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ABSTRACT
Many of the state-of-the-art methods for constructing a polarity lexicon rely on the propagation
of polarity on the lexical network. In one of those methods, where the Ising spin model is em-
ployed as a probabilistic model, it is reported that the system exhibits the phase transition in
the vicinity of the optimal temperature parameter. We provide an analysis of this phenomenon
from the viewpoint of statistical mechanics and clarify the underlying mechanism. On the basis
of this analysis, we propose a scheme for improving the extraction performance, i.e., by remov-
ing the largest eigenvalue component from the weight matrix. Experimental results show that
the scheme significantly improves the accuracy of the extraction of the semantic orientations
at negligible additional computational cost, outperforming the state-of-the-art algorithms. We
also explore the origin of the high classification performance by analyzing eigenvalues of the
weight matrix and a linearized model.
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1 Introduction

A huge amount of semantic information is constantly being produced and accumulated on the
Internet by the activities of individuals through, for example, their blog, Twitter, and Facebook
postings. The information tends to focus on personal interests but can include generally useful
information such as opinions about fashion and comments about new products. This means
that extracting and structuralizing such information can be beneficial for both producers and
consumers, which led us to focus on the development of methods for handling semantic infor-
mation.

In general, each word constituting sentences possesses its specific orientation. For ex-
ample, we usually receive positive impressions for words such as “good”, “excellent” and
“enjoyable”, while “bad”, “poor” and “boring” sound negative. Such word-specific orien-
tation of impression is termed polarity (or semantic orientation). A polarity lexicon is
a list of words and phrases that are labeled by their polarity, and is an important re-
source in extracting semantic information from natural language data. Accordingly, the
construction of such lists under various conditions has been a major focus in sentiment
analysis research (Hatzivassiloglou and McKeown, 1997; Choi and Cardie, 2009). Many
construction methods have been developed so far (Hatzivassiloglou and McKeown, 1997;
Takamura et al., 2005; Turney and Littman, 2003; Velikovich et al., 2010; Kamps et al., 2004;
Rao and Ravichandran, 2009).

Among those methods for polarity lexicon construction, the method proposed by
Takamura et al. (2005) is distinctive in terms of emphasