words), which indicates that the 
assigned tag does not follow any dictionary matching word, then iTM  is set to “Not-
Following-Any-Word”; 

(3) If ( , ' ( ') ( ) ,) :
iB M E t

w D D D w D len w len w      then iTM  is set to “Following-Longest-
Word”. It indicates that the assigned tag matches the corresponding position-tag of the 
longest dictionary matching word at that character; 

(4) Otherwise, iTM  is set to “Only-Following-Shorter-Word”. It indicates that the assigned tag 
does not match the corresponding position-tag of the longest dictionary matching word at 
that character, but matches that of some shorter words. 

For example, when we consider the second  character „学‟ in the sequence “大学生” and assume 
that the dictionary matching words are {“大学”, “大学生”}: if the tag assigned to „学‟ is “M”, 
then 2TM  will be “Following-Longest-Word”; if it is “E”, then 2TM  will be “Only-Following-
Shorter-Word”; if it is “B” or “S”,  2TM  would be “Not-Following-Any-Word”. Therefore, this 
candidate-feature is associated with each candidate of the position-tag. However, if no dictionary 
word covers this character, then 2TM  will be set to “Inapplicable” regardless of which tag is 
assigned to „学‟ (i.e., we do not want to disturb the original model in this case). 

3 Proposed models 

3.1 Enhanced generative model 

Wang et al. (2009) proposed a character-based generative model for CWS, which is able to 
handle the dependency of character-bigrams within words and thus give a good balance for the 
performance of IV words and OOV words. Their approach adopts the character-tag-pair trigram 
model, and obtains the desired position-tag sequence 1

nt as follows: 
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where 1[ , ]nc t is the associated character-tag-pair sequence for the given character sequence 1
nc . 

To alleviate the data sparseness problem, we pre-convert the given character string into its 
corresponding unit string before segmentation, where the unit denotes a FN-String (which is a 
string mixed with foreign/Arabic/selected-punctuations5  characters, such as “HTML5”, 
“www.google.com”, etc.), a CN-String (which is a string of Chinese Numbers consisting of 
Chinese digit-characters such as “六五七七二” (65772), etc.), or a single Chinese character. 
Therefore, a unit is either a Chinese character or a foreign/numerical expression as defined above, 
and is represented by either a Chinese-Character-ID or a Meta-Type-ID (i.e., FN-type or CN-type) 
in the model. 

After the character string has been pre-converted into the unit string, we incorporate the 
dictionary related features proposed in Section 2 into the generative model and re-formulate it as 
follows: 
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where iDW  denotes the set of dictionary words that cover iu  (i-th unit). 

1 1([ , , ] )n nP u t TM DW  is then approximated by 1
21

([ , , ] | [ , , ] , )
n i

i i ii
P u t TM u t TM DW  and its 

associated factor is further derived as follows: 
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( | , , ) ([ , ] | [ , ] )

i
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i i i
i i i i i i i
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P u t TM u t TM DW

P TM u t TM DW P u t u t TM DW

P TM MWL DC u P u t u t


   

 

 
 

 (3) 

where iMWL denotes the Maximum Word Length of the words that cover iu , iDC (Dictionary 
Coverage Status) and iTM  (Tag Matching Status) are defined at Section 2.2 and Section 2.3, 
respectively. The first term 2( | , , )i

i i i iP TM MWL DC u   is the tag matching factor, which is mainly 
introduced to give guidance in the case that the second term 1

2([ , ] | [ , ] )i
i iP u t u t   (the original 

generative model) cannot give reliable prediction when the associated character-tag bigram is 
unseen in the training corpus. 

Equation (3) weighs the tag matching factor and the character-tag trigram factor equally. 
However, it is reasonable to expect that they should be weighted differently according to their 
contribution. We thus combine these two factors via log-linear interpolation, which is shown as 
follows: 

                                                           
5 Selected punctuations include those members from { + , - , * , / , . , % , @ }. 
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2

2

( ) log ([ , ] | [ , ] )

(1 ) log ( | , , )

i
i i i

i
i i i i

Score t P u t u t

P TM MWL DC u







 
   (4) 

Where   is the weighting coefficient to be decided from the development set, and 0 1.0  . 

3.2 Enhanced integrated model 

To incorporate the dictionary information into the discriminative approach, Low et al. (2005) 
added two additional features (which are features (d) and (e) in the following list) to the widely 
adopted primitive templates described in (Ng and Low, 2004), and used them to enhance the 
original discriminative model (Xue, 2003): 

0 0

1 0

1 1

( ) ( 2, 1,0,1,2); ( ) , ' ;

( ) ( 2, 1,0,1); ( ) ' ( 1,0,1).

( ) ;

n

n n n

a C n d MWL t

b C C n e C t n

c C C




  
      

Let W denote the longest dictionary word that covers c0, then 0MWL  denotes the length of W, 
and 0't   denotes the corresponding tag of c0 in W. 

Since the enhanced generative model cannot utilize the features from future context, which is a 
common drawback of generative approaches (Wang et al., 2010), following the approach of 
(Wang et al., 2011),  we further integrate the enhanced generative model with the above 
enhanced discriminative model via log-linear interpolation, shown as follows: 

 1
2
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2
2

( ) [ log ([ , ] | [ , ] )

(1 ) log ( | , , )]

(1 ) log( ( | , , ' )

i
i i i

i
i i i i

i
i i i i

Score t P u t u t

P TM MWL DC u

P t u MWL t

 








  
 
  

 (5) 

Where   and   are two weighting coefficients to be decided from the development set, and 
0 , 1.0   . 

4 Experiments 

All experiments are conducted on the corpora provided by SIGHAN-2005 (Emerson, 2005) and 
CIPS-SIGHAN-20106 (Zhao and Liu, 2010). Both the in-domain test and cross-domain tests are 
trained on PKU-News7 from CIPS-SIGHAN-2010. The PKU-News testing corpus of SIGHAN-
2005 is adopted for in-domain test, while the corpora of CIPS-SIGHAN-2010 are used for cross-
domain tests. There are four different domains: Literature (denoted as Lit.), Computer (Cmp.), 
Medicine (Med.) and Finance (Fin.). To obtain the weights of different factors in Equations (4) 
and (5), we randomly selected 1% from the original training corpus as the development set, and 

                                                           
6 CIPS-SIGHAN-2010 is the first cross-domain Chinese Word Segmentation (CWS) bake-off competition which 

involves 18 systems. To our knowledge, this data-set is the most well-known and widely adopted (also publically 

available) one for cross-domain CWS test.  
7 The PKU-News training data of CIPS-SIGHAN-2010 is the same with the PKU training data of SIGHAN-2005. 
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regard the remaining part as the new training set. The updated corpora statistics are shown at 
TABLE 1. 

Corpora Domain Characters Tokens 
Word 
Types 

OOV 
Rate 

Training News 1,820,456 1,109,947 55,303 N/A 
Develop. News 99,381 60,585 11,216 0.028 

Testing 

News 172,733 104,372 13,148 0.058 
Lit. 50,637 35,736 6,364 0.069 

Cmp. 53,382 35,319 4,150 0.152 
Med. 50,969 31,490 5,076 0.110 
Fin. 53,253 33,028 4,918 0.087 

TABLE 1 – Corpus statistics for CIPS-SIGHAN-2010 

Besides, the SRI Language Modelling Toolkit (SRILM)8  (Stolcke, 2002) is used to train 
1

2([ , ] | [ , ] )i

i iP u t u t 
 with the modified Kneser-Ney smoothing method (Chen and Goodman, 

1996). Also, the Factored Language Model in SRILM is adopted to train 

2
( | , , )i

i i i iBFP TM MWL DC u  , and
2

( | , , )i

i i i iBFP TM MWL DC u   sequentially back-off to 
( | , )

i i iGTP TM MWL DC , where the subscripts “BF” and “GT” denote back-off and Good-Turing 
estimations, respectively. For the discriminative approach, the ME Package9 provided by Zhang 
Le is adopted for training. Last, all adjustable weights are first selected only based on the 
development set. Those obtained optimal values are then fixed and applied to the testing-set. 

4.1 Enhanced generative model 

4.1.1 Effect of having character context 

It is observed that tag matching status is less reliable when there are several dictionary matching 
words for the given character. Therefore, the character context is introduced to help disambiguate 
them. To show the influence of character context information, we test two different enhanced 
generative models. The first one adopts the factor ( | , )i i iP TM MWL DC  (denoted as G1), and the 
second one adopts the factor 2( | , , )i

i i i iP TM MWL DC u   (denoted as G2; with character context). 
In addition, the performance of the original generative model (denoted as B for baseline) is also 
shown for comparison. The dictionary adopted here contains all the training words and the testing 
words excluding the named entities (which are usually not covered by domain dictionaries).  

TABLE 2 shows that character context effectively improves the performance for four out of five 
domains in F-score (except the Computer domain), which mainly resultes from the inconsistent 
segmentation criteria between the News training set and the computer testing set. For example, 
18.3% of “就是” (just like)  occurrences are segmented as a single word, and 81.7% of them are 
segmented into two single-character words “就” (just) and “是” (be) under similar context in the 
training set. However, this string is always treated as a single word in the Computer testing set. 
When the context is not considered, G1 prefers the longer word and gives correct answer for all 
the occurrences in the Computer corpus. While the context is considered, G2 will prefer to follow 
those occurrences in the training set and thus give wrong result most of the time. 

                                                           
8 http://www.speech.sri.com/projects/srilm/ 
9 http://homepages.inf.ed.ac.uk/lzhang10/maxent.html 
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Model News Lit. Cmp. Med. Fin. OA 
B 0.952 0.928 0.929 0.904 0.950 0.939 
G1 0.959 0.951 0.969 0.963 0.971 0.962 
G2 0.968 0.953 0.966 0.964 0.973 0.965 

TABLE 2 – Effect of adopting character context in F-score (testing-set) 

Corpus 
Character-
Tag-Bigram 

B G1 G2 

News 
seen 0.018 0.030 0.016 
unseen 0.183 0.045 0.045 

Lit. 
seen 0.028 0.030 0.022 
unseen 0.203 0.046 0.047 

Cmp. 
Seen 0.026 0.017 0.015 
unseen 0.183 0.014 0.016 

Med. 
Seen 0.024 0.016 0.012 
unseen 0.251 0.022 0.023 

Fin. 
Seen 0.019 0.018 0.011 
unseen 0.155 0.015 0.017 

TABLE 3 –Tagging error rates for seen/unseen cases in the testing-set 

Overall, G2 outperforms B and G1 by 2.6% and 0.3%, respectively. This phenomenon can be 
explained by classifying the tagging errors into two groups according to whether the associated 
character-tag bigram is seen or not in the training set. TABLE 3 shows that the original character-
tag trigram factor (i.e., B) works well when the bigram is seen, but it performs poorly when this 
bigram is unseen. On the other hand, G1 (without context) mainly boosts the performance for 
unseen cases. However, G2 (with context) also boosts the performance for seen cases. Therefore, 
it will not let the newly added tag-matching factor contaminate the original trigram model when 
associated character-tag bigrams are seen. The above observations hold for both development-set 
and testing-set. G2 is thus adopted for the enhanced generative model and integrated model.  

4.1.2 Effect of dictionary coverage rate 

Since no dictionary can cover all OOV words for real applications, we would like to know how 
this enhanced generative model performs under different dictionary coverage rates. We extract 
two dictionaries: the first one (D1) includes all the training words; and the second one (D2) 
contains all the OOV words in the testing set (excluding named entities). TABLE 4 gives the 
results for various combinations of D1 and D2 with 0.5  , where the first row “None” denotes 
that no dictionary (even D1) is adopted; also, the last column “OA” gives the overall performance 
of various domains (except News). 

It can be seen that the improvements with the dictionary information from the training set are not 
obvious (None vs. D1). The reason is that the original character-tag trigram model already 
handles IV words well enough and the information of IV words seems redundant to this model. 
However, when the dictionary starts to cover OOV words, the performance rises sharply 
according to the OOV coverage rate. Anyway, the enhanced model always outperforms the 
original model even when the dictionary only covers a few OOV words. 

1661



Dict. News Lit. Cmp. Med. Fin. OA 
None 0.952 0.928 0.929 0.904 0.950 0.928 
D1 0.953 0.930 0.929 0.907 0.951 0.929 
+20%D2 0.955 0.933 0.934 0.919 0.955 0.935 
+40%D2 0.958 0.939 0.940 0.931 0.959 0.942 
+60%D2 0.961 0.943 0.949 0.941 0.964 0.949 
+80%D2 0.964 0.948 0.958 0.952 0.968 0.956 
+D2 0.968 0.953 0.966 0.964 0.973 0.964 

TABLE 4 – F-score versus different OOV coverage rates for the enhanced character-based 
generative model (testing-set). OA: overall performance of those four cross-domains. Boldface 
indicates the best result under each column. 

Dict. News Lit. Cmp. Med. Fin. OA 
D1 0.935 0.901 0.895 0.861 0.933 0.914 
+20%D2 0.940 0.909 0.908 0.880 0.940 0.923 
+40%D2 0.945 0.918 0.924 0.901 0.947 0.932 
+60%D2 0.950 0.928 0.937 0.923 0.955 0.942 
+80%D2 0.955 0.938 0.952 0.945 0.962 0.952 
+D2 0.961 0.949 0.967 0.969 0.969 0.962 

TABLE 5 – F-score versus different OOV coverage rates for the word-based trigram model  

Nonetheless, not every model possesses the robustness for varying dictionary coverage rate. For 
example, the corresponding result of the word-based generative trigram model10, given at TABLE 
5, shows that it is quite fragile in comparison with our model. In this model, all words kept in the 
dictionary are used to construct the word lattice in the decoding process. Those OOV words will 
be treated as unseen events and given a very low score. However, it can be seen that although the 
results with full dictionary are satisfactory, the performance drops dramatically while the OOV 
coverage rate decreases. This indicates that this model is quite sensitive to those OOV words, due 
to its incapability of identifying OOV words beyond the dictionary. This model is thus not useful 
for real applications, as it is impossible to know the corresponding dictionary coverage rate in the 
testing set in advance. Therefore, checking the robustness of dictionary-based models for 
different dictionary coverage rates is important in selecting an appropriate model. 

4.1.3 Effect of varying weights 

The F-scores of the enhanced generative model versus various   values (the weight of 
1
2([ , ] | [ , ] )i

i iP u t u t   in Equation (4) are evaluated on the development set, and are shown in 
FIGURE 3. It can be seen that all the curves are flat near their peaks, which indicates that this 
enhanced model is not sensitive to which   value is picked.  Besides, although the performance 
decreases when the OOV coverage rate drops, the   locations of peaks for various curves are 
almost the same (all around 0.4  ). This indicates that the best   value is not sensitive to the 
OOV coverage rate. 

                                                           
10 This well-known model adopts the form : 

1
21

argmax ( | )
m i

i ii
WSeq P w w   (Wang et al., 2012). 
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FIGURE 3 – F-score of the enhanced generative model versus various weights   on the 
development set 

FIGURE 4 –F-score of the enhanced integrated model versus various weights   on the 
development set 

4.2 Enhanced integrated model 

Since the original generative model and the discriminative model are found to complement each 
other (Wang et al., 2011), it is expected that the enhanced generative model and the enhanced 
discriminative model (Low et al., 2005), which is re-implemented, should also complement each 
other. This inference is supported by the statistics that these two approaches share only 31.9% of 
their errors in the literature domain (similarly in other domains). Therefore, integrating these two 
models is expected to achieve a better result too. For the enhanced integrated model, we fix the 
weight  of 1

2([ , ] | [ , ] i
i iP u t u t  to be 0.4 (according to section 4.1.3). Afterwards, we adjust the 

weight of the enhanced generative model and the enhanced discriminative approach on the same 
development set. FIGURE 4 gives F-scores with different dictionaries versus various β values. 
Theβlocations of peaks for various curves are also almost the same (all aroundβ=0.7) for 
various dictionary coverage rates. This indicates that theβ weight is not sensitive to the OOV 
coverage rate. This figure also shows that the peak of the integrated model is robust for different 
dictionary coverage rates. 

Last, to fairly compare different models in a more realistic condition, Table 6 shows the results of 
the enhanced discriminative model (denoted by ED) and the integrated model (denoted by EI) 
with an external dictionary (which roughly corresponds to 65% D2 coverage rate in TABLE 4, and 
is specified in the next section). Note that our ED result (0.968) is a little bit different from that 

1663



reported in (Low et al., 2005), which gives 0.965 F-score with a smaller dictionary that is a part 
of ours (see the next section). It can be seen that our enhanced integrated model achieves the best 
results on all five corpora. 

 News Lit. Cmp. Med. Fin. 
SBest 0.969 0.955 0.950 0.938 0.960 
ED 0.968 0.951 0.946 0.938 0.961 
EG 0.967 0.946 0.950 0.944 0.962 
EI 0.973 0.955 0.951 0.944 0.963 

TABLE 6 - F-scores on the testing sets. SBest: best results from SIGHAN 2005 (News) and CIPS-
SIGHAN 2010 (other domains). Boldface indicates the best result. 

4.3 Comparison with other state-of-the-art systems 

To provide publically accessible dictionaries for open comparison, we combine a general 
dictionary downloaded from the Internet11 and another technical dictionary extracted from Wiki12 
as our external dictionary. The first general dictionary is also adopted by (Low et al., 2005). For 
simplicity, we adopted the same dictionary (the union of above two dictionaries) for all five 
different domains. This external dictionary includes 458,165 words in total which roughly 
corresponds to 65% D2 coverage rate in TABLE 4. Since the external dictionary is expected to be 
collected by the user in real applications, dictionary words should be consistent with his/her own 
segmentation criterion. Therefore, to give true evaluation for reflecting the real situation, words 
in the dictionary are first transformed into their corresponding ones according to the same criteria 
adopted in various given corpora.  For example,  “免疫系统” (immune system) is converted into 
“免疫” (immune) and “系统” (system) according to the gold criterion adopted in CIPS-
SIGHAN-2010. 

The results of the enhanced generative model (denoted by EG) with the external dictionary and 
the SIGHAN best results in each domain are also given in TABLE 6. They are summarized as 
follows: Low et al. (2005) added the dictionary information to the discriminative approach and 
adopted additional corpora. They achieved the best result (0.969 F-score) on PKU News corpus 
in the open test of SIGHAN-2005. On the other hand, Huang et al. (2010) adopted HMM and 
some rules to post-process the output of the CRF discriminative approach. They achieved the best 
in the Literature domain in CIPS-SIGAHN-2010. Last, (Gao and Vogel, 2010) combined several 
classifiers with a large margin classifier and won the best on other three remaining domains. It 
shows our enhanced generative model achieves the best results on three out of four cross-
domains, and our enhanced integrated model outperforms all the systems reported in the literature. 

To further check if the difference between various models listed in  Table 6 is really statistically 
significant, we adopt the bootstrapping technique (Koehn, 2004; Zhang et al., 2004)  to conduct 
the significant tests. We follow the work of (Wang et al., 2010) and take the re-sampling size to 
be 2,000. 95% confidence interval is adopted in our tests. TABLE 7 shows that our enhanced 
generative model is superior to the enhanced discriminative model in overall comparison on 
those four cross-domains. Furthermore, the enhanced integrated model is either superior or 
comparable to all other models. 

                                                           
11 http://ccl.pku.edu.cn/alcourse/nlp/2010/word_freq_list.rar 
12 http://dumps.wikimedia.org/zhwiki/20111017/zhwiki-20111017-all-titles-in-ns0.gz 
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Systems 
News Lit. Cmp. Med. Fin. 

A B 
EG SBest < < ~ > ~ 
ED SBest ~ < ~ ~ ~ 
EG ED < < > > ~ 

EI 
SBest > ~ ~ > ~ 
ED > > > > ~ 
EG > > ~ ~ > 

TABLE 7 - Statistical significance test of F-Score among various systems. SBest: best results of 
the SIGHAN 2005 (News) and the CIPS-SIGHAN 2010 (others). “>” means that A is 
significantly better than B; “<” means A is worse than B; “~” means that they are not different. 

5 Error analysis and discussion 

Following the work of (Sun, 2010), we get the upper bound of our enhanced generative model 
(EG) and enhanced integrated model (EI) by regarding each factor as an independent model, 
which is shown in TABLE 8. Compared with the results in TABLE 6, we can find that there is still 
a large room to further improve our proposed models. 

Model News Lit. Cmp. Med. Fin. 
EG 0.984 0.973 0.971 0.968 0.978 
EI 0.986 0.976 0.973 0.970 0.980 

TABLE 8 - F-score upper bound for EG and EI models 

Furthermore, we collect and analyse the remaining errors generated by the enhanced integrated 
model on the Medicine corpus, which contains a large number of technical terms and is most far 
away from the upper bound. It is found that 66.6% (out of 1,385) of error words are related to 
OOV (not seen in the training-set). Among those 922 OOV errors, 758 (82.2%) of them are not 
covered by the dictionary and 401 (52.9%) out of 758 are technical terms. Therefore, it again 
confirms how important a dictionary is. Also, 88 (21.9%) of those uncovered terms are with 
prefix/suffix. For example, “造影术” (radiography) is an OOV word with suffix “术” (technique), 
while the word “造影” (radiograph) is contained in the dictionary. However, it is wrongly split 
into “造影” and “术”, since the longest word in the dictionary is preferred. This problem will be 
our future work. 

6 Related work 

The word-based generative model (Gao et al., 2003; Zhang et al., 2003) is a classical approach 
for CWS. However, this approach needs an additional module to recognize OOV words. 
Therefore, the character-based discriminative model (Xue, 2003; Low et al., 2005; Zhang et al., 
2006; Jiang et al., 2008; Zhao et al., 2010) has become the main stream due to its capability in 
handling OOV words.  

However, the character-based discriminative model cannot give satisfactory performance for IV 
words. Wang et al. (2010) thus proposed a generative model to fix this problem. Afterwards, they 
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further proposed an integrated model to integrate generative and discriminative approaches, as 
these two approaches complement each other.  

On the other hand, dictionary information has been utilized in the discriminative approach in the 
previous works of (Low et al., 2005; Zhao et al., 2010). However, they focus on improving the 
in-domain word segmentation accuracy, while we investigate how the domain invariant feature 
(based on dictionary information) helps for cross-domain tasks. Besides, the effect of varying 
OOV words coverage rates is studied in this paper for the first time. 

In addition to dictionary feature, Zhao and Kit (2007; 2008), Sun and Xu (2011) too, also adopted 
the accessor variety feature to gain better generalization ability. Since this feature can be 
extracted from unlabelled corpora, it is suitable to be adopted for domain adaptation. Again, all 
their works focus on in-domain performance. Other works that focus on in-domain performance 
also include (Zhang and Clark, 2007), (Fu et al., 2008), (Jiang et al., 2008), (Lin, 2009), (Xiong 
et al., 2009), and (Zhang and Clark, 2011). 

Last, (Ben-David et al., 2007) pointed out that a good feature representation for domain 
adaptation should minimize the difference between its distributions in source and target domains. 
The proposed abstract feature is also inspired by their conclusion. 

Our approach differs from those previous works in several ways. First, we do not simply add the 
dictionary matching information as an additional feature under the Maximum Entropy framework. 
In contrast, we derive a new generative model with dictionary information starting from the 
problem formulation, and solve the problem in a principled way. Second, the robustness of the 
proposed model for varying dictionary coverage rate is first studied and checked in this paper. As 
explained in Section 4.1.2, this issue is important for selecting a model for real applications. 

7 Conclusion 

Current character-based approaches are not robust for cross domain Chinese word segmentation, 
because those surface features adopted in the model frequently possess different tag distributions 
for the same character in various domains. This paper thus proposes a new abstract aggregate 
candidate-feature, which indicates if the assigned tag follows the corresponding position-tag of 
the longest dictionary matching word. With this novel domain invariant feature, we then derive 
an enhanced generative model for cross-domain CWS to solve the problem in a principled way. 
Experiments show that the proposed approach is robust for various OOV coverage rates and 
outperforms the best system in three out of five corpora.   

The proposed model is further integrated with an enhanced discriminative approach because they 
complement each other. With the help of a publically accessible external dictionary, experiments 
on the SIGHAN-2005 and CIPS-SIGHAN-2010 show that our integrated approach outperforms 
all the systems in open test and achieves the best F-score in each corpus across five different 
specified domains. 
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