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ABSTRACT 

Update summarization is a new challenge which combines salience ranking with novelty 

detection. Previous researches usually convert novelty detection to the problem of redundancy 

removal or salience re-ranking, and seldom explore the birth, splitting, merging and death of 

aspects for a given topic. In this paper, we borrow the idea of evolutionary clustering and propose 

a three-level HDP model named h-uHDP, which reveals the diversity and commonality between 

aspects discovered from two different epochs (i.e. epoch history and epoch update). Specifically, 

we strengthen modeling the sentence level in the h-uHDP model to adapt to the sentence 

extraction based framework. Automatic and manual evaluations on TAC data demonstrate the 

effectiveness of our update summarization algorithm, especially from the novelty criterion. 

KEYWORDS : Update summarization, Hierarchical Dirichlet process, Novelty detection.  
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1 Introduction 

Update summarization aims to generate a short and concise summary for the latest updating 

topic-related documents (hereafter update documents for short), under the assumption that the 

user has already read the earlier historical documents (history documents for short) about the 

same topic. Recently, there have been many attempts to explore different approaches to generate 

update summaries. The predominant approaches are mainly built upon the sentence extraction 

framework. 

Update summarization for an evolving topic differs from previous generic summarization for a 

static topic in that the latter aims to acquire the salient information in one topic, while the former 

cares for both the salience and the novelty of information. By developing traditional 

summarization techniques, massive efforts on update summarization have been made to dig out 

new information (Boudin et al., 2008; Fisher and Boark, 2008; Wan, 2007; Li et al., 2008; Du  et 

al., 2010; Li et al., 2012). The typical examples include the scaled Maximal Marginal Relevance 

(MMR) algorithm which excludes those sentences similar to the history documents, and some 

extensions of TextRank such as TimedTextRank (Wan, 2007), PNR
2
 (Li et al., 2008), MRSP (Du 

et al., 2010) which re-rank the salience scores of sentences by employing various kinds of 

reinforcement between sentences. One problem with these approaches is that they tend to regard 

update summarization more as a redundancy removal problem than a novelty detection problem. 

Another problem is that these approaches are mainly based on the computation of lexical 

similarities between sentences and fail to consider higher level information to avoid semantic 

redundancy in update summarization. 

To solve these two problems, we borrow the techniques of evolutionary clustering which focuses 

on detecting the dynamics of a given topic. Normally, one topic is described from various 

specific aspects
1
, accompanied with the background information running the whole topic 

(Chemudugunta et al., 2007; Li et al., 2010). For example, the topic “Quebec independence” may 

involve the specific aspects including “leader in independence movement”, “referendum”, 

“related efforts in independence movement” and so on, while “Quebec” and “independence” are 

seen as the general background information. The evolving dynamics of a topic is mainly 

embodied in the birth, splitting, merging and death of the specific aspects (Ren et al., 2008). Then, 

the commonality and diversity between history documents and update documents can be easily 

summarized from the aspect level and update summarization is not limited to lexical redundancy 

removal. Recently, hierarchical Dirichlet process (HDP) (Teh et al., 2006) has been widely used 

to model the aspects in evolutionary clustering. HDP does not need to predefine the number of 

clusters, and can be easily and naturally extended to multiple correlated corpora for detecting 

aspects (Ren et al., 2008; Xu et al., 2008; Zhang et al., 2010; Gao et al., 2011). These distinct 

advantages make it suitable to update summarization. However, to our best knowledge, no 

previous work has explored HDP for update summarization. 

Aiming at the task of update summarization, in this paper, we develop a novel three-level (i.e. 

corpus, document set, and document levels) HDP model, called h-uHDP model, which extends 

the standard HDP to the scenario of two related document sets in different epochs (namely 

history epoch and update epoch). In h-uHDP, the diversity and connections of aspects between 

two epochs are naturally modeled: two epochs may share some common aspects; further, some 

aspects may become outdated while some become popular or some new may appear over time, 

causing the number of aspects and aspect structures to change at different epochs.  

                                                           
1 Aspect in this article is usually called cluster in evolutionary clustering. 
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Under the framework of extractive summarization, it is important to acquire the relationship 

between sentences and aspects for sentence selection. However, in most existing HDP models, 

the sentence level is disregarded and we cannot directly get the aspect distribution of sentences.  

