
Proceedings of COLING 2012: Technical Papers, pages 1011–1028,
COLING 2012, Mumbai, December 2012.

A Distributed Platform for Sanskrit Processing

Pawan Goyal1 Gérard Huet1

Amba Kulkarni2 Peter Scharf3 Ralph Bunker4

(1) Inria Paris-Rocquencourt
(2) Department of Sanskrit Studies, University of Hyderabad

(3) Blaise Pascal Chair, Université Paris 7, and The Sanskrit Library
(4) Maharishi University of Management, Fairfield, Iowa

Pawan.Goyal@inria.fr, Gerard.Huet@inria.fr, apksh@uohyd.ernet.in,
Peter.Scharf@inria.fr, rbunker@lisco.com

Abstract
Sanskrit, the classical language of India, presents specific challenges for computational linguistics:
exact phonetic transcription in writing that obscures word boundaries, rich morphology and an
enormous corpus, among others. Recent international cooperation has developed innovative solutions
to these problems and significant resources for linguistic research. Solutions include efficient
segmenting and tagging algorithms and dependency parsers based on constraint programming. The
integration of lexical resources, text archives and linguistic software is achieved by distributed
interoperable Web services. Resources include a morphological tagger and tagged corpus.

Keywords: Indian language technology, Resources and annotation, Morphology and POS tagging,
Parsing.

1011



1 Introduction
Formal and computational linguistics was dominated by English at its inception and developed in
subsequent decades primarily in the environment of European languages. More recently there has
been a concerted effort to undertake formal linguistic analysis of a wide variety of languages, with
particular interest in those with dramatically different features, and to enrich linguistic theory to
account for linguistic variety. In spite of this effort, analytic structures and procedures utilized in
formal linguistics remain dominated by those invented for, and most suitable for, English and other
European languages. Linguistic theory remains unduly weighted in favor of European languages
even as their extension to the variety of the world’s languages involves undue complication thereby
revealing their inadequacy in representing language universally. The inadequacy of contemporary
computational methods is vividly apparent in the analysis of Sanskrit. Recent worldwide collab-
oration to overcome the challenges to conducting computational linguistic research on Sanskrit
offers insights into methods and procedures that may be useful generally for languages that differ
markedly from western European languages.

1.1 Sanskrit
Sanskrit is the primary culture-bearing language of India, with a continuous production of literature
in all fields of human endeavor over the course of four millennia. Preceded by a strong oral
tradition of knowledge transmission, records of written Sanskrit remain in the form of inscriptions
dating back to the first century B.C.E. Extant manuscripts in Sanskrit number over 30 million -
one hundred times those in Greek and Latin combined - constituting the largest cultural heritage
that any civilization has produced prior to the invention of the printing press. Sanskrit works
include extensive epics, subtle and intricate philosophical, mathematical, and scientific treatises,
and imaginative and rich literary, poetic, and dramatic texts. The primary language of the Vedic
civilization, Sanskrit developed constrained by a strong grammatical tradition stemming from the
fairly complete grammar composed by Pān. ini by the fourth century B.C.E. In addition to serving as
an object of study in academic institutions, the Sanskrit language persists in the recitation of hymns
in daily worship and ceremonies, as the medium of instruction in centers of traditional learning,
as the medium of communication in selected academic and literary journals, academic fora, and
broadcasts, and as the primary language of a revivalist community near Bangalore. The language is
one of the twenty-two official languages of India in which nearly fifty thousand speakers claimed
fluency in the 1991 Indian census.

India developed an extraordinarily rich linguistic tradition over more than three millennia that re-
mains under-appreciated and under-investigated. A cursory glance at the long tradition of discussion
and argumentation within and between Indian sciences of phonetics (śiks.ā), grammar (vyākaran. a),
logic (nyāya), ritual exegesis (karmamı̄mām. sā), and literary theory (alam. kāraśāstra) reveals that In-
dian linguistic traditions have much to offer contemporary linguistic theory in the areas of phonetics,
morphology, syntax, and semantics.

1.2 Computational linguistic processing challenges
Since computational linguistics developed primarily in the environment of western European
languages, its methods were structured and remain suited to those languages. Prior to undertaking
any kind of computational analysis of Sanskrit text, one must deal with several challenges presented
by features of the language that differ markedly from those of modern western European languages.
In addition to the complexity introduced by lexical complements, which is relevant in these languages

1012



as well, Sanskrit has orthographic, prosodical, and inflectional complexities not encountered in
western European languages. The rich inflectional and derivational morphology of the language
permits relationships that are shown positionally in western European languages to be made known
by the morphology instead. As a result, the word order is much less constrained by governance
structure and is free to intimate discourse structure and performative aspects of language. For the
analysis of Sanskrit syntax, therefore, positional grammars, and constituency parsers which are
based on them, are not very relevant, and dependency parsers are more suitable.

1.2.1 Prosody and orthography

In English, where the heritage is received in writing, and standardized spelling and printing were
introduced several hundred years ago, a given morpheme is represented with a single orthography
despite the fact that it has different surface phonetic representations in different contexts. For
example, the past tense suffix -〈ed〉 is so written despite three distinct phonetic realizations in three
clearly defined contexts:

/t/ e.g. dip /dIp/, dipped /dIpt/
/d/ e.g. boom /bu:m/, boomed /bu:md/
/1d/ e.g. loot /lu:t/, looted /lu:t1d/

In contrast, in Sanskrit, where oral tradition dominated the sphere of learning and an advanced
discipline of phonetics explicitly described prosodic changes, these prosodic changes, well known
by the term sandhi, are represented in writing. Hence the past passive participle suffix -ta variously
realized as ta or dha depending solely upon the phonetic context, is written as follows:

/ta/ e.g. from su ‘press’, suta ‘pressed’
/dha/ e.g. from budh ‘awake’, buddha ‘awakened’

Moreover, the prosodic changes obscure word boundaries in speech, and these word boundaries
are correspondingly eliminated in writing as well. For example, vasati ‘dwells’ followed by atra
‘here’ becomes vs(y/ (vasatyatra) in continuous speech. The semisyllabic Indic scripts such as
Devanāgarı̄ forestall word separation here obliterating the word boundary. Some prosodic changes,
like this one, can be separated in alphabetic Roman transcription despite the sound alteration,
viz. vasaty atra. Other prosodic changes, however, preclude word separation even in alphabetic
transcription because the final sound of the preceding word and the initial sound of the following
word merge in a single sound. Thus vidyā ‘knowledge’ āpyate ‘is attained’ becomes vidyāpyate;
the single sound ā belongs to both words. The most difficult task in parsing a Sanskrit sentence is
determining the word boundaries. Solutions to the problem have valuable ramifications for speech
analysis where a similar problem is encountered in virtually all languages.

1.2.2 Inflectional morphology

In English, inflectional morphology is minimal. A present active verbal paradigm contains six slots:
three for first, second and third person times two for singular and plural number. Yet the forms that
fill these slots number just two, for example, go and goes for the verb ‘to go’. Description of the
abstract grammatical structure requires mentioning five items while description of the forms directly
requires mentioning only two. Grammatical description is therefore more prolix than listing. It
is nearly as efficient to describe English morphology with reference to individual forms as it is to
describe it in abstract grammatical structures. (Karp et al., 1992) create a hash table of just 317,477
forms from 90,196 lexical entries, a ratio of 3.5:1. The reverse is true for Sanskrit. In Sanskrit full

1013



verb paradigms number hundreds of unique forms in as many as sixteen hundred slots. The modest
full-form lexicon created by (Scharf and Hyman, 2009a) from a lexicon of 170,000 entries numbers
more than eleven million forms, a ratio of 64.7:1. It is by far more economical to describe such
forms in abstract grammatical categories than it is to list them. The implication of the brevity of
grammatical description of Sanskrit in comparison to listing forms is that it is misguided to attempt
to describe Sanskrit grammar with reference to individual word forms. This fact was explicitly
recognized by Patañjali in his massive commentary Mahābhāśya on Pān. ini’s concise grammatical
description of Sanskrit in the As. t.ādhyāyı̄.

1.2.3 Lexical complements

In statistical analysis of a corpus of sentences, slots for lexical complements are combined. In
computational linguistic processing of English it is recognized that the forms is and are belong
to the same lexical unit as the forms was and were. Likewise in Sanskrit grammar, forms derived
from the root bhū are recognized as complements of forms derived from the root as.1 Because it is
concerned only with individual word forms, computational linguistic processing of English treats is
and are as lexical complements of each other and was and were as lexical complements of each other
in the same manner as it considers the first pair as lexical complements of the second pair. Such
processing treats a and an as lexical complements in the same manner. Historical linguists differ
from computational linguists in their treatment of these forms. They view is and are as inflectional
varieties derived from one common root, and was and were as inflectional varieties derived from
another root. They consider the two roots to be lexical complements. They recognize that a is a
phonetic variant of an, both derived from the word one. Sanskrit grammarians agree with historical
linguistics here. Only semantically related roots are treated as lexical complements. Variants such
as a/an are treated as phonetic variants, and variants such as is/are are treated as inflectional variants.

1.2.4 Syntax

In languages such as English where word order is strongly associated with roles, it may be reasonable
to define positions in relation to roles as is done in positional grammars. Hence in an active sentence,
the first position is called the subject position, the second the verb position and the third the object
position. In free-word order languages such as Sanskrit, however, position does not determine role.
Although certain patterns are common — such as subject, object, verb — even unmarked word
order leaves some roles in indeterminate position. Alteration of the word order does not change the
roles, and the position is highly influenced by discourse structure and emphasis. Phrase-structure
grammars are unsuitable to describe governance structure which is more accurately described by
dependency grammars.

2 Birth of a discipline
A number of projects began accumulating digitized texts in the late 1980s. The largest collection
was made by the TITUS2, which accumulated more than eighty digital Sanskrit texts within a decade.
The next decades witnessed the growth of other large collections including GRETIL, which serves
as a central registry of digitized Indic texts.

In the meantime a couple of projects developed digital dictionaries of Sanskrit. The Cologne Digital
Sanskrit Lexicon project began by digitizing Monier Williams’ A Sanskrit-English Dictionary (MW)

1As. t.ādhyāyı̄ 2.4.52 aster bhū
2http://titus.uni-frankfurt.de/

1014



between 1994 and 1996, and followed by digitizing several other major bilingual Sanskrit dictionar-
ies. The Digital Dictionaries of South Asia project at the University of Chicago included Apte’s and
MacDonell’s Sanskrit-English dictionaries among its digitized Indian language dictionaries.

There were a few early isolated attempts to process Sanskrit text mechanically, such as Pushpak
Bhattacharya’s Sanskrit parser included as part of his M.Tech. thesis at IIT Kanpur in 1987 and Pr.
Lakshmitatachar’s verbal cognition generator for Bhandarkar’s Sanskrit primer developed at the
Academy of Sanskrit Research in Melkote in the early 1990s (Rāmapriya and Saumyanārāyan. a,
2001).

The Indian Ministry of Communications and Information Technology provided a strong impetus
for computational processing of Indian languages beginning at the turn of the century with its
Technology Development for Indian Languages program (TDIL). Several periodic conferences
were launched to foster research in computational linguistics, such as the International Conference
on Natural Language Processing (ICON), and the Language Engineering Conference (LEC). The
Akshar Bharati group developed “Anusāraka”, a language accessor, for accessing texts in other
languages that employed techniques inspired by Pān. ini’s As. t.ādhyāyı̄ (Bharati et al., 1995). K. V.
Ramakrishnacaryulu introduced natural language processing programs specifically for Sanskrit at the
Rashtriya Sanskrit Vidyapeetha, Tirupati, such as “Śābdabodha Systems and Language Technology”
in 2005.

In 2002, under the guidance of Amba Kulkarni, the toy morphological analyser developed at Melkote
was enriched with the MW lexicon and the Dhātu-ratnākara database resulting in a wide coverage
morphological analyser. Amba Kulkarni developed prototypes of several other analytic tools for
Sanksrit when she began teaching specialized courses in the subject at Tirupati. Her appointment as
the head of the newly formed Department of Sanskrit Studies at the University of Hyderabad, and
Girish Nath Jha’s appointment to the Special Center for Sanskrit Studies, J.N.U., Delhi beginning in
2002 allowed the systematic training of students in Sanskrit computational linguistics.

In 1998-1999, Peter Scharf and Ralph Bunker developed a Web-based Sanskrit reader program at
Brown University called Kramapāt.ha equiped in 2001 by Hyman with an index program and audio
feature. The index program allowed Peter Scharf’s Rāmopākhyāna to be searched by lexical and
inflectional categories as well as by verbal roots, nominal stems, inflected forms, text ranges, or
combinations thereof. In 2003-2004, Hyman and Peter Scharf collaborated to produce a digital
edition of Whitney’s roots (Whitney, 1997), that served as the source of verbal stems for their
inflectional generation software. Between 2006 and 2009 Peter Scharf led the International Digital
Sanskrit Library Integration project in the Classics Department at Brown University. The project
created a digital Sanskrit library by integrating the texts provided by the TITUS with the digital
MW dictionary of the Cologne Digital Sanskrit Lexicon project at Universität zu Köln (CDSL). The
dictionary was upgraded with the assistance of Jim Funderburk and R. Chandrashekar by converting
character code markers to explicit XML tags and systematically classifying and tagging additional
information.

Separating linguistic processing from issues of input and display simplifies linguistic processing and
also permits precise processing and display of accented dialects. Peter Scharf and Hyman designed
the Sanskrit Library Phonetic encodings (SLP), described in (Scharf and Hyman, 2009b), after
a thorough investigation of ancient Indian linguistic treatises, that allows all sounds represented
in Vedic texts to be represented digitally. After an investigation of Sanskrit paleography, Peter
Scharf initiated worldwide collaboration to extend the Unicode Standard to include 68 additional

1015



characters required for the proper display of the ancient Vedic heritage texts of India3. The Unicode
Standard version 5.2 incorporated the characters in two code blocks, Devanagari Extended and
Vedic Extensions under South Asian Scripts on the Unicode Character Code Charts page4. SLP
serves as the basis of a suite of transcoders that convert between standard Sanskrit Romanization of
Sanskrit in Unicode, several popular Roman meta-encodings, and the Unicode pages of the major
Indic scripts. Users are permitted to select their preferences for input and display at the Sanskrit
Library site.

Around 2000, Gérard Huet started to develop a Sanskrit Heritage platform (SH), centered around
an electronic version of the Sanskrit-French Sanskrit Heritage dictionary5. The dictionary was
structured from the start to serve both as a computerized lexical database for morphology generation,
and as a human-readable hypertext encyclopedia on Classical India (Huet, 2001, 2004). It is
internally consistent in that each lexical entry is provided with hypertext links to its generating
components, and it prepares the ground for syntax analysis by systematically formalizing information
about complements (ākāṅks.ā).

Various tools for morpho-phonemic computation, as well as efficient structures for lexicon repre-
sentation, were adapted to Sanskrit from a general computational linguistics toolkit called the Zen
library, implementing general finite state transducers in functional programming style, as instances
of a new relational computing paradigm called effective Eilenberg machines (Huet, 2002; Huet and
Razet, 2006, 2008; Razet, 2009). The global architecture of this platform is that of interconnected
Web services allowing interaction with digital libraries and other external resources. The main tool
is a Sanskrit Reader, allowing segmentation (sandhi analysis), tagging, and parsing (Huet, 2003,
2005, 2006, 2007, 2009; Goyal and Huet, 2013).

In 2008 the Indian Government funded a major consortium project to develop various tools for
analysis of Sanskrit text and a Sanskrit-Hindi Machine Translation System. Sanskrit scholars and
computational linguists collaborated to develop the prototype of an interactive reader consisting
of the 100-verse Saṅks.epa Rāmāyan. a. They also developed elaborate guidelines for annotating
sandhi, compounds (samāsa) and syntactico-semantic roles (kāraka), and an annotated 800K corpus.
Compound analysis is essential to Sanskrit parsing because 15-20% of the words in a random text
are compounds and compounding is productive. A modular compound processor (Kumar, 2012)
was developed that segments a given linear string into morphologically valid components (Kumar
et al., 2010), determines the underlying constituency structure (Kulkarni and Kumar, 2011), and
identifies the compound type (Kulkarni and Kumar, 2013). A paraphrase of the compound is then
produced from the labeled constituency tree (Kumar et al., 2009). The morphological analyser
previously developed by Amba Kulkarni was enhanced further by employing the head words of
MW, and supplying additional derived forms before generating a full-form lexicon of 140 million
words. (Kulkarni and Shukl, 2009). The constraint-based parser developed by her employing this
analyser is described in section 6 below. All these tools for analysis of Sanskrit texts were used in a
Sanskrit-Hindi language accessor (anusāraka) and a machine translation system. Comparative study
of the divergences between Sanskrit and Hindi were taken up to improve the translation quality
(Shukla et al., 2010) of the translator. The morphological analyser, generator, sandhi joiner and
splitter, full-fledged parser, and Sanskrit-Hindi Machine Translation system were assembled in what
is called Saṁsādhanı̄6.

3http://www.sanskritlibrary.org
4http://www.unicode.org/charts
5http://sanskrit.inria.fr
6http://tdil-dc.in/san

1016



These various efforts started coordinating themselves around 2006, with the creation of a joint
team in Sanskrit computational linguistics between INRIA and Department of Sanskrit Studies,
University of Hyderabad. In October 2007 the First International Sanskrit Computational Linguistics
Symposium (Huet et al., 2009), organized by Gérard Huet at INRIA, allowed the presentation of
the various teams and tools, and the development of cooperative software and resources. It was soon
followed by the Second Symposium, organized at Brown University by Peter Scharf in May 2008,
the Third one organized at University of Hyderabad by Amba Kulkarni in January 2009 (Kulkarni
and Huet, 2009), the Fourth one organized at J.N.U. Delhi by Girish Nath Jha in December 2010.
The Fifth one is scheduled for January 2013, organized at I.I.T. Bombay by Malhar Kulkarni.

In 2010–2011 the Sanskrit Library linked its texts to the Sanskrit Heritage reader. Each sentence in
which sandhi has not been analysed is dynamically linked to the SH parser. The parser analyses
the sentence using various syntactic criteria and a full-form lexicon of 700,000 forms derived
from the SH lexicon of about 25,000 words. Unpenalized solutions are selected and displayed.
The site allows one to examine penalized solutions and to reedit the sentence and resubmit it for
further analysis. The Sanskrit Heritage site additionally allows one to submit analysed sentences for
syntactic analysis by Amba Kulkarni’s dependency tree parser.

The year 2012 saw a significant progress in the integration of the various tools. Pawan Goyal inte-
grated an HTML version of the Monier-Williams dictionary as an alternative plug-in component to
the Sanskrit Reader. The simultaneous invitation of Peter Scharf and Ralph Bunker to Paris eased
the synchronization of tagging schemes and development of more robust protocols for interoperable
Web services. In close collaboration with the other authors, Ralph Bunker developed a software-
assisted human interface for morphological tagging currently being used by human annotators to
prepare a tagged corpus.

3 Basic Architecture
The basic architecture of the collaborative platform is based on interactions between various Web-
services. The main idea is not to have a monolithic system but various platforms, where selected
components can inter-operate. These components can be software or linguistic resources. The glue
between various platforms is interoperable Web-services via user interfaces and remote procedure
calls.

This way of doing distributed computing has several advantages from a software engineering point
of view. Firstly, Web technology gives a universal standard user interface with XHTML. Conformant
HTML pages permit a uniform viewing by the various browsers offered by the various operating
systems of personal computers and workstations. The technology offers automatic adaptation to the
display medium, thus accommodating tablets, personal assistants, and smartphones. Furthermore,
Unicode allows display in all the scripts of all the human languages. For Sanskrit, this means it is
easy to display in Devanāgari script, as well as in the standard Indological romanised script with
diacritics, as well as in the various transliteration schemes in use. Actually our joint distributed
platform recognizes four such transliteration schemes, permitting equally easy access to scholars
trained in using one scheme or another.

Secondly, developing separate components at the various sites does not commit us to any specific
programming environment. The various teams at the various sites use different programming
languages. There is no need for linking the executables of these various services. Finally, versioning
is distributed, there is no need of synchronisation of new versions of the various services, once clear
interfaces for data interchange are agreed upon (that is, we only have to agree on the XML abstract

1017



structures defining the marshalling of interchanged data at the interfaces).

We have not felt the need to have a sophisticated orchestration of these various services. The main
ingredient is remote procedure call (so-called CGI in the Web jargon). We remedy the poverty of
the memory-less protocol (HTTP) by transmitting parameters summarizing the interaction history
in the current session.

One common feature of our various developments is the use of UNIX platforms (Linux or MacOS)
for development and server deployment. Users of the software, for instance annotators, may of
course use any client operating system.

The configuration of the various platforms allows a choice between using a service as a remote
process using network communication with the proper server, or alternatively to the same service
run locally on the client station. This is easily achieved in Unix clients, where Web servers such as
Apache or Tomcat are easy to install. Sometimes, one service is available locally as a plug-in to
the server site. Thus, the Sanskrit Heritage segmenter is available as a plug-in to the University of
Hyderabad Sanskrit computational platform, in order to undo sandhi in sandhied corpus. Conversely,
the University of Hyderabad Sanskrit parser, using sophisticated constraint technology, may be
used in the Sanskrit Heritage platform as a filter to its segmenter-tagger, superior in precision to its
original crude dependency analyser.

4 Lexicon
Independent projects had previously used different lexicons as the basis for generating inflected
forms used in linguistic software. The task of coordinating those lexicons with each other and
with other available lexical resources presents a challenge. A current project jointly funded by the
NEH and the Deutsche Forschungsgemeinschaft extends the Sanskrit Library’s multidictionary
interface by integrating supplements to the major bilingual dictionaries already included, and by
adding specialized dictionaries, indigenous Indian monolingual dictionaries, traditional thesauri,
and traditional linguistic analyses. Even after data-entry of the various lexical sources, the task
of integrating them is complicated by the different conventions used by their original compilers.
Compilers differ in the scripts they use, conventions of sandhi, selection of stem versus an inflected
form, determination of the base form, etc. The project examines the conventions used in each lexical
source, and determines ways of mapping the differences to each other.

The Sanskrit Heritage platform uses a Sanskrit-French dictionary. The desire arose to express the
output of the various tools of the platform multilingually. The first step was to project the headwords
of the SH dictionary onto those of the digitalised Monier-Williams dictionary. To this end, Pawan
Goyal engaged in using data-mining techniques and automated translation tools to develop a protocol
for the non-trivial task of mutually linking lexical resources, as described in the remainder of this
section.

Let us consider the stem, aṅga in Sanskrit. This stem appears in two SH entries:

aṅga1 : membre; partie du corps; le corps en entier; la personne, la forme
En: member, part of the body the whole body, the person, the form

aṅga2 : affirme, confirme, ou exprime le désir ou l’impatience bien, d’accord; certes, vraiment; s’il
vous plaît; vite
En: affirms, confirms, or express a desire or impatience, okay, sure, really, please, quickly

MW also has this stem listed in two different entries as:

1018



aṅga1 : a particle implying attention, assent or desire, and sometimes impatience, it may be rendered,
by well

aṅga2 : a limb of the body

So, in this example, aṅga1 in SH should link to aṅga2 in MW. Clearly, the matching can not be done
simply based upon the name of the stem, but the concepts involved in the corresponding entry also
need to be used. Thus, the headword linking problem is not trivial because of 1). Homophony
indexes: SH and MW have their own systems of giving homophony indexes to the entries. Thus
aṅga1 in SH may correspond to either aṅga1 or aṅga2 in MW, and 2). Cross-lingual resources:
While SH is a dictionary from Sanskrit to French, MW is a dictionary from Sanskrit to English.
Thus, it is difficult to match the direct meanings as obtained after extracting the meaning text from
both the lexicons.

4.1 Labeling MW with the lexical information
Pawan Goyal converted the XML file of the MW dictionary described in section 2 to strict XHTML
by XSLT (Extensible Stylesheet Language Transformations). Each entry in the XHTML dataset was
labeled with its lexical category information. This avoids the homophony problem across the lexical
categories. For an example, the Sanskrit word bhū can be used as a noun, meaning ‘earth’ as well as
a root meaning ‘to become’ and is given the homophony bhū2 and bhū1 in the MW XML dataset for
the lexical categories corresponding to noun and root respectively. In the XHTML file, the nouns
were labeled with a suffix ‘-pr7’ and the roots were labeled with a suffix ‘-dh8.Cn’, where Cn denotes
the corresponding class number of the verb (gan. a) and varies from 1 to 10. In the case where a root
entry has more than one gan. a, multi-labels were given to that entry. Nominal verbs and verbs with
preverb sequences were labeled with the suffix ‘-dh.Nom9’ and ‘-cpvb.(ps,dh). cpvb.(ps,dh) denotes
the verb with a preverb sequence ‘ps’ and the root ‘dh’. Thus a verb ‘ānı̄’, consisting of preverb ‘ā’
and root ‘nı̄’ was labeled as ānı̄-cpvb.(ā,nı̄).

4.2 Matching Dictionary Headwords
Once the MW was labeled with the lexical information, the headwords from the SH dictionary were
matched with the MW headwords based on their lexical categories, which is explicit in the SH
dictionary. As a rough estimate, there are approximately 16000 nouns, 600 roots, 110 nominal verbs
and 1200 verbs with preverb sequences in the SH dictionary.

From the MW XHTML pages, the labels corresponding to each entry were extracted (called MWent

henceforth), which, as discussed above, were marked with the lexical information. For each lexical
category, the entry in the SH dictionary was looked up in the MWent and the search results were
categorized in one of the following categories for further treatment: ‘one to one’ mapping of
headword, ‘many to one’ mapping, ‘one to many’ mapping, ‘many to many’ mapping and ‘not
found’. For instance, ‘one to many’ mapping implies that a single headword in SH maps to many
different headwords in MW and requires further disambiguation to select the desired match among
the many possible matches.

While one to one mapping indicates that an entry in SH matches with one and only one entry in MW
and the match results were used as it is, the cases of many to one mappings were very rare and were

7‘pr’ stands for prātipadika, the substantival base.
8‘dh’ stands for dhātu, the verbal base
9dh.Nom stands for the nominal verbs

1019



dealt with in the same way as that of one to one mapping. The reasoning behind this design decision
was the fact that MW has a wider coverage of lexicon entries. The next two cases, ‘one to many’
and ‘many to one’ mappings were problematic because these require further disambiguation to
select exactly which of the many headwords in MW corresponds to the SH headword. To solve this
problem, an approach based on matching the word concepts in the two dictionaries was employed.

4.3 Matching dictionary headwords using concept matching
A dictionary headword can be considered to be a concept-node in the particular ontology expressed
by the dictionary and thus, the problem of matching dictionary headwords can be seen as the
problem of ontology mapping. In the particular approach adopted by the authors, the problem
of headword matching was translated to the problem of matching the concepts expressed by the
particular concept-nodes, these headwords represent in different ontologies.

Matching the headword concepts was not so trivial because of the fact that while the SH dictionary
stores the word concepts in French, the MW dictionary contains word concepts in English. To
overcome this problem, the concepts from the SH dictionary were extracted and translated into
English using Google Translate10. This ensured that we had the concepts for each entry in SH in
the same language as that in MW. For a given word in SH, the concepts from the corresponding
MW headwords were extracted. The concepts were preprocessed to remove stopwords such as {on,
for, to, and, by} etc. These concepts were then considered similar to the Wordnet notion of ‘synset’.
Representing these concepts as a ‘bag-of-words’, the matching between the concept vectors X and
Y was performed using the following function:

match(X,Y) =
∑

i

∑

j

sim(Xi,Y j)

where sim(Xi,Y j) denotes the similarity function between the strings Xi and Y j, belonging to the
concept vectors X and Y respectively. The similarity function accounted for the fact that even
if the two strings have different suffixes, they represent the same concept. For example, ‘rained’
and ‘raining’ represent the same concept. The similarity function was directly proportional to the
intersecting letters between Xi and Y j and was inversely proportional to the maximum number of
letters in Xi or Y j. A threshold value was also given such that the similarity function only contributes
to the matching score if its value is greater than the threshold.

Once an SH word was matched to all the possible MW headwords, the matching values were sorted
and the headword with the highest match was marked as the suitable match. However, if the top
two headwords have the same matching score (this also includes the case, where all the headwords
obtained a score of 0.0), the SH headword along with all the MW headwords and their meanings
were dumped in a text file interface, where the exact match was decided manually.

Note that the problem of solving ‘one to many’ mapping in the case of verbs with preverb sequences
can be expressed in terms of matching the structure (ps,dh) between SH and MW and assuming
that the roots have been mapped from SH to MW by following the procedure outlined above, this
would not require the matching of headword meanings again. For example, consider the verb
sam. mā1 in SH, which is analysed as consisting of preverb sam and the verb mā1. Once this mā1
has been mapped to mā3 in SH, this information can be utilized to match sam. mā1 in SH with
sam. mā-cpvb(sam,mā3) in MW.

10http://translate.google.com/

1020



5 Segmentation and Tagging
The first computational problem attacked in the framework of the Sanskrit Heritage platform was
segmentation, i.e. sandhi-viccheda. Sandhi occurs in Sanskrit in several places. In generative
morphology, it occurs internally for stem formation and affixes glueing, for instance for declension
and conjugation. This so-called internal sandhi is complex, since it gives rise to long-distance
retroflexion, not easily invertible by finite-state methods. On the other hand, junction of words
within the sentence, as well as compound formation, uses a simpler notion of external sandhi, that
may be modeled as a rational relation over words, invertible by finite-state techniques. It was thus
decided to divide the task into generation of non-compound word forms in pre-processed databanks,
and analysis of sentences in terms of these elementary forms.

A general toolkit for computational linguistics in functional programming style, called Zen (Huet,
2002), was first implemented. It uses in a systematic manner a notion of decorated tries, usable both
as efficient data structures for lexicon representation, and applicative representation of automata
and transducers. A new general framework for relational programming, called effective Eilenberg
machines (Huet and Razet, 2006, 2008; Razet, 2009), was designed as a restriction to partial
recursive relations of a mathematical model of automata theory due to Samuel Eilenberg (Eilenberg,
1974). This framework, allowing reactive programming over streams of data, proved adequate to the
efficient solution of the segmentation problem in Sanskrit (Huet, 2005).

Since segmentation is directed by the inflected forms databases, presented as lemmatized segments,
each segmentation solution gives rise to a canonical tagging, where each segment is tagged with the
set of combinations of lexemes and morphological parameters used to generate it. The main problem
to be faced was the enormous number of potential solutions of even moderately long sentences.
In order to control this complexity, several devices were introduced. Firstly, the notion of binary
compound was generalized into a notion of multi-segment pre-compounds, replacing a potentially
exponential number of binary trees into a single linear pre-compound. Secondly, a dependency
graph analysis was performed, on a restricted subset of semantic roles (mostly agent and patient).
Each analysis gives rise to some penalties issued from graph-matching. Restricting the segmentation
solutions to the minimal penalty ones yields a shallow parser with more manageable output. These
developments have been well documented in publications (Huet, 2003, 2005, 2006, 2007, 2009),
and thus will not be detailed further here.

The first effective collaboration effort between INRIA and Department of Sanskrit Studies, University
of Hyderabad consisted in making the Saṁsādhanı̄ dependency parser available as a further filtering
on the Heritage engine segmenter, making it more precise, and allowing the visualization of the
dependency graph, labeled with semantic roles. Conversely, the Heritage segmenter was made
available in the Saṁsādhanı̄ system as a plug-in, allowing the processing of sandhied corpus.

One important concern is that of the correctness of the computational processes used in the morpho-
phonetics routines of the Heritage engine with respect to the Pān. inian grammatical tradition, seen
as a gold standard. To this effect, Pawan Goyal and Gérard Huet strived to give correspondences
between the computation routines, and sequences of rewrite rules (sūtras) from Pān. ini’s grammar.
The current state of this correspondence will appear as (Goyal and Huet, 2013).

The next concern was to start the development of a Sanskrit dependency treebank, a necessary
development to benefit from statistical methods and obtain more precise analysers. To this effect, a
cooperation between the Sanskrit Library effort and the Sanskrit Heritage platform was started, in
view of using the platform for semi-automatic annotation of corpus by Sanskrit specialists. This
more recent development is giving rise to a new interface to the segmenting tool, allowing the

1021



synthetic visualisation of all segmentation solutions. The annotator may select any segment, and
an automatic tool trims away from the forest of all solutions the ones that are inconsistent with the
choice. This allows an exponential saving, and fast focusing on the intended interpretation.

6 Dependency Parsing
The parse of positional languages such as English are well expressed by constituency structure while
languages like Sanskrit which are morphologically rich and to a large extent free word order are
better represented by a dependency tree where the nodes represent the prātipadikas or dhātus and
the edges between the nodes represent the relations between them expressed through the suffixes.
Unlike other languages such as English where special efforts were put in as described in PARC
(King et al., 2003), Stanford dependency manual (M. Marneffe and Manning, 2006) etc. for defining
the set of relations, we are fortunate to have a well defined set of relations for Sanskrit described
in traditional grammar books. All these relations have been compiled and classified under the
two broad headings viz. inter sentential and intra sentential relations (Ramakrishnamacharyulu,
2009). This work provided a starting point for developing guidelines for annotation of Sanskrit
texts at kāraka level and also for the development of an automatic parser for Sanskrit. These tags
were further examined from the granularity point of view and a subset of 31 tags was chosen for
annotation as well as for developing the parser (Kulkarni and Ramakrishnamacharyulu, 2013). The
criterion used for deciding the granularity is simple. If one can tell one relation from the other purely
on the basis of syntax or morphology, then the two relations were treated as distinct.

A generative grammar of any language provides rules of generation. For analysis, we require
a mechanism by which we can reverse these rules. The reversal in general may not always be
deterministic. This problem of non-determinism was well recognised by the mı̄māṁsakas (exege-
sists) who proposed three conditions viz. ākāṅks.ā (expectancy), yogyatā (mutual compatibility),
and sannidhi (proximity) as necessary for proper verbal cognition. The ākāṅks.ā is the syntactic
expectancy a word has in order to co-relate to the other. This expectancy may be either mutual or
one-way. Yogyatā helps in ruling out solutions which satisfy syntactic expectancy but which are not
meaning-compatible. Sannidhi is defined as an utterance of words without any gap. The words with
mutual expectancy should not be separated by other words. The condition of not allowing separation
is only a necessary condition in the process of śābdabodha ‘verbal cognition’. We have implemented
a parser that uses two constraints viz. ākāṅks.ā and sannidhi. Implementing yogyatā requires a
semantically rich lexicon. A study was undertaken to understand the structure of a Sanskrit thesaurus
“Amarakośa” and comparison of its synonyms with those of Sanskrit Wordnet (Nair and Kulkarni,
2010; Nair, 2011). The implementation of yogyatā is postponed till a reasonable size of semantically
rich lexicon is available.

The problem of parsing is modelled as finding a directed Tree from a Graph where the nodes
correspond to the words in a sentence and the edges correspond to the relations between them.
Ākāṅks.ā postulates the possible relations. Together with sannidhi it also imposes certain constraints.
These constraints are solved using a generic constraint solver Minion 11. The parses are ranked
associating costs to various relations. Detailed description of the parser is available in the earlier
publication (Kulkarni et al., 2010). After getting a parse, the sharing of arguments, clausal relations
and the anaphora resolution indices are marked.

Let us now describe the communication between Saṁsādhanı̄ and Heritage engine. Both platforms
provide a segmenter as well as a parser. The segmenter of Saṁsādhanı̄ (Kumar et al., 2010) works

11http://minion.sourceforge.net

1022



in two stages. In the first stage it generates all possible segments following the sandhi rules, and
in the second stage it validates the splits by a morphological analyser, throwing out almost 90%
of the splits it has generated in the first stage. This results in slowing down the process. Heritage
splitter on the other hand splits only if the split is morphologically valid, and thus is an efficient
implementation. The parser of Saṁsādhanı̄ is a full fledged one which handles various kinds of
relations among words, sharing of arguments, and also anaphora resolution to some extent. The
shallow parser of Heritage (Huet, 2007) uses mostly minimum information of transitivity of a verb
as a sub-categorisation frame and models it as a graph-matching algorithm. In order to benefit from
each other’s work, we worked towards plugging-in these modules in each other’s engine. Though
the two systems were developed using different programming environments, their communication
through UNIX pipes made their composition transparent. We just had to agree on the input and
output specifications for the modules. Here we faced the linguistic challenges. These linguistic
challenges owe to different systems being followed for the morphological analysis. Saṁsādhanı̄
follows the Pān. inian system while Heritage precompiles certain derivations into paradigm tables in
the Western manner. This leads to differences in stems of the words in certain cases. For example,
Heritage takes aham as the stem for the first person pronoun, while for Saṁsādhanı̄ the stem is
asmad. Similarly, in case of adjectives, Saṁsādhanı̄ treats the feminine, neuter and masculine stems
as different, whereas Heritage derives all the forms from the same stem. Another problem was
mapping the verbal roots, since there are several classifications of verbs (dhātupāt.has), and there are
various views concerning verbal forms in -yati (roots of class 10 vs denominative verbs vs causative
conjugations). The sole dhātupāt.ha available in an exploitable electronic form is the Mādhavı̄ya
dhātuvr.tti12. An effort is on to link various dhātuvr.ttis through the canonical index of verbal roots
and canonical meanings (Shailaja and Kulkarni, 2013). Meanwhile, the number of primary verbal
roots being a closed set, these roots were mapped manually based on their meanings. Then there is a
problem of homonymy index. Saṁsādhanı̄ uses Apte’s Practical Sanskrit-Hindi dictionary. So there
is a need to match the head entries of the Heritage Sanskrit-French dictionary with those of Apte’s
Sanskrit Hindi dictionary. In the current parser, since it does not attempt to disambiguate the words,
the homonymy index is just ignored. The effort described in section 4 above may be repeated with
Apte’s dictionary to map the homonymy indices.

7 Annotation Tools
Syntactic research on Sanskrit is hindered by the fact that there does not exist a morphologically
and syntactically tagged corpus of Sanskrit texts. Despite the large number of digitized texts now
available at various websites, and the significant number that have been partially or fully sandhi-
analysed, only relatively small portions of a small number of texts have been morphologically tagged.
In June, Ralph Bunker, Gérard Huet, and Peter Scharf collaborated to create an interface that allows
machine-assisted human-validated tagging. Sentences in digital texts in the Sanskrit Library (SL) are
fed to the SH parser. The results of possible solutions are summarized in a user-friendly single-page
interface that allows a Sanskrit scholar to select among presented words, stems, and morphological
tags. As elements are validated, competing solutions are deprecated in the solutions summary
and unique tags are automatically copied to the candidate solution. The interface also allows the
scholar to edit and resubmit the sentence for re-analysis by the SH-parser, to edit, add, or delete
words, stems, and tags, or to tag the sentence manually. Inflectional morphology tagsets designed
independently by Peter Scharf and by Gérard Huet in categories familiar to Europeans and by
Amba Kulkarni in Pān. inian terms were mutually mapped and rendered convertible. A convenient
dialogue box for tag construction ensures ease and validity of tagging. Results are saved in XML

12http://sanskrit1.ccv.brown.edu/Sanskrit/Vyakarana/Dhatupatha/index2.html

1023



files that can be reviewed with the same interface. The project contracted IIT Bombay to engage
two post-doctoral Sanskrit researchers to utilize the interface to tag digital texts.

We built the webpage for each sentence by parsing the HTML output of the SH parser and converting
it to the SL format. This procedure permitted immediate integration of the SH and SL resources
while work began to develop the next version of the SH parser with summarization.

The summary mode greatly improves the robustness of the SL/SH interface, specially for long
complicated sentences, where the large number of potential solutions could possibly choke the
server. Both the SH and SL servers are installed locally on machines running Ubuntu Linux or Mac
OSX. The SH parser uses a locally installed Apache server. The SL webpages are served using a
Tomcat server installed on the assistant’s machine. The SL sentence webpage performs most of
its work in Javascript in order to enhance responsiveness of the page. Installing the servers locally
allows the assistants to tag the sentences independent of Internet access.

In the meantime, Amba Kulkarni has designed XML output of her parser for integration with the
next version of the SL tagging interface, and Pawan Goyal and Gérard Huet have designed a new
interactive HTML interface that summarizes the union of all solutions returned by the SH parser.
This new interface presents a summary of possible sentence segmentations with each possible word
positioned at the point where it begins beneath the sentence. As users validate particular words,
inconsistent segmentations are discarded. When the number of parsing solutions is sufficiently
low, the user can switch to explicit listing of solutions, allowing the semi-automatic selection of
ambiguous morphological features.

8 Conclusions and Future Work
Decades of independent digitization of Sanskrit texts and lexical resources and development of
Sanskrit linguistic resources have culminated in the collaborative efforts to develop the automated
processing of Sanskrit text described in this paper. The emphasis of this collaboration over the past
several months has been to build an annotation toolkit to help linguists create a morphologically
tagged corpus. Due to the paucity of resources for the Sanskrit language, creating a large-scale
annotated corpus is a prerequisite to the use of statistical methods for developing high-performance
and robust Sanskrit text analysers. Since it is expensive to produce annotated corpora by hand, our
efforts are directed towards reducing the annotation labor by building tools to permit semi-automated
annotation. As discussed, the platform produced by the collaboration includes a state-of-the-art user
interface with interactions between digital libraries and various text analysers.

The annotated corpus will help us explore the use of statistical methods to enhance our existing
models for text analysis. Oliver Hellwig (Hellwig, 2009b,a) has already demonstrated promising
results by using various statistics from inflected form n-grams to build a POS tagger. The mor-
phologically tagged corpus under construction will allow the extended use of statistics on more
abstract linguistic features. Since the corpus used as the source for annotation consists of complete
texts that preserve the context of sentences within their discourse structures, the tagged corpus will
be potentially helpful to pursue research towards discourse-level dependency parsing, including
anaphora resolution and ellipsis determination.

1024



References
Bharati, A., Chaitanya, V., and Sangal, R. (1995). Natural Language Processing. A Paninian
Perspective. Prentice-Hall of India, New Delhi.

Cardona, G. (1988). Pān. ini: his work and its traditions. Motilal Barnasidass.

Eilenberg, S. (1974). Automata, Languages, and Machines, volume A. Academic Press.

Gillon, B. S. (1995). Autonomy of word formation: evidence from Classical Sanskrit. Indian
Linguistics, 56 (1-4), pages 15–52.

Gillon, B. S. (2009). Tagging classical Sanskrit compounds. In Kulkarni, A. and Huet, G., editors,
Sanskrit Computational Linguistics 3, pages 98–105. Springer-Verlag LNAI 5406.

Goyal, P. and Huet, G. (2013). Completeness analysis of a Sanskrit reader. In Proceedings, 5th
International Symposium on Sanskrit Computational Linguistics. D. K. Printworld(P) Ltd.

Hellwig, O. (2009a). Extracting dependency trees from Sanskrit texts. In Kulkarni, A. and Huet,
G., editors, Sanskrit Computational Linguistics 3, pages 106–115. Springer-Verlag LNAI 5406.

Hellwig, O. (2009b). SanskritTagger, a stochastic lexical and POS tagger for Sanskrit. In Huet, G.,
Kulkarni, A., and Scharf, P., editors, Sanskrit Computational Linguistics 1 & 2, pages 266–277.
Springer-Verlag LNAI 5402.

Huet, G. (2001). From an informal textual lexicon to a well-structured lexical database: An experi-
ment in data reverse engineering. In Working Conference on Reverse Engineering (WCRE’2001),
pages 127–135. IEEE.

Huet, G. (2002). The Zen computational linguistics toolkit: Lexicon structures and morphol-
ogy computations using a modular functional programming language. In Tutorial, Language
Engineering Conference LEC’2002.

Huet, G. (2003). Towards computational processing of Sanskrit. In International Conference on
Natural Language Processing (ICON).

Huet, G. (2004). Design of a lexical database for Sanskrit. In Workshop on Enhancing and Using
Electronic Dictionaries, COLING 2004. International Conference on Computational Linguistics.

Huet, G. (2005). A functional toolkit for morphological and phonological processing, application
to a Sanskrit tagger. J. Functional Programming, 15,4:573–614.

Huet, G. (2006). Themes and Tasks in Old and Middle Indo-Aryan Linguistics, Eds. Bertil Tikkanen
and Heinrich Hettrich, chapter Lexicon-directed Segmentation and Tagging of Sanskrit, pages
307–325. Motilal Banarsidass, Delhi.

Huet, G. (2007). Shallow syntax analysis in Sanskrit guided by semantic nets constraints. In
Proceedings of the 2006 International Workshop on Research Issues in Digital Libraries, New
York, NY, USA. ACM.

Huet, G. (2009). Formal structure of Sanskrit text: Requirements analysis for a mechanical Sanskrit
processor. In Huet, G., Kulkarni, A., and Scharf, P., editors, Sanskrit Computational Linguistics 1
& 2. Springer-Verlag LNAI 5402.

1025



Huet, G., Kulkarni, A., and Scharf, P., editors (2009). Sanskrit Computational Linguistics 1 & 2.
Springer-Verlag LNAI 5402.

Huet, G. and Razet, B. (2006). The reactive engine for modular transducers. In Futatsugi, K.,
Jouannaud, J.-P., and Meseguer, J., editors, Algebra, Meaning and Computation, Essays Dedicated
to Joseph A. Goguen on the Occasion of His 65th Birthday, pages 355–374. Springer-Verlag LNCS
vol. 4060.

Huet, G. and Razet, B. (2008). Computing with relational machines. ICON’2008 tutorial,
yquem.inria.fr/~huet/PUBLIC/Pune_tutorial.pdf.

Joshi, S., Roodbergen, J., and Akādemı̄, S. (2004). The As. t.ādhyāyı̄ of Pān. ini with Translation and
Explanatory Notes. Number v. 11 in The As.t.ādhyāyı̄ of Pān. ini. Sahitya Akademi.

Karp, D., Schabes, Y., Zaidel, M., and Egedi, D. (1992). A freely available wide coverage
morphological analyser for english. In Proceedings of Coling-92, Nantes, August 23–28, 1992,
pages 950–955.

King, T. H., Crouch, R., Riezler, S., Dalrymple, M., and Kaplan, R. (2003). The PARC 700
dependency bank.

Kiparsky, P. (2009). On the architecture of Pān. ini’s grammar. In Huet, G., Kulkarni, A., and Scharf,
P., editors, Sanskrit Computational Linguistics 1 & 2. Springer-Verlag LNAI 5402.

Kulkarni, A. and Huet, G., editors (2009). Sanskrit Computational Linguistics 3. Springer-Verlag
LNAI 5406.

Kulkarni, A. and Kumar, A. (2011). Statistical constituency parser for Sanskrit compounds. In
Proceedings of ICON 2011. Macmillan Advanced Research Series, Macmillan Publishers India
Ltd.

Kulkarni, A. and Kumar, A. (2013). Clues from As.t.ādhyāyı̄ for compound type identification.
In Kulkarni, M., editor, Proceedings of the International Sanskrit Computational Linguistics
Symposium. D. K. Printworld(P) Ltd.

Kulkarni, A., Pokar, S., and Shukl, D. (2010). Designing a constraint based parser for Sanskrit.
In Jha, G. N., editor, Proceedings of the 4th International Sanskrit Computational Linguistics
Symposium. Springer-Verlag LNAI 6465.

Kulkarni, A. and Ramakrishnamacharyulu, K. V. (2013). Parsing Sanskrit texts: Some relation
specific issues. In Kulkarni, M., editor, Proceedings of the 5th International Sanskrit Computational
Linguistics Symposium. D. K. Printworld(P) Ltd.

Kulkarni, A. and Shukl, D. (2009). Sanskrit morphological analyser: Some issues. Indian
Linguistics, 70(1-4):169–177.

Kumar, A. (2012). An automatic Sanskrit Compound Processing. PhD thesis, University of
Hyderabad, Hyderabad.

Kumar, A., Mittal, V., and Kulkarni, A. (2010). Sanskrit compound processor. In Jha, G. N., editor,
Proceedings of the 4th International Sanskrit Computational Linguistics Symposium. Springer-
Verlag LNAI 6465.

1026



Kumar, A., SheebaSudheer, V., and Kulkarni, A. (2009). Sanskrit compound paraphrase generator.
In Proceedings of ICON 2009.

M. Marneffe, B. M. and Manning, C. D. (2006). Generating typed dependency parses from phrase
structure parses. In The fifth international conference on Language Resources and Evaluation,
LREC 2006, Italy.

Mittal, V. (2010). Automatic sanskrit segmentizer using finite state transducers. In Proceedings
of the ACL 2010 Student Research Workshop, pages 85–90, Uppsala, Sweden. Association for
Computational Linguistics.

Nair, S. (2011). The Knowledge Structure in Amarakośa. PhD thesis, University of Hyderabad,
Hyderabad.

Nair, S. and Kulkarni, A. (2010). The knowledge structure in Amarakośa. In Jha, G. N., editor,
Proceedings of the 4th International Sanskrit Computational Linguistics Symposium. Springer-
Verlag LNAI 6465.

Ramakrishnamacharyulu, K. V. (2009). Annotating the Sanskrit texts based on the śābdabodha
systems. In Proceedings of 3rd International Sanskrit Computational Symposium. Springer-Verlag
LNAI-5406.

Rāmapriya, B. V. and Saumyanārāyan. a, V. (2001). Saṅgan. akayantre nyāyaśāstrı̄yaśābdabodhah. .
Journal of Foundation Research, VI(1–2):61–68.

Razet, B. (2009). Machines d’Eilenberg Effectives. PhD thesis, Université Denis Diderot (Paris 7).

Scharf, P. (2009). Levels in Pān. ini’s As. t.ādyāyı̄. In Kulkarni, A. and Huet, G., editors, Proceedings,
Third International Symposium on Sanskrit Computational Linguistics, volume LNAI 5406, pages
66–77. Springer.

Scharf, P. and Hyman, M. (2009a). Enhancing access to primary cultural heritage materials of india.
In Govindaraju, V. and Setlur, S., editors, Guide to OCR for Indic Scripts: Document Recognition
and Retrieval, pages 237–247, London; Dordrecht; Heidelberg; New York. Springer-Verlag.

Scharf, P. and Hyman, M. (2009b). Linguistic Issues in Encoding Sanskrit. Motilal Banarsidass,
Delhi.

Shailaja, N. and Kulkarni, A. (2013). Comparative study of pān. inı̄ya dhātuvr.ttis. In Kulkarni, M.,
editor, Proceedings of the 5th International Sanskrit Computational Linguistics Symposium. D. K.
Printworld.

Sharma, A., Deshpande, K., and Padhye, D. (2008). Kāśikā: A Commentary on Pān. ini’s Grammar.
Sanskrit Academy series. Sanskrit Academy, Osmania Universtiy.

Shukla, P., Shukl, D., and Kulkarni, A. (2010). Vibhakti divergence between Sanskrit and Hindi.
In Jha, G. N., editor, Proceedings of the 4th International Sanskrit Computational Linguistics
Symposium. Springer-Verlag LNAI 6465.

Whitney, W. D. (1997). Roots, Verb-forms and Primary Derivatives of the Sanskrit Language.
Motilal Banarsidass, Delhi. (1st edition 1885).

1027




