
Proceedings of COLING 2012: Technical Papers, pages 1571–1586,
COLING 2012, Mumbai, December 2012.

Approximate Sentence Retrieval for Scalable and Efficient
Example-based Machine Translation

Johannes Leveling Debasis Ganguly Sandipan Dandapat Gareth J.F. Jones
Centre for Next Generation Localisation (CNGL)

School of Computing, Dublin City University
Dublin, Ireland

{jleveling, dganguly, sdandapat, gjones}@computing.dcu.ie

ABSTRACT
Approximate sentence matching (ASM) is an important technique for tasks in machine translation
(MT) such as example-based MT (EBMT) which influences the translation time and the quality
of translation output. We investigate different approaches to find similar sentences in an example
base and evaluate their efficiency (runtime), effectiveness, and the resulting quality of translation
output. A comparison of approaches demonstrates that i) a sequential computation of the edit
distance between an input sentence and all sentences in the example base is not feasible, even
when efficient algorithms to compute the edit distance are employed; ii) in-memory data structures
such as tries and ternary search trees are more efficient in terms of runtime, but are not scalable
for large example bases; iii) standard IR models which only cover material similarity (e.g. term
overlap), do not perform well in finding the approximate matches, due to their lack of handling
word order and word positions. We propose a new retrieval model derived from language modeling
(LM), named LM-ASM, to include positional and ordinal similarities in the matching process, in
addition to material similarity. Our IR based retrieval experiments involve reranking the top-ranked
documents based on their true edit distance score. Experimental results show that i) IR based
approaches result in about 100 times faster translation; ii) LM-ASM approximates edit distance
better than standard LM by about 10%; and iii) surprisingly, LM-ASM even improves MT quality
by 1.52% in comparison to sequential edit distance computation.

KEYWORDS: Example-Based Machine Translation, Information Retrieval, Approximate Sen-
tence Matching, Edit Distance.

1571

1 Introduction
The quality of data-driven machine translation (MT) mostly depends on the size of parallel data
available for training. Although statistical MT is considered as the state-of-the-art, its one lim-
itation is that it discards the training data once the translation model and language model have
been generated. This sometimes can lead to poor quality translations because translation context
is limited by the value of n. In contrast, example-based MT (EBMT) usually stores the full sen-
tence pairs in source and target data in an example base and uses translations of sentences similar
to the input sentence as a template for translation. Thus, EBMT systems can often better cap-
ture long range dependencies and rich morphology. State-of-the-art MT systems comprise both
statistical and example-based MT components (Dandapat et al., 2012). Typical EBMT systems
(Somers, 2003; Nagao, 1984) comprise three processing stages to translate an input sentence Q
with information from an example base of sentence pairs (Si, Ti), where Si and Ti are in source
and target language, respectively: i) Matching, where sentences similar to Q are identified, and
the translation template Ti with the maximum similarity between Q and Si is used as a skeleton
for the translation. ii) Alignment, where the matching parts of Q and Si are found to identify the
remaining translation gaps and translation alternatives for the mismatches are obtained from TM.
iii) Combination, where the translation fragments found in the previous steps are aggregated into
the final translation. The matching stage involves maximising a similarity between the input Q and
all source language sentences Si in the example base. The most widely used similarity measures
in EBMT matching are based on the edit distance (ED), also known as Levenshtein distance (LD)
(Levenshtein, 1966). Thus, the matching step of an EBMT system is a time-consuming process
with runtime depending on the complexity of the similarity measure and the size of the example
base. EBMT systems can usually only handle a moderate size example base in the matching stage.
However, using a large example base is important to ensure high quality MT output. In order to
make MT applicable for larger example bases while improving or maintaining its speed, we inves-
tigate different approaches to efficient approximate sentence matching: a) sequential algorithms for
the computation of the similarity, where speed improvements are based on limiting the number of
symbol comparisons (e.g. cut-off heuristics); b) data structures, where a traversal of the structure
can be employed to compute the similarity; c) sentence indexing and retrieval, where aspects of
similarity are traditionally modeled by factors based on frequencies such as tf and idf, but in the
case of approximate sentence retrieval should also include word order and position.

We demonstrate that sequential (brute-force) approximate matching becomes too expensive for
large example bases. Using in-memory data structures is efficient with respect to runtime, but re-
quires much more memory. Information retrieval based on standard term weighting functions is
not appropriate for finding best matches. Standard information retrieval (IR) is more efficient than
sequential comparison, but not accurate enough in finding the most similar matches in top ranks.
We propose a hybrid, two-stage approach. First we retrieve sentences from the example base, scor-
ing the results based on our proposed edit distance approximating retrieval model. Secondly, we
rerank the results by their true LD score. Our approach thus restricts the edist distance computation
to the set of top-ranked retrieved sentences instead of the full example base. The proposed retrieval
model uses positional indexing and retrieval, reflecting three aspects of similarity: how similar term
positions are, how similar the word order is, and how similar the sets of terms are. The approach
is shown to be fast (i.e. efficient and more scalable), accurate in terms of mean reciprocal rank
(MRR) (i.e. effective in retrieving approximate matches), and can yield even better translations
than the sequential approaches (i.e. results in a higher BLEU score (Papineni et al., 2002)).

The rest of this paper is organized as follows: Section 2 introduces related work; Section 3 presents

1572

approaches to approximate sentence matching; Section 4 describes our proposed IR model; Sec-
tion 5 explains our experimental setup, data and evaluation metrics; Section 6 presents and dis-
cusses the results. Section 7 concludes with an outlook on future work.