Inspired by the progress made in Latent Dirichlet Allocation (LDA) models (Chemudugunta et al., 

2007; Li et al., 2010; Delort and Alfonseca, 2012), we newly add the sentence level between the 

word level and document level in the h-uHDP model. Since neighboring sentences in one 

document usually talk about one same aspect, we assume that the aspect assignment of each 

sentence is not conditionally independently. With such assumption, the aspect of each sentence is 

determined by the aspect distribution of both the document and its neighboring sentences. Our h-

uHDP model is capable of mapping multiple levels of information into the latent aspect space. 

The rest of this paper is organized as follows. Section 2 discusses the related work on update 

summarization and evolutionary clustering. Section 3 briefly introduces Dirichlet Process (DP) 

and Hierarchical Dirichlet Process (HDP). Section 4 presents our proposed aspect model h-uHDP 

and its inference algorithm. Section 5 addresses the algorithm of update summarization. Section 6 

shows the experimental results. Finally, Section 7 concludes the paper. 

2      Related work 

In this section, we review the related work on update summarization and evolutionary clustering.  

2.1  Update summarization 

In generic summarization
2
, numerous techniques have been developed to measure the salience of 

sentences and remove the redundancy in summaries, such as the well-known Maximal Marginal 

Relevance (MMR) (Carbonell and Goldstein, 1998), TextRank (Mihalcea and Tarau, 2004) et al. 

Some initial work on update summarization inherited the idea of salience ranking in generic 

summarization and extended the available algorithms to selecting sentences from the newly-

coming documents. Boudin et al. (2008) proposed a sentence scoring algorithm derived from 

MMR and preferred to select those sentences dissimilar to previously read sentences. Fisher and 

Roark (2008) used a supervised perceptron and simple filtering rules to get the salient sentences 

for the update documents. Gillick et al. (2008) formulated sentence selection as the problem of 

integer linear programming and aimed to select a set of sentences that maximize the sum of 

weights of n-grams covered by the sentences. Adapting the ILP of Gillick et al.(2008), CLASSY 

by Conroy et al.(2009) seeked to find the sentences that maximize the total approximate oracle 

scores. Wang and Li (2010) employed an incremental hierarchical clustering algorithm 

COBWEB to re-organize sentence clusters immediately after new documents/sentences arrive 

and the most representative sentences for the updated clusters were selected. The graph-based 

algorithm – TextRank (Mihalcea and Tarau, 2004) has more extensions for update summarization. 

TimedTextRank by Wan (2007) introduced the time decaying ratio for weighting sentence 

reinforcement, PNR
2
 by Li et al. (2008) added the negative reinforcement between sentences, and 

MRSP by Du et al. (2010) turned the historical sentences into sink points which are limited their 

reinforcement with other sentences. Through reinforcement propagation, the salience of 

sentences in the update documents is influenced by history documents to assure that those 

sentences with less redundancy with history documents appear in the update summaries. 

However, they mainly start from the lexical level and cannot explain explicitly what the novel 

information is.  

There are also a few attempts to explore semantic information in update summarization. 

Steinberger and Jezek (2009) proposed the Iterative Residual Rescaling (IRR) algorithm which 

                                                           
2 In this paper, generic summarization refers to the non-update summarization. 
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maps the documents to a set of latent semantic aspects
3
. Then sentences containing novel and 

significant aspects are then selected for the summary. Inspired by Latent Dirichlet Allocation 

(LDA) (Blei et al., 2003), Delort and Alfonseca (2012) proposed the DualSum algorithm which 

designs a nonparametric Bayesian approach to generate four kinds of aspects respectively for 

background, document, common and novel information. Though these researches have achieved 

some preliminary findings on exploring semantic information in update summarization, they still 

cannot present a unified framework to reveal the dynamics of a given topic.  

2.2 Evolutional clustering and HDP 

Evolutionary clustering is a relatively new research for topic detection, which aims to preserve 

the smoothness of clustering results over time, while fitting the data of each epoch. The work by 

Chakrabarti et al. (2006) was probably considered as the first to address the problem of 

evolutionary clustering. They proposed a general framework of evolutionary clustering and 

extended two classical clustering algorithms to the evolutionary setting: (1) k-means clustering, 

and (2) agglomerative hierarchical clustering. Later, Chi et al. (2008) presented two frameworks 

by incorporating temporal smoothness constraint and applied them on spectral clustering 

algorithm. While the researches on extending classic clustering algorithms have advanced the 

literature of evolutionary clustering, they have a very restrictive assumption: the number of 

clusters over time stays the same. It is clear that this assumption is obviously violated in many 

real applications. 

Recently, HDP has been widely used in evolutionary clustering due to its capability of learning 

number of clusters automatically and sharing mixture components across different corpora. In 

HDP, each corpus is modeled by an infinite Dirichlet Process (DP) mixture model, and the 

infinite set of mixture clusters is shared among all corpora. Sethuraman (1994) gave a stick-

breaking constructive definition of DP for arbitrarily measurable base space, which is very useful 

to model the weight of mixture components in the mixture model. Blackwell and MacQueen 

(1973) explained DP using the Polya urn scheme, as the predictive distribution of an event is 

proportional to the frequency of the existing events or to a concentration parameter for an 

unpresented event. The Polya urn scheme is closely related to the Chinese Restaurant Process 

(CRP) metaphor, which is applied on HDP demonstrating the ‘clustering property’ as the 

‘distribution on partition’. In addition, HDP can also be seen as an LDA-based model, which can 

automatically and naturally infer the number of clusters from data (Teh et al., 2006). Base on 

HDP, some algorithms of evolutionary clustering are proposed by incorporating time 

dependencies, such as DPChain, HDP-EVO, HDP-HMM, dynamic HDP and EvoHDP et al. (Xu 

et al., 2008; Xu et al., 2008; Ren et al., 2008; Zhang et al., 2010; Gao et al., 2011).  

3       DP and HDP 

In this section, we briefly introduce Dirichlet Process (DP) and Hierarchical Dirichlet Process 

(HDP). 

A DP can be considered as a distribution of probability measure G. Suppose a finite partition 

(T1,…,TK) in the measure space   and a probability distribution G0 on  , we write G~DP(α, G0) 

if (G(T1),…,G(TK)) ~ Dir(αG0(T1),…,αG0(TK)), where α is a positive concentration parameter and 

G0 is called a base measure. Sethuraman (1994) showed that a measure G drawn from a DP is 

discrete by the stick-breaking construction:  

                                                           
3 aspect is called as topic in the original paper of (Steinberger and Jezek, 2009). 
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where mk denotes the number of draws taking the value 
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where F(x|θji) denotes the distribution of generating xji. Equations (3) and (4) complete the 
definition of a HDP mixture model, whose graphical representation is shown in Figure 1(a). 
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and the corresponding graphical model is shown in Fig. 1(b). We can see that HDP can readily be 

extended to as many levels as are deemed useful. That is, we can obtain a hierarchy of DPs, 

where the draw from the DP at a given node serves as a base measure for its children (Teh, 2006).  

 

FIGURE 1 – Graphical representation for HDP. (a) original representation. (b) stick-breaking construction 

4        h-uHDP model 

This section clarifies why and how we propose our improved HDP model (named history-update 

HDP, h-uHDP for short) for the task of update summarization. 

In update summarization, a given topic is composed of two document sets (docset for short) 

varying two epochs, namely history and update epoch. To precisely observe the dynamics of the 

aspects in one topic, we need to model the aspects over three levels: topic corpus, docset at each 

                                                           
4 GEM stands for Griffiths, Engen, and McCloskey (Teh et al. 2006) 
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epoch, and document. In such case, we extend the standard HDP to a three level HDP: a set of 

common aspects on the top level of the hierarchy explicitly address the issue of aspect 

correspondence between two epochs; the second level is for the aspects at each different epoch, 

which are considered as the subset of the top level aspects; and the third level is designed for the 

aspects of each document; the relationship among these three levels of aspects can be obtained 

through statistical inference. Thus, h-uHDP can naturally model the diversity and connections of 

aspects between two epochs.  

First of all, we introduce some notations in our real data setting of update summarization. We use 
J

H
 and J

U
 to denote the number of documents in the history and update epochs respectively. For 

the convenience of description, we use the symbol e in the superscript to denote U or H. Each 
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1
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4.1   Model 

Our h-uHDP model is an extension of a three-level HDP model which naturally incorporates the 

levels of corpus, docset and document as shown in Fig. 2. Specifically, we design a two-level 

HDP respectively for each docset, and these two HDPs share an overall base measure G which is 

drawn from DP(ε,G0) and serves as the overall component bookkeeping for both epochs. We use 

G
H
 to denote the global measure for the history epoch and call it the history global measure. 

Similarly, G
U
 is called the update global measure.  Then, the local measures for each document 
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Then, we introduce the sentence level into the HDP model where each sentence is assigned to 
one aspect with the consideration of both its neighboring sentences and words contained by this 

sentence. We use 
,
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FIGURE 2 –Graphical representation for h-uHDP. (a) original representation. (b) stick-breaking construction 

Fig. 2(a) illustrates the graphical representation of h-uHDP model. The generation process of our 

h-uHDP model is as follows: 
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We can see that the extended three-level HDP model h-uHDP, in fact, considers five levels for a 

given topic, including word, sentence, document, docset, and corpus. At the same time, aspect 

assignment dependency between sentences is naturally incorporated in the model. 

Next, we will provide the stick-breaking perspective and a Gibbs sampler for model inference. 

4.2  The stick-breaking construction 

According to the stick-breaking construction of DP, the overall base measure G can be expressed 

with the following form: 
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As with the standard HDP, we get the stick-breaking construction for h-uHDP, illustrated in 
Figure 2(b). 
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If 
, ,

1
e

j i n
y  , 

, ,

e

j i n
x is an aspect word. 

4.3 Inference 

For model inference, we use a straightforward Gibbs sampler based on the Chinese Restaurant 
Franchise (CRF) and the stick-breaking construction. Thus, we begin with an analog of the CRF 

process for h-uHDP: a document 
e

j
D  corresponds to a restaurant, and a sentence 

,

e

j i
s  

corresponds to a customer. Different from the standard HDP, one customer in our model is seen 
as a family which includes a few persons. Here, we assume that the persons in one family usually 
have the same preference for one dish at one table except some persons shown no preference for 
any food. The general background dish is assigned to the persons having no preference and a 
specific dish k is assigned to those persons having preference. The global menu of dishes is 

denoted by K+1 i.i.d. random variables 
1

, , ,
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e

ji
t  and 

e

j t
k . Then the 

,

e

j i
  and 

e

j t
  can 

be reconstructed from their index variables and 
k

 , which makes the MCMC sampling more 

efficient (Blei et al., 2006). 

Sampling t.  Due to the space limit, we would just show the sampling formula without derivation. 

The likelihood due to 
,

e

j i
s  given 

e

ji
t t  for some previously t is ,

,
( )

e

j i

e

jt

s e

j ik
f s



. The likelihood of 

generating 
,

e

j i
s  given 

e n e w

ji
t t can be calculated by integrating out the possible values of n e w

j t
k . 

e
K  denotes the set of aspects assigned in current epoch. The prior probability that 

e

ji
t  takes on a 

previously used t is calculated according to 
,

( | )
e

-j ,i
z

e

j i
g z , 

,
( )

j i

j t

s e

k j i
f s



 and 
e

j t
n


, whereas the 

probability that it takes on a new value (i.e. 1
n ew e

j
t m


  ) is proportional to e

 . Then, the 

conditional distribution of 
e

ji
t  given the rest of the variables is: 

, ,

,

( | ) ( )
( | , )

( | , , )

e

-j,i

-ji

-ji

z if    p rev io u s ly  u sed
t k

t k if  

ji

jt

e

se e e

j i jt k j ie

ji
e e n ew n ew

j i ji

g z k n f s t
p t t

P s t t t t




 

  
 

                   (11) 

1610



and          
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               (12) 

where e
m

 
 denotes the total number of tables in epoch e and { , }H U

K  means the set of the aspects 

available in the two epochs. 

According to the distribution 
, ,

~ ( )
e

j i n
y b in o m ia l 

 
and ~ ( )b eta  , we can get the conditional 

probability of generating sentence 
,

e

j i
s  given a specified aspect k: 

,

, , , ,

, , ,
, , ,
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,

,
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,
,

( )( )
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( ) ( )
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e
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
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,

( )

( )
e

j i

k

s
A denotes the number of words that belong to aspect k in sentence 

,

e

j i
s . It is obvious that 

background words do not influence the aspect assignment of sentences. 
k

n
 

is the total number 

of words assigned to aspect k in both epochs. V represents the size of vocabulary. 
, ,

( )

( )
e

j i n

k

x
E

 
denotes 

the total number of times that word 
, ,

e

j i n
x

 
belongs to topic k in both docsets, and ,

, ,

( )

( )

e

j i

e

j i n

s

x
E denotes 

the number of times that word 
, ,

e

j i n
x

 
exists in 

,

e

j i
s .  

If the sampled value of 
e

ji
t  is new

t , then we can sample n e w

e

j t
k  according to (12): 
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e
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                (14) 

All the counts above except 
,

( )

( )
e

j i

k

s
A  and ,

, ,

( )

( )

e

j i

e

j i n

s

x
E exclude the current sentence.

 Sampling k.  Because the process of sampling t actually changes the component member of tables, 

we continue to sample 
e

j t
k  for each table. The conditional probability ( | , )

-j t
t k

e

jt
p k k  can be 

calculated similar to Eq. (14) and it is noted that a set of customers (not one custom) at table t 
should be considered.  

Sampling y. 
, ,

e

j i n
y  determines whether 

, ,

e

j i n
x  is a background word or an aspect word. If 

, ,
0

e

j i n
y  , 

, ,

e

j i n
x

 
is a background word, otherwise assigned to aspect k. we sample 

, ,

e

j i n
y  as: 

, ,

, ,

( )

( 0 ) ( 0 )

, ,

( ) ( 0 )

, , ,
( )

(1 ) ( )
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0
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( | , )

1
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y

if  

e
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e

j i n

x

e

j i n

e e

j i n j i
x

k e

j i nk

C C
y

C C V

p y z k

C C
y

C C V

 

 

 

 





  
  

 
  

  
 

 

                           (15) 

where 
( )

C


 denotes the total number of words in both docsets, 
( 0 )

C  denotes the total number of 

background words, 
(1 )

C  denotes the total number of aspect words, and ( )

(1 )

k
C  denotes the total 
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number of words that are assigned to aspect k. , ,
( )

( 0 )

e

j i n
x

C  represents the number of times that word 

, ,

e

j i n
x  is assigned to background word and , ,

( )

( )

e

j i n
x

k
C  represents the total number of times that word 

, ,

e

j i n
x  is assigned to aspect k. The base measure G0 was set a symmetric Dirichlet distribution with 

parameters  (e.g. 0.5).  

Based on Equations (11), (12) and (14), the aspect assignment probability of each sentence can 

be calculated as: 

,

,

,

, , ,

,
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, ,
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e e
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           (16) 

As for the concentration parameters of h-uHDP, i.e.,  , e
  and e

 , we sample them from a 

vague gamma prior which is set to be Ga(10.0, 1.0). The sampling method is the same as that in 

(Teh et al., 2006).  

5 Update Summarization with h-uHDP model 

The task of update summarization aims to produce an update summary for the documents in the 

update epoch, assuming that users already read earlier documents in the history epoch. That is, 

we need to boost sentences in update epoch that can bring out important and novel information. 

On one hand, the generated summary should extract the main content in D
U
, and on the other 

hand, the summary should avoid mentioning too much old information in D
H
. To care for these 

two points, we propose a sentence selection strategy based on Kullback-Leibler (KL) divergence, 

which has been widely used in extractive summarization (Haghighi and Vanderwende, 2009; 

Mason and Charniak, 2011; Delort and Alfonseca, 2012 ). 

Given the history sentence set S
H
 and the update sentence set S

U
, we propose a function to score a 

set of sentences Sum which is a subset S
U
.  

( ) ( || ) ( || )
H US u m S u mS S

S co re S u m K L p p K L p p                                  (17) 

In the equation, the first term means the prize on the divergence from epoch history and the 

second term represents the penalty on the divergence from epoch update. The parameter 

(called as epoch balance factor) is used to tune the weights of two KL distances. 
S u m

p  is the 

empirical aspect distribution of the candidate summary Sum. 
HS

p and 
US

p  respectively denote 

the aspect distribution of S
H
 and S

U
. ( || )

e S u mS
K L p p  ( { , }e H U ) represents the KL divergence 

given by 
1

( | )
( | ) lo g

( | )

eK

e

k

p S k
p S k

p S u m k

 .  ( | )p k
 
represents the probability distribution of a set of 

sentences on a specific aspect k, and is calculated based on the aspect assignment probability of 

each sentence which can be obtained according to Eq. (16).  
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          (18)

                  
Generally, an optimum update summary should have the aspect distribution which approximates 

to 
US

p  as possible and keep far away from the distribution 
HS

p . Let *
Sum  denote the optimum 

update summary. We can get *
Sum  that maximizes the scoring function. 

*

& & ( )

a rg m ax ( )
U

S u m S w o rd s S u m L

S u m S co re S u m

 

                                      (19) 

Since the problem of finding the subset of sentences from a collection that maximize the scoring 

function is NP-complete, a greedy algorithm is applied by adding sentences one by one. We use Y 

to denote the sentence set which contains the selected summary sentences. The algorithm first 

initializes Y to and X to S
U
. During each iteration, we select from X one sentence (i.e. sm) which 

makes ( )
m

Sco re s Y  have the highest score. To avoid aspect redundancy in the summary, we 

also adopt the MMR strategy in the process of sentence selection. That is, for each sm, we 

compute the semantic similarity between sm and each sentence st in set Y as follows:  

                           
2 2

1 1

( | ) ( | )
co s_ ( , )

( | ) ( | )

m tk

m t
K K

m t

k k

p s k p s k
sem s s

p s k p s k

 








 

                                      (20) 

6         Experiments 

In our experiments, we use four years of TAC (2008-2011) data, which contain 44-48 topics per 

year. For each topic, two docsets (named docset H and U) are given to respectively describe the 

history epoch and the Update epoch. Table 1 illustrates the number of topics, averaged number of 

documents per docset, and averaged number of sentences per docset for each year’s data.  

TAC        2008         2009        2010        2011 

Topics #   48 44 46 44 

docset   H    U H U H U H U 

Avg Doc # per docset 10 10 10 10 10 10 10 10 

Avg Sen # per docset 236.5 222.4 253.5 228.3 238.6 230.2 208.9 210.5 

TABLE 1 – Experiment data (TAC 2008 - 2011). 

As for the automatic evaluation of summarization, we still use the widely used ROUGE (Recall-

Oriented Understudy for Gisting Evaluation) (Lin and Hovy, 2003) measures, including 

ROUGE-1, ROUGE-2, and ROUGE-SU45 and their corresponding 95% confidential intervals. In 

order to obtain a more comprehensive measure of summary quality, we also conduct manual 

evaluation on TAC 2011 dataset with the reference to (Haghighi and Vanderwende, 2009; 

Celikyilmaz and Hakkani-Tur, 2011; Delort and Alfonseca, 2011). 

6.1  Parameter tuning 

To get the final update summary using the h-uHDPSum algorithm, we still need to determine two 

parameters: sentence influence factor   in Eq. (10) and epoch balance factor   in Eq. (17). The 

combination of the two factors makes it hard to find a global optimized solution. So we apply a 

                                                           
5Jackknife scoring for ROUGE is used in order to compare with the human summaries. 


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gradient search strategy. At first, the epoch balance factor   is fixed to a given value. Then the 

performance using different values of   is evaluated. After that, we fix   with the value which 

has achieved the best performance, and conduct experiments to find an appropriate value for  . 

TAC 2008 and 2009 datasets are used as training data to tune these two parameters.  

Firstly,   is set to the value of 1, i.e. the prize on the divergence from epoch history is as 

important as the penalty on the divergence from epoch update. Reviewing Eq. (10), we can see 

that, the aspect assignment of one sentence is mainly determined by its neighboring sentences 

when   is set a large value, whereas the influence from other sentences is not considered at all 

when   is set 0. In the first place, we experiment the h-uHDPsum algorithm by setting   in the 

range from 0 to 10 with interval of 1. The ROUGE scores drop sharply when   is set a value 

larger than 2.0. Next,   is set in the range from 0.0 to 2.0 with interval of 1.0. Fig. 4 presents the 

ROUGE-2 and ROUGE-SU4 evaluation results of h-uHDPSum, with regard to different values 

of  . We find that the ROUGE scores reach their peak at around 1.0 and drop afterwords. The 

experimental results conform to our expectation and verify that the h-uHDP model is reasonable 

by considering the influence among sentences. 

 
FIGURE 4 – Tuning parameter σ when  is set to 1. 

 
FIGURE 5 – Tuning parameter   when σ is set to 1. 

Next, we fix the sentence influence factor   at 1.0 and tune the parameter . From Eq. (17), we 

can see that  is used to balance the prize for the divergence from history epoch and penalty on 

the divergence from the update epoch. When  is set as the value of 0, the scoring of sentences 

is only determined by docset H. That is, a sentence is likely to be selected into summary, only 

when it has a large divergence of aspect distribution from docset H. When  is set a larger value, 

penalty on the divergence from docset U is more considered. Similar to the process of tuning  , 

the performance using different values of  ranging from 0 to 10 with interval of 1 is evaluated. 

We find that the peak performance of  should be located in the range of [0.0, 2.0]. Thus, we 

conduct experiments to find an appropriate value for  in the range from 0.0 to 2.0 with interval 

of 0.1. Fig. 5 shows the performance of h-uHDPSum with respect to . Performance gets better 

as  increases from 0 to 1.4, and then declines gently until  arrives at 3.0. Afterwards, the 

curve becomes smooth and means that the summarization algorithm is mainly up to docset U to 

decide which sentences to select. Parameters  and  are respectively set as 1.0 and 1.4 in the 

h-uHDPSum algorithm. 

















 


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6.2 Comparison with other approaches 

In this subsection, we compare our h-uHDPSum algorithm with several baseline methods on 

TAC 2010 and TAC 2011 datasets. One kind of baseline methods consists of the top three 

performing systems (denoted as SysRank 1
st
, 2

nd
 and 3

rd
) on update summarization tasks 

according to the ROUGE-2 metric on TAC2010 and TAC2011. From Table 3, we can see that 

our approach obviously outperformed the top three participating systems both on TAC2010 and 

TAC2011, with respect to the ROUGE-2 and ROUGE-SU4 scores along with the corresponding 

95% confidence intervals.  

 
TAC2010 TAC2011 

ROUGE-2 ROUGE-SU4 ROUGE-2 ROUGE-SU4 

h-uHDPSum 0.0857(0.0784-0.0930) 0.1255(0.1182-0.1328) 0.1017(0.0910-0.1034) 0.1364(0.1265-0.1473) 

SysRank 1st  0.0799(0.0747-0.0851) 0.1198(0.1154-0.1244) 0.0959(0.0894-0.1029) 0.1309(0.1251-0.1366) 

SysRank 2nd  0.0790(0.0740-0.0842) 0.1187(0.1142-0.1234) 0.0924(0.0857-0.0993) 0.1274(0.1217-0.1334) 

SysRank 3rd 0.0729(0.0682-0.0779) 0.1080(0.1041-0.1122) 0.0863(0.0808-0.0920) 0.1280(0.1229-0.1330) 

h-uHDPSum-noBG 0.0812(0.0767-0.0852) 0.1199(0.1120-0.1278) 0.0931(0.0874-0.0988) 0.1310(0.1258-0.1362) 

2LevHDPSum 0.0780(0.0709-0.0851) 0.1171(0.1110-0.1232) 0.0917(0.0863-0.0971) 0.1315(0.1227-0.1401) 

HDPSum 0.0708(0.0631-0.0785) 0.1091(0.1014-0.1176) 0.0842(0.0782-0.0902) 0.1218(0.1163-0.1273) 

2LevLDASum 0.0720(0.0687-0.0793) 0.1152(0.1067-0.1237) 0.0879(0.0831-0.0925) 0.1310(0.1255-0.1366) 

LDASum 0.0649(0.0594-0.0704) 0.1027(0.0936-0.1118) 0.0767(0.0704-0.0830) 0.1074(0.1015-0.1134) 

TABLE 2 – Performance Comparison on TAC2010 and TAC2011. 

To illustrate the effectiveness of our aspect modeling technique, we provide five other baseline 

systems which adopt different aspect modeling techniques. The systems h-uHDPSum-noBG and 

2LevHDPSum can be seen the simplified versions of h-uHDPSum. h-uHDPSum-noBG is the 

same as h-uHDPSum except that the general background information is not considered, whereas 

2LevHDPSum is a two-level (i.e. document level and sentence level) HDP model where the 

docset level is removed. At the same time, we implement one standard HDP model for 

comparison. As shown in Table 2, h-uHDPSum is better than both h-uHDPSum-noBG, 

2LevHDPSum and HDPSum, which verifies that the identification of background words or the 

introduction of the docset level can promote the performance of update summarization. Even 

without consideration of the background information, we can see the h-uHDPSum-noBG 

approach can be comparable to the best participating system of TAC evaluations. In addition, to 

compare with another popular modeling technique - Latent Dirichlet Allocation (LDA), we 

design a two-level LDA-based system 2LevLDASum and a standard LDA-based system LDASum. 