2 Related Work

Despite of a long history of research in IR and MT, there is still relatively little research on applying
IR methods for MT. Two years before Levenshtein proposed the edit distance in 1966 Levenshtein
(1966) and Faulk (1964) argued that three aspects of similarity should be considered for approxi-
mate sentence matching for translation: 1. positional similarity of items (e.g. words occur in the
same positions), 2. ordinal similarity (e.g. words have the same order), and 3. material similarity
(e.g. the sets of words are similar). He investigates different similarity metrics in different lan-
guages and demonstrates that a high sentence similarity in the source language correlates with a
high similarity in the target languages. The edit distance has been widely used in diverse applica-
tions such as approximate name matching (Berghel and Roach, 1996), in the biomedical domain
for the comparison of gene sequences (Yap et al., 1996), for spelling correction and dictionary
search (Boytsov, 2011). and in music retrieval (Mongeau and Sankoff, 1990). Improvements of
the runtime complexity of the original Levenshtein algorithm include Ukkonen’s cut-off heuristics
(Ukkonen, 1985b,a) and Berghel and Roach’s extension of this approach. Finally, Levenshtein
automata (Schulz and Mihov, 2002) have been suggested as an efficient approach to spelling cor-
rection when an upper bound for the distance is known in advance. Due to the large number of
different symbols (words) and because an upper bound for the distance is not known in advance,
we did not investigate Levenshtein automata for the experiments described in this paper. Alter-
native approaches to approximate matching include q-grams (Gravano et al., 2001) (i.e. character
n-grams), variants of the longest common subsequence (Lin et al., 2011), and affine gap align-
ment (Needleman and Wunsch, 1970). Navarro (2001) presents an excellent survey on different
approaches to approximate string matching.

The standard application of MT in IR is in Cross-language IR, where given a query in the source
language, documents in a target language have to be retrieved (Di Nunzio et al., 2008). IR tech-
niques have been applied to machine translation only recently. (Hildebrand et al., 2005) apply IR
to improve the quality of the training data for a statistical MT system. They adapt the language
model for translation by selecting similar sentences from a large training corpus for training data
and experiment with tf-idf and cosine similarity and Okapi’s BM25 model (Robertson et al., 1998),
finding no significant difference in their performance. They conclude that adaptation of the LM is
helpful in improving translation quality. Similar to the experiments described in this paper, Koehn
et al. apply IR and use a combination of n-gram matching and A* pruning (Koehn and Senellart,
2010). However, they do not report individual results for the retrieval effectiveness, only optimize
the speed of approximate matching, and do not report the effect of applying their matching ap-
proach to TM in detail. They achieve a processing time per query of 247ms for sentence matching
in the JRC-Acquis corpus and 4.3ms in a smaller corpus with product information. Dandapat et al.
(2012) investigate two methods to achieve scalable EBMT. First, they try bucketing sentences by
length to limit the number of sentences in the example base that have to be compared against the
input, assuming that similar sentences will have similar length. Thus, the best match is not guaran-
teed to be found when this heuristics is used. Their second method includes IR based on standard
language modeling (LM), but individual results for the IR stage are not reported. For the retrieval
experiments described in this paper, we use LM as a baseline. We investigate parameter settings
and preprocessing options to obtain the best baseline for our proposed approach.

1573

The application of edit distance for problems such as spell checking is different to its application
in EBMT and TM in several aspects: 1. Typically, character sequences (i.e. strings) are considered
for comparison. For our experiments, we aim at computing the similarity for sequences of symbols
or tokens (i.e. words and all punctuation marks). 2. Given a large dictionary for approximate string
matching, the distance of an input word to some word in the dictionary is usually quite low. This
does not have to be the case for approximate sentence matching, where the size of the alphabet (the
number of possible symbols) is much higher (i.e. different characters vs. different words) and the
minimum edit distance can also be quite high. Thus, a general minimum edit distance threshold
can not be specified in practice. 3. Providing an upper bound for the edit distance can speed up
the computation considerably. For the application we consider here, no upper limit for the number
of mismatches is known in advance. 4. We are interested in finding all matches with the highest
similarity as opposed to finding a single close match or one best match. For the experiments
described in this paper, we did not employ heuristics such as bucketing or assuming an upper
bound for the edit distance to speed up processing. These methods can actually be utilized to
reduce runtime for our proposed approach even more, but at the cost of the loss of accuracy.

Our proposed LM-ASM retrieval model is an extension of language modeling. An extension to
language modeling, known as positional language modeling (PLM), includes a proximity heuristic
rewarding a document where matched query terms occur close to each other (Lv and Zhai, 2009).
The PLM favours documents where the query terms appear in the same order as that in the query.
In PLM, relative term positions are modelled via their term context. In constract, our proposed
retrieval model for approximate sentence matching takes into account the absolute term positions.

3 Approaches for Approximate Sentence Matching
Approximate sentence matching (ASM) is the problem of finding the sentences with the highest
similarity to a given inpuit sentence in a collection of sentences. The matching stage of EBMT can
be considered as an instance of ASM. It identifies sentence pairs (Si, Ti) from the example base
where Si closely matches with the input sentence Q. The EBMT system considers the translation
Ti where Q has maximum similarity to the source sentence Si to build a skeleton for translation of
the input. From the perspective of IR, we are trying to find sentences (documents) in the example
base (document collection) which have a high similarity (document score) with the input sentence
(query). The results are then used in the alignment and recombination stage of EBMT to produce
a translation. The set of sentences with the highest Levenshtein score (LS), i.e. the highest fuzzy
match score, is computed by a sequential approach and corresponds to the set of relevant docu-
ments. Relevance assessment for IR is typically based on manual assessment of pooled results,
whereas in the experiments described in this paper, the relevant (correct) results are determined
based on a sequential computation of fuzzy match scores. We introduce similarity metrics between
sequences Q and D with length |Q| and |D|, where i and j denote an index in a sequence and Qi

and Dj denote the ith and jth symbol in sequence Q and D.

3.1 Sequential Search
Levenshtein Distance Algorithms (LDWF and LDBR). The Levenshtein distance or edit dis-
tance is typically employed in EBMT to find the closest matching sentence in the example base.
The edit distance for two sequences Q and D is defined as the minimum number of edits, i.e. sym-
bol insertions, deletions and substitutions, needed to transform Q into D (Levenshtein, 1966). The
sequential computation of the distance can be computationally expensive, because the Levenshtein
algorithm has a runtime complexity of O(|Q| x |D|), which has to be calculated for every sentence

1574

in the example base. The straightforward solution to compute the edit distance is via dynamic pro-
gramming, where a |Q| x |D| matrix is filled following a recursive schema (Wagner and Fischer,
1974). For all approaches based on computing the exact LD, we use the normalized Levenshtein
similarity score (fuzzy match score), which is computed as

LS(q, d) = 1− LD(Q,D)/max(|Q|, |D|) (1)

Several improvements have been proposed to improve runtime complexity. Ukkonen’s Enhancend
Dynamic Programming Approximation algorithm (Ukkonen, 1985b) for computing edit distance
has the worst case complexity O(|Q| x B), where B is an upper bound of the edit distance. The
improvement results from the fact that distance(i, j) values are non-decreasing along any given
diagonal. Only those distance(i, j) values p for which i is the highest numbered row on which p
occurs on diagonal k for a given threshold k have to be computed. The modified Berghel-Roach
algorithm (Berghel and Roach, 1996) is an extension of Ukkonen’s cut-off heuristic. It achieves
42% speed-up compared to Ukkonen’s approach for name matching and is 79% faster than the
Wagner-Fischer algorithm. We employ the Berghel-Roach algorithm (LDBR) to investigate speed-
up by an algorithm with lower runtime complexity. As a baseline for runtime, we compute the edit
distance based on the Wagner-Fischer algorithm (LDWF).

Longest Common Subsequence (LCS). Our experiments to improve MT with IR methods are
based on the assumption that the sentence with the minimum edit distance in the source language is
a good template for its translation. This assumption is widely accepted and has been validated for
translation memory (TM) (Sikes, 2007). We compare our experimental results for the edit distance
with corresponding results for the longest common subsequence (LCS) (Gusfield, 1997). The LCS
is the longest shared subsequence of – not necessarily consecutive – symbols in two sequences.
The corresponding score is computed by replacing the edit distance LD in Equation 1 with the
LCS and calculating the scores by iterating over all examples in the example base.

3.2 Data Structures
Efficient data structures have been proposed for fast approximate lookup operations in dictionaries
(e.g. for spelling correction), but to the best of our knowledge, the following approaches have not
been investigated for ASM, i.e. for computing the edit distance for sequences of words. In fact, the
existing implementations consider only characters as symbols, while our implementation abstracts
from that view and allows any type of symbol as the basic element of a sequence.

Tries (TR). A trie is an ordered tree data structure that can be used to store key-value pairs where
the keys are sequences of symbols (Gusfield, 1997). Each node in a trie stores a single symbol of
the corresponding sequence and a node represents the prefix of the key on the path of the root up
to that node. All the children of a node have a common prefix of the sequence associated with that
node, and the root represents the empty sequence. Values are associated with nodes corresponding
to the end of a sequence, i.e. leaf nodes and some inner nodes. The main idea to efficiently compute
the edit distance with tries is to compute only the part of the distance matrix up to the length of the
current prefix, so that redundant computations are avoided for sequences sharing the same prefix.
For our experiments, we regard sentences comprised of tokens as sequences of symbols and store
the corresponding document ID (i.e. sentence ID) as a value.

Ternary search trees (TST). Ternary search trees (Bentley and Sedgewick, 1997) are tree struc-
tures where each node has three children. Similar to hash tables, ternary search trees can be em-

1575

ployed as an associative structure to store key-value pairs (here: pairs of sentence and document
ID). Each node of a ternary search tree stores a single symbol for comparison with a symbol of a
search key, and pointers to three children which determine which subtree to search next, based on
the result of a comparison, i.e. lower, equal or higher lexicographical order. As for tries, only part
of the edit distance matrix – a single row – is computed at a given node.

BK-trees (BKT). Burkhard and Keller (1973) proposed BK-trees for efficient file searching. A
BK-tree is a metric tree adapted to discrete metric spaces, defined by a distance metric D(x, y). A
BK-tree can be formed as follows. An arbitrary element a is selected as the root node. The root
node may have zero or more subtrees. The kth subtree is recursively built of all elements y such
that D(x, y) = k. As BK-trees support distance metrics, and not similarities, we directly employ
the edit distance as a metric. To improve runtime, we use a distance threshold of 2, i.e. subtrees
exceeding the threshold distance are not visited. This setting was obtained empirically and chosen
to yield the best results in terms of effectiveness and efficiency. Lower values result in finding
fewer correct results, higher values more than double the runtime because more nodes have to be
visited. Note that this cutoff heuristic results in lower runtime but also lower effectiveness.

3.3 Information Retrieval Approaches
The problem with brute force, sequential computation is that it involves a linear search for the
closest matching sentence by computing edit distance between the given query and each sentence
in the example base. The time complexity is thus O(N), N being the number of sentences in
the collection, which clearly makes the brute-force approach infeasible for large collections. In-
memory data structures could be much faster in LD computation, but have high space complexity,
i.e. require a huge memory and are thus not scalable for very large collections.

Standard IR models. Information retrieval (IR) is concerned with finding relevant documents
from a document collection, given a query (Manning et al., 2008). IR involves computing document
scores for a given query by aggregating scores from the local importance of a term in a document
(e.g. the term frequency, tf) and a global importance factor of the term in the document collection
(e.g. the inverse document frequency, idf). Generally speaking, a retrieval model aims to compute
the similarity between a document and a query. As a simplification, queries and documents can
be defined as vectors over the vocabulary term space, so that the similarity can be computed as a
dot product between query and document term vector, i.e. sim(d, q) =

∑|V |
i=1 diqi. In standard

IR, similarity features such as the word position in the query or a document are typically ignored.
Features such as word ordering are modeled implicitly when indexing word n-grams.

IR makes use of inverted list structures which are a combination of in-memory data structures and
file structures. The list of documents where a term occurs, namely the postings list for a term is
loaded into memory from files hashed by the term identifier. This combination results in very fast
retrieval and also makes retrieval scalable to very large collections. The inverted list data structure
is suitable for computing the query-document similarity, because document vector term weights
i.e. the di values are read from the postings list of the ith query term, and accumulated over all
query terms to calculate the final similarity. The computational complexity of the similarity is thus
O(

∑n
i=1 si), where n is the number of query terms and si is the size of the postings list for the ith

query term. In practise, n is a small constant and si << N , where N is the number of document
in the collection. Hence the method is very fast.

Although the inverted list structure of IR looks promising, it should not be directly applied to

1576

the ASM problem because of basic differences: In standard IR, documents are much longer than
queries, compared to ASM, where documents and queries have similar length. Preprocessing tech-
niques such as removing stopwords and eliminating punctuation, and applying a stemmer are com-
mon for IR and reduce the index size and the retrieval time, because highly frequent terms such as
stopwords are excluded from the inverted lists.1 In ASM, keeping all terms (i.e. words and punc-
tuation) is important for exact matching of symbols and to retain the syntactic sentence structure
for translation. Relative and absolute term positions are usually ignored in standard IR (except for
phrase search, which partially models relative term position). In ASM, it might be important to
implicitly retain word order as a similarity factor by matching n-grams.

The LD computation for ASM cannot directly be performed, i.e. it is not possible to compute
the exact edit distance between a document and a given query within an IR application. One thus
has to strive for designing a similarity function which produces rankings as close as possible to
the ranking as computed by the LD computation. However, this proves difficult because standard
IR similarity scores work on the principle of material similarity, i.e. a document is potentially
ranked higher if it contains a higher number of query terms. For each ith query term match, the
contributing factor of diqi > 0 is added to the document score. However, material similarity alone
may not be a good approximation for ranking based on LD.

Towards better sentence similarity metric for LD approximation. Three measures of similar-
ity are crucial for ASM, namely the positional, ordinal and material similarity (Faulk, 1964). A
direct application of standard IR methods for ASM can only estimate the last one, i.e. the material
similarity. In addition to material similarity, it is required to consider the following, particularly
for finding closest edit distance sentences for EBMT (Somers, 2003). Firstly, a sentence from the
example base with a partial exact match of words (identical surface forms of words) in the query
sentence is helpful because the longer the matched portion, the higher the likelihood is of gen-
erating a target translation of good quality. Secondly, identical term positions between Q and D
indicate structural similarity, which is helpful in inferring the inherent reordering between D and
the translation. Thirdly, similarity in length between Q and D requires substitution operations be-
tween mismatched portions during the recombination stage of EBMT. This is advantageous over
insertion, since the positions in the translation of D to substitute are exactly known during recom-
bination. To the best of our knowledge, a retrieval model incorporating aspects of material, ordinal,
and positional similarity has not yet been proposed for ASM.

4 ASM Retrieval Model
The objective of ASM is to estimate the edit distance ranking as accurately as possible without
computation of the actual distances. Let Q be a query sentence and D a sentence for which we
need to estimate its edit distance from Q.

Language modeling (LM) is a state-of-the-art retrieval model (Ponte and Croft, 1998), where a
document D is scored by the posterior probability of generating the given query Q, i.e. P (D|Q)
(Hiemstra, 2000). This in turn is estimated at indexing time from the prior probability P (Q|D)
using the assumption that the query terms can be generated independently from a document D by a
linear combination of two events of either generating a query term q from D (i.e. the tf component)
with probability λ, or generating it from the collection (i.e. the idf component) with probability
(1 − λ), as shown in Equation 2 (cf(q) and cs denote the collection frequency of term q and the

1Note that while we aim at reducing runtime, we still include stopwords and punctuation for indexing in our main
experiments, which is contrary to a standard IR setup.

1577

collection size respectively). Equation 2 does not take into account the relative (or even absolute)
positions of documents and query terms.

P (D|Q) ∝ P (D)P (Q|D) = P (D)
∏

q∈Q

P (q|D) = P (D)
∏

q∈Q

λ
tf(q,D)

|D| + (1− λ)
cf(q)

cs
(2)

We propose an extension of the LM retrieval model for ASM, which we call LM-ASM. In contrast
to standard LM, the probability of generating the query Q from a document D in case of LM-ASM
has two components: i) Plen(Q|D), which denotes how close is the length of Q to the length of
D; and ii) Ppos(Q|D), which is representative of how likely it is for a query term to belong to the
same absolute position where it occurs in D. The first likelihood component minimizes the likely
number of insertions and deletions while transforming D to Q and is given by Equation 3. Note
that this likelihood function decreases with an increase in the absolute difference of the lengths of
D and Q, attaining a maximum for |D| = |Q|.

Plen(Q|D) = min(|Q|, |D|)/max(|Q|, |D|) (3)

To model the generation of a query term in its absolute position from the corresponding absolute
position of that term in a document D, we use the following notation. Let pos(q,D) be the set
of absolute positions of a term q in a document D. In contrast to standard LM, for ASM, we also
need to consider the current position of a query term. Let qi be the query term at position i. Thus,
even if the same query term q occurs in multiple positions in a query, we compute Ppos(qi|D) for
all positions i where q occurs.

Ppos(qi|D) = 1 / min
j∈pos(qi,D)

(|j − i|+ 1) (4)

In Equation 4, |j − i| denotes the absolute value of the minimum difference of term positions. The
final probability of P (Q|D) is thus given by multiplying the two components Plen(.) and Ppos(.)
of Equations 3 and 4 into Equation 5.

P (Q|D) = Plen(Q|D)Ppos(Q|D) =
min(|Q|, |D|)
max(|Q|, |D|)

|Q|∏

i=1

(1

min
j∈pos(qi,D)

|j − i|+ 1

)
(5)

Analogous to LM, in order to avoid underflow for multiplications of small numbers, we implement
the positional score with the log transform (omitted for brevity). A closer look at Equation 5 reveals
that for every matching query term in a document D, we include the reciprocal of the absolute
differences of the term positions in the score. The higher this difference, the lower is the similarity
component being aggregated. In case a query term does not occur in D, nothing is added to the
score. We propose to use this approach for approximate sentence retrieval and call it LM-ASM.

5 Experimental Setup
Data. We conduct experiments to report the accuracy of our EBMT approach for English-Turkish
(EN-TR) and English-French (EN-FR) translation tasks. In order to compare the translation per-
formance of our approaches, we use the EBMT system described in (Dandapat et al., 2012), which
follows the framework in (Nagao, 1984) as a baseline. We do not combine our EBMT approach
with an SMT system, as we focus on effectiveness and efficiency evaluation of IR for ASM to
improve the EBMT component. For further details, we refer the reader to (Dandapat et al., 2012).

1578

Name Domain Language pair Example base Avg. sentence length Test data

IWSLT 09 Travel EN-TR 19,972 sentences 9.5 words 414 sentences
EMEA Medicine EN-FR 250,806 sentences 18.8 words 10,000 sentences

Table 1: Statistics on the two evaluation data sets.

The two data sets used for all our experiments represent two language pairs with parallel data of
different size and type. Statistics for the data sets, IWSLT 092 and European Medicines Agency3

(EMEA), are shown in Table 1. The original EMEA corpus comprises approximately 1M sen-
tences, including many duplicates. We discard duplicates and consider only sentences with unique
translation equivalents. Note that, to the best of our knowledge, efficient solutions for ASM for
EBMT that scale up to millions of sentences have not been reported in the literature.

Evaluation Objectives. Our experiments focus on different research questions: Which approach
is the most efficient and scales up to large example bases for EBMT? To investigate this question,
we conduct experiments using different algorithms and data structures for EBMT matching as
described in Section 3 and 4 and compare them with our proposed two stage approach based on IR
methods and reranking IR results.

Which approach has the highest accuracy when a trade-off between efficiency and effectiveness
becomes necessary? Naturally, sequential computation will yield the highest accuracy (e.g. MRR)
of results. However, when using IR methods, we expect a drop in effectiveness because the edit
distance similarity is only approximated by the scoring method. Related to this question is the
aspect of preprocessing (word matching), e.g. Should stopwords or punctuation be removed or
should a stemmer be applied? We expect that stopwords and punctuation are actually important
for ASM and that stemming would decrease retrieval effectiveness. We perform experiments using
different preprocessing methods and indexing word-level n-grams.

Which approach leads to the highest translation quality? With the sequential computation, we
will find all and only exact approximate matches, i.e. all sentences with the exact maximum edit
distance score LS. Using IR, potentially only a subset of all “relevant” sentences4 will be identified.
A related question is How many documents should be retrieved in the IR stage? One objective in
ASM is to restrict the number of retrieved documents to a small number, e.g. 10 or 20, since it
is more efficient to retrieve a small number of sentences; and it is more efficient to rerank a small
set of sentences by the true LS (e.g. by computing LS(Q,D) for the top-ranked results). For
example, retrieving 100 or more documents in the retrieval step could result in higher runtime,
because the set of retrieved documents has to be reranked again. We try to determine the number of
documents needing to be retrieved empirically to achieve this trade-off, i.e. achieve a satisfactory
MT performance without sacrificing computation speed.

Evaluation Metrics. The experiments described in this paper aim at maintaining or improving
three aspects of performance for large example bases: efficiency, effectiveness, and translation
quality, described as follows. 1. Efficiency: A lower runtime implies that larger example bases
can be used and the MT system becomes more scalable. We report the time for reading and in-
dexing the documents in seconds (IT), computation time (CT), and the average time per sentence

2http://mastarpj.nict.go.jp/IWSLT2009/2009/12/downloads.html
3http://opus.lingfil.uu.se/EMEA.php
4Relevant in this context means the best translation template in the target language.

1579

(AT), exlcuding indexing time. 2. Effectiveness: As some similarity scores and the proposed re-
trieval approach approximate the edit distance instead of actually computing it, the accuracy of
finding correct matches with minimum LD (more specifically: with maximum LS) is measured.
We employ IR metrics such as mean average precision (MAP) and the mean reciprocal rank (MRR)
(Voorhees, 1999). The significance of MRR is that the closer the MRR is to 1, the fewer documents
need to be reranked using their true edit distances. We also report the number of queries in the test
set with a reciprocal rank (RR) of 1 (i.e. the top ranked document is relevant) and with |RR > 0|,
i.e. the result set contains at least one relevant result. A reciprocal rank of 1 means that a correct
result is already at rank 1, and RR > 0 implies that there is at least one correct result contained in
the set of retrieved results. In addition, we report the number of retrieved documents (#ret) and the
number of relevant documents retrieved, i.e. recall (#rel_ret). Achieving a high recall enables an
additional level of processing to choose a particular sentence for the EBMT matching phase among
a set of candidate sentences with equal LS values with respect to the input sentence. Since devel-
oping an efficient tie-breaking heuristic is outside the scope of this paper and we are not aware of
any such existing work, we simply resolve ties by choosing the sentence with minimum identifier
for all our experiments. However, we include recall and MAP as evaluation metrics to justify the
relative usefulness of a system under the presence of a tie-breaking mechanism. 3. Translation
quality: Finally, we compute how good the final translation output is, based on the standard MT
evaluation score BLEU (Papineni et al., 2002).

Relevance Judgements. Since the objective is to approximate edit distance scores, the target
documents (relevant documents) are those with the maximum LS scores with respect to the query.
The “relevance judgements” are thus obtained from computing the sentence pairs in the example
base with maximum LS score (see Equation 1) for a query, presuming that all sentences with the
minimum distance (or highest sentence similarity) are correct or relevant. This can lead to a high
number of relevant results for queries which have many exact or near-matches in the data. For the
EN-TR data, there are 4.74 relevant results per query on average; queries in the EN-FR data have
16.38 relevant results per query on average. To resolve these ties for EBMT, the highest scoring
document with the lowest document ID is selected for subsequent translation stages.

Test System. The test system is a standard PC with a 3.16 GHz Core 2 Duo CPU and 8 GB RAM.
The retrieval engine is SMART5, which was modified to support positional indexing and language
modeling. In the postings list of every term, we store the document ID for each document the term
appears in and the absolute position of that term in that particular document. The EBMT system is
an implementation of the translation by analogy approach described in (Nagao, 1984).

6 Experimental Results
Effect of Preprocessing. ASM is different from standard IR. Therefore, we explore how to opti-
mize the IR settings for the ASM problem. We have argued that standard IR preprocessing such as
stopword removal and stemming may not be suitable for ASM. Table 2 shows the results for dif-
ferent IR approaches. In this section, we are only interested in the retrieval effectiveness which is
measured in terms of how close the retrieved set is with respect to the reference set of minimum edit
distance sentences from the training set for each test sentence. Results are obtained by retrieving
50 sentences. The results in Table 2 can be interpreted as follows. Simple retrieval methods such as
raw term frequency (tf) or tf-idf do not perform well for ASM. In contrast to standard IR, stopword
removal and stemming decrease performance. The number of retrieved documents (#ret) is also

5ftp://ftp.cs.cornell.edu/pub/smart/

1580

Run Parameter IR effectiveness

Name SR ST n #ret #rel_ret MAP MRR

tf N N 1 20700 615 0.289 0.289
tf-idf N N 1 20700 710 0.338 0.346

LM N N 1 20700 1270 0.593 0.617
LM-ASM N N 1 20700 1295 0.638* 0.699*
LM N Y 1 18944 1148 0.513 0.547
LM-ASM N Y 1 18944 1174 0.579* 0.641*
LM Y Y 1 13349 296 0.180 0.520
LM-ASM Y Y 1 13349 265 0.183 0.617*

LM N N 2 20700 1414 0.658 0.688
LM-ASM N N 2 20700 1482 0.650 0.733*

Table 2: IR results on EN-TR data for retrieval of 50 documents per query. Parameter settings
include stopword removal (SR), stemming (ST), and the use of n-grams.

lower compared to the runs where neither stopword removal nor stemming is performed, because
some query sentences comprise of only stopwords e.g. “I am sorry”. Stemming also degrades
retrieval performance. So the the question ’Should stopwords or punctuation be removed or should
a stemmer be applied?’ can be answered with no. In our experiments, all forms of preprocessing
degrade performance.

We employ LM as the baseline for our retrieval experiments. In order to obtain the best LM
baseline, we conducted experiments with varying values for the λ parameter in the interval [0, 1].
Selecting λ = 0.99 yields the highest MAP (0.593). This explains that idf is not important for
ASM. Normalized tf (i.e. tf(t,D)/|D|) suffices to approximate LS (see Equation 2).

Our proposed method LM-ASM produces significantly better results both in terms of MAP and
MRR as compared to LM6. LM-ASM, unlike LM, takes into consideration the term position dif-
ferences between document words and the given query words, thus better estimating the number
of edit operations and hence the edit distance. Note that LM-ASM does not rely on collection
statistics such as idf.

We also experimented with bigrams (n = 2) on the best IR settings for the unigrams i.e. without
stopword removal and stemming. The results are shown in the last two rows of Table 2. It can
be seen that the use of bigrams yields significant improvement in MRR (0.733 vs. 0.699) at the
cost of an insignificant decrease in MAP. The reason for the improvement can be attributed to the
better estimation of the word order and term overlap achieved by bigrams. The use of higher order
n-grams (n ≥ 3) did not further significantly improve results.

Comparison of Approaches. Results for our experiments are shown in Table 3 and 4. Numeric
indices in the run name indicate the number of documents retrieved per query. The improvement
of the LM-ASM approach with bigram indexing over the baseline MT as obtained by brute-force
sequential computation, is statistically significant with a reliability of 97%, for the EN-TR dataset,
as seen by comparing the BLEU score of LDWF (21.71) with that of LM-ASM-250 (22.08)7.

Results on the English-Turkish data set are shown in Table 3. We conduct selected experiments on
6A ’*’ denotes a significantly better result of LM or LM-ASM over its counterpart with the same experimental settings.
7 This improvement is statistically significant as measured by the paired-bootstrap resampling(Koehn, 2004).

1581

Name Efficiency (runtime) IR effectiveness MT

IT [s] CT [s] AT [s] #ret #rel_ret MAP MRR |RR=1| |RR>0| BLEU

LDWF 0.959 227.709 0.550 1962 1962 1.000 1.000 414 414 21.71
LDBR 0.530 53.380 0.129 1962 1962 1.000 1.000 414 414 21.71
LCS 0.403 52.328 0.126 2143 1679 0.814 0.858 340 378 21.48

TR 0.958 30.816 0.074 1962 1962 1.000 1.000 414 414 21.71
BKT 2.130 13.147 0.032 1301 795 0.536 0.633 262 262 18.25
TST 0.845 12.672 0.031 1962 1962 1.000 1.000 414 414 21.71

tf-idf1 0.696 0.340 0.001 414 87 0.182 0.210 88 88 9.94
LM1 0.671 0.338 0.001 414 190 0.316 0.459 191 191 17.42
LM-ASM1 0.617 1.743 0.004 414 239 0.347 0.577 240 240 18.78
LM-21 0.914 0.467 0.001 414 232 0.377 0.560 233 233 21.10
LM-ASM-21 0.840 2.460 0.006 414 262 0.367 0.642 266 266 20.29

tf-idf10 0.696 0.364 0.001 4140 380 0.312 0.216 43 218 20.29
LM10 0.671 0.596 0.001 4140 788 0.553 0.611 191 368 21.69
LM-ASM10 0.617 1.963 0.005 4140 902 0.603 0.670 240 376 21.09
LM-210 0.914 1.271 0.003 4140 827 0.619 0.684 233 377 21.15
LM-ASM-210 0.840 3.264 0.008 4140 893 0.609 0.730 266 377 21.76

tf-idf50 0.663 0.458 0.001 20700 1272 0.514 0.549 164 391 21.40
LM50 0.671 2.195 0.005 20700 1417 0.593 0.617 191 405 21.51
LM-ASM50 0.617 3.562 0.009 20700 1390 0.638 0.701 240 400 21.58
LM-250 0.914 2.311 0.006 20700 1414 0.658 0.688 233 409 21.39
LM-ASM-250 0.840 4.304 0.010 20700 1480 0.638 0.733 266 402 22.08

Table 3: Experimental results on EN-TR data set. Evaluation metrics include indexing time (IT),
computation time (CT), and the average time per sentence (AT).

the English-French data set (see Table 4) to investigate scalability and efficiency of the approaches
on a larger example base. Additional IR experiments with the BM25 retrieval model (Robertson
et al., 1998) were based on indexing all word n-grams up to 5-grams (e.g. unigrams and bigrams for
n = 2) and retrieving 50 results per query. For the EN-TR data, 1160 relevant results were retrieved
when indexing unigrams. For other n-grams, 1348-1356 relevant results are retrieved, thus showing
an considerable increase, but not much change for higher values of n. Other performance metrics
show similar behaviour: higher performance but little variance for values of n ≥ 2 compared to
unigrams. We briefly revisit the unanswered questions raised in Section 5.

Which approach is the most efficient and scales up to large example bases for EBMT? A sequential
approach to compute the edit distance between an input sentence and all source language sentences
in the example base is not feasible, because it requires too much run-time (columns CT and AT in
Table 3). The sequential brute force approach has the lowest efficiency, but can be improved by
either using a metric that can be computed faster, such as LCS, or more efficient data structures
such as TR and TST. Interestingly, LCS is a good approximation of the edit distance (as can be seen
from the MT scores in the table) and requires a similar run time compared to LDBR. Sequential
approaches do not scale up well when using large example bases, even when efficient implementa-
tions of the Levenshtein algorithm are used (see Table 4). The use of data structures such as ternary
search trees and tries is more efficient, but requires that the structures are kept in memory. Thus,
these approaches have higher memory requirements. IR approaches are the most efficient, even

1582

Name Efficiency (runtime) IR effectiveness MT

IT [s] CT [s] AT [s] #ret #rel_ret MAP MRR |RR=1| |RR>0| BLEU

LDWF 4.653 105813.952 10.581 163751 163751 1.000 1.000 10000 10000 48.42
LDBR 7.355 48695.741 4.870 163751 163751 1.000 1.000 10000 10000 48.42

TR 30.611 27248.317 2.725 163751 163751 1.000 1.000 10000 10000 48.42
TST 8.004 13502.705 1.350 163751 163751 1.000 1.000 10000 10000 48.42

LM1 8.293 10.546 0.001 100000 3457 0.322 0.410 3654 3654 35.18
LM-ASM1 8.448 65.604 0.006 100000 3536 0.325 0.381 3804 3804 37.68

LM10 8.293 55.570 0.006 100000 7314 0.436 0.410 3654 5927 41.35
LM-ASM10 8.448 110.808 0.011 100000 7521 0.444 0.418 3804 6168 42.53

LM50 8.293 93.831 0.009 100000 19949 0.431 0.445 3654 7053 44.36
LM-ASM50 8.448 148.889 0.015 100000 26159 0.435 0.465 3804 7247 44.92

Table 4: Experimental results on EN-FR data set.

when a reranking phase based on sequential computation of LS is included.

From the results in Table 4, we observe that when the sequential computation or the efficient data
structures are used, the translation quality is high, but at the cost of a runtime of 1.4 seconds in
the best case (TST) and 10.6 seconds in the worst case (LDWF). This makes a close-to real-
time translation nearly impossible. The use of IR yields a much better runtime, but performance
depends on how many documents are retrieved in the initial stage. Note for all of these top-
ranked documents, the true edit distance has to be computed to facilitate result reranking. Runtime
experiments with the Moses8 decoder took 0.34s for EN-TR and 1.86s for EN-FR on average per
sentence, i.e. a 5× increase in the runtime for a 10× larger dataset. In contrast, our proposed IR
approach scales up better (0.010 to 0.015).

Which approach has the highest accuracy when a trade-off between efficiency and effectiveness
becomes necessary? The best exact approach to compute the edit distance is the ternary search
tree (see columns MRR), which however suffers from higher memory requirements because the
data structure has to be kept in memory. As expected, standard IR approaches such as tf-idf do
not perform well in finding approximate matches, due to missing constraints for the search (e.g.
word ordering and word position). Additional reranking of results by the normalized similarity
score (based on LDWF) ensures that correct matches are at top ranks (see columns |RR = 1| and
|RR > 0|). The combination of IR followed by a reranking stage is efficient and effective and leads
to a high translation quality (see columns AT, MRR, and BLEU in Tables 3 and 4).

Standard LM performs better than tf-idf, but does not take into account word positions. Positional
ranking in LM-ASM manages to rank the sentences candidates with a high precision and takes into
account word positions and word order. It consistently outperforms standard LM in terms of MAP,
MRR, and recall (see Table 3), at a moderate cost of additional runtime per query.

Which approach leads to the highest translation quality? Sequential computation of the edit dis-
tance based scores yields the highest effectiveness and MT scores, together with all other ap-
proaches aiming at finding the exact results with minimum edit distance, i.e. TR and TST.

Surprisingly, we found that the MT scores for our proposed approach with bigram indexing are ac-

8http://www.statmt.org/moses/

1583

tually higher than the scores for the sequential computation. To explain why our proposed approach
to ASM achieves a higher BLEU score than experiments based on sequential LD computation, we
examined some sentences in detail. It can be argued that choosing the minimum edit distance
sentence globally from the example base may not necessarily lead to the best translation. For the
English input sentence “where can i buy accessories” (TR: nereden aksesuar alabilirim), the most
similar sentence retrieved by sequential LD computation from the full example base is “where can
i buy plates” (TR: tabak almak istiyorumi). Since ties in LD are resolved by taking the sentence
with minimum document identifier, the IR method LM-ASM-250 retrieves a different sentence –
with the same LS – namely “where can i buy stockings” (TR: nereden çorap satın alabilirim). The
target language sentence parallel to the source sentence candidate found by LDWF compared to
“tabak almak istiyorumi” does not have a single word common to the reference translation (TR:
nereden aksesuar alabilirim), whereas the sentence retrieved by LM-ASM-250 has two words in
common. The translation template is thus better for the latter which is also reflected in a higher
overlap of the final translation output (TR: nereden aksesuarı satın alabilirim) with the reference
output thus resulting in a higher BLEU score for LM-ASM-2.

How many documents should be retrieved in the IR stage? The results in Table 3 and 4 show that
there is a trade-off between speed and quality of translation when using IR: A very fast translation
can be achieved by simply retrieving a single sentence, thus completely eliminating the need for a
reranking stage, but this requires a high MRR of the initial retrieval. Retrieving more documents
results in a higher translation score because for more sentences the best approximate match is
found. However this also results in a higher processing time per sentence, because the edit distance
has to be computed for more sentences. In practice, this implies that the user of an EBMT system
can control whether he is more interested in a high-quality or in a fast translation.

Thus, it proves important to choose source-side sentences with care. Edit distance can be a used as
a first filter to choose a set of candidate sentences. A second stage is required to carefully break the
ties to ensure selection of the best source side sentence with an equivalent target language sentence
close to the reference translation.

7 Conclusions
IR can benefit in solving problems beyond the search for information. In this paper, we have
described how the adaptation of an information retrieval model to fit specific requirements of
approximate retrieval can help to make EBMT more scalable, efficient, and even produce better
translations. To solve the problem of approximate sentence matching, we proposed and evaluated
LM-ASM, a novel IR model which incorporates three aspects of similarity, namely positional, or-
dinal, and material similarity. Our approach demonstrates the general usefulness of IR for other
tasks. The evaluation covers three aspects: IR metrics, metrics of the problem domain (e.g. BLEU
score), and non-functional requirements (e.g. the runtime). We found that our proposed approach
for ASM, LM-ASM, outperforms sequential computation of scores and in-memory data structures
in terms of runtime, while losing almost none of the translation quality.

As part of future work, we plan to investigate alternatives for generating the relevance assessments
based on the BLEU score obtained when using a potentially relevant sentence as translation tem-
plate. This could lead to similarity metrics and IR models that better approximate the MT quality.

Acknowledgments This research is supported by the Science Foundation Ireland (Grant 07/CE/I1142) as
part of the Centre for Next Generation Localisation (CNGL) project. The authors express their gratitude to
the anonymous reviewers whose feedback helped improve the quality of this paper.

1584

References
Bentley, J. L. and Sedgewick, R. (1997). Fast algorithms for sorting and searching strings. In
SODA ’97: Proceedings of the eighth annual ACM-SIAM symposium on discrete algorithms,
pages 360–369, Philadelphia, PA, USA. SIAM.

Berghel, H. and Roach, D. (1996). An extension of Ukkonen’s enhanced dynamic programming
ASM algorithm. ACM Trans. Inf. Syst., 14(1):94–106.

Boytsov, L. (2011). Indexing methods for approximate dictionary searching: Comparative analy-
sis. J. Exp. Algorithmics, 16:1–91.

Burkhard, W. A. and Keller, R. M. (1973). Some approaches to best-match file searching. Com-
munications of the ACM (CACM), 16(4):230–236.

Dandapat, S., Morrissey, S., Way, A., and van Genabith, J. (2012). Combining EBMT, SMT, TM
and IR technologies for quality and scale. In Proceedings of ESIRMT and HyTra, pages 48–58,
Avignon, France. ACL.

Di Nunzio, G. M., Ferro, N., Mandl, T., and Peters, C. (2008). CLEF 2007: Ad hoc track overview.
In Advances in Multilingual and Multimodal Information Retrieval, 8th Workshop of the Cross-
Language Evaluation Forum, CLEF 2007, volume 5152 of LNCS, pages 13–32. Springer.

Faulk, R. D. (1964). An inductive approach to language translation. CACM, 7(11):647–653.

Gravano, L., Ipeirotis, P. G., Jagadish, H. V., Koudas, N., Muthukrishnan, S., Pietarinen, L., and
Srivastava, D. (2001). Using q-grams in a DBMS for approximate string processing. IEEE Data
Eng. Bull., 24(4):28–34.

Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press.

Hiemstra, D. (2000). Using Language Models for Information Retrieval. PhD thesis, Center of
Telematics and Information Technology, AE Enschede.

Hildebrand, A., Eck, M., Vogel, S., and Waibel, A. (2005). Adaptation of the translation model
for statistical machine translation based on information retrieval. In Proceedings of EAMT, pages
133–142.

Koehn, P. (2004). Statistical Significance Tests for Machine Translation Evaluation. In EMNLP
2004, pages 388––395.

Koehn, P. and Senellart, J. (2010). Fast approximate string matching with suffix arrays and A*
parsing. In Meeting of the Association for Machine Translation of the Americas (AMTA).

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and reversals.
Soviet Physics Doklady, 10(8):707–710.

Lin, H.-J., Wu, H.-H., and Wang, C.-W. (2011). Music matching based on rough longest common
subsequence. Journal of information science and engineering, 27:95–110.

Lv, Y. and Zhai, C. (2009). Positional language models for information retrieval. In Proceedings
of SIGIR ’09, pages 299–306.

1585

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Retrieval.
Cambridge University Press.

Mongeau, M. and Sankoff, D. (1990). Comparison of musical sequences. Computers and the
Humanities, 24:161–175.

Nagao, M. (1984). A framework of a mechanical translation between Japanese and English by
analogy principle. In Artificial and human intelligence, pages 173–180, New York, NY, USA.
Elsevier North-Holland.

Navarro, G. (2001). A guided tour to approximate string matching. ACM Computing Surveys,
33(1):31–88.

Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443–
453.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: a method for automatic
evaluation of machine translation. In ACL ’02, pages 311–318, Stroudsburg, PA, USA. ACL.

Ponte, J. M. and Croft, W. B. (1998). A language modeling approach to information retrieval. In
SIGIR’98, pages 275–281. ACM.

Robertson, S. E., Walker, S., and Beaulieu, M. (1998). Okapi at TREC-7: Automatic ad hoc,
filtering, VLC and interactive track. In The Seventh Text REtrieval Conference (TREC-7), pages
253–264, Gaithersburg, MD, USA. NIST.

Schulz, K. and Mihov, S. (2002). Fast string correction with Levenshtein-automata. International
journal of document analysis and recognition, 5:67–85.

Sikes, R. (2007). Fuzzy matching in theory and practice. Multilingual, 18(8):39–43.

Somers, H. (2003). An overview of EBMT. Kluwer. In Michael Carl and Andy Way (eds) Recent
advances in Example-Based Machine Translation, Dordrecht.

Ukkonen, E. (1985a). Algorithms for approximate string matching. Information and Control,
64(1-3):100–118.

Ukkonen, E. (1985b). Finding approximate patterns in strings. J. Algorithms, 6(1):132–137.

Voorhees, E. M. (1999). The TREC-8 question answering track report. In Proceedings of TREC-8,
pages 77–82.

Wagner, R. A. and Fischer, M. J. (1974). The string-to-string correction problem. J. ACM,
21(1):168–173.

Yap, T. K., Frieder, O., and Martino, R. L. (1996). High performance computational methods for
biological sequence analysis. Kluwer.

1586