Both 2LevLDASum and 2LevHDPSum are similar as possible beyond the distinction that 

2LevLDASum assume a fixed finite number of aspects
6
 while 2LevHDPSum does not. We can see 

that 2LevHDPSum is better than 2LevLDASum and HDPSum better than LDASum in performance. 

This can be easily explained, novel aspects can be automatically detected and the aspect number 

is determined naturally in HDP-based models. In contrast, how to determine the aspect number in 

the LDA-based models is still an open problem. This is also the reason why we select HDP as the 

foundation of our aspect modeling technique. 

6.3  Manual evaluation 

In order to obtain a more accurate measure of summary quality, manual evaluation is required. In 

this section, we compare our h-uHDPSum approach with 2LevLDASum and the best participating 

                                                           
6 In our experiments, the aspect number is set as 10, 20, 30 and 40 respectively and we select the best performed 
result with the aspect number as 20. 
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system (Peer 43). Similar to the manual evaluation in TAC, human assessors assign a score to 

each summary with respect to each of the following four criteria: 1) Overall responsiveness 

(overall performance in terms of content and fluency), 2) Focus (containing less irrelevant 

details), 3) Novelty (containing novel information beyond docset H), 4) Non-redundancy 

(repeating less the same information). The score is an integer between 1 (very poor) and 5 (very 

good). We randomly select 28 topics from TAC 2011 data and assign each topic to three different 

assessors
7
. In Table 3, the left four columns report the average scores of each criterion for the 

three systems. The experimental results indicate that h-uHDPSum is significantly better than both 

Peer 43 and 2LevLDASum (based on paired t-test with p-value < 0.01).  

Simultaneously, a fairly standard approach for manual evaluation is conducted through pairwise 

comparison (Haghighi and Vanderwende, 2009; Celikyilmaz and Hakkani-Tur, 2011). According 

to the rating scores, each pair of summaries is judged which one is better under each criterion. If 

two summaries have the same score, they are judged a tie (of the equal quality). We record the  

times of ‘winning’ (having a higher score) and tie for each system. In Table 3, the right six 

columns show the evaluation results in frequencies respectively for h-uHDPSum vs. Peer 43, and 

h-uHDPSum vs. 2LevLDASum. The experimental results also indicate that h-uHDPSum is 

significantly better than both Peer 43 and 2LevLDASum. We also observe that the winning times 

of h-uHDPSum under the novelty criterion is much more than those under the other criteria. This 

indicates that our approach can exhibit a clear advantage of promoting the novelty performance 

in update summaries. 

 
h-uHDPSum Peer 43 2LevLDASum 

h-uHDPSum vs. Peer 43 h-uHDPSum vs. 2LevLDASum 

h-uHDP. Tie Peer 43 h-uHDP. Tie 2LevLDA. 

Overall 3.94 3.65 3.56 31 39 14 50 19 15 

Focus 4.06 3.75 3.65 36 26 22 33 48 3 

Novelty 4.17 3.69 3.67 52 13 19 62 6 16 

Non-redund. 4.18 3.91 3.98 41 22 21 36 44 4 

TABLE 3 – Results of manual evaluation on TAC2011. 

Conclusion 

In this paper, we propose a novel approach based on a three-level HDP model h-uHDP for update 

summarization. The h-uHDP model can detect the birth, splitting, merging and death of specific 

aspects and the general background information for a given topic. Under the sentence extraction 

based framework of summarization, we especially strengthen modeling the sentence level in h-

uHDP, where the aspect assignment of each sentence is influenced by its neighboring sentences. 

Based on h-uHDP, we propose a sentence selection strategy adopting KL divergence, which 

cares for both salience and novelty of sentences. Automatic and manual evaluations on TAC data 

illustrate that our approach obviously outperforms the state-of-the-art approaches.  
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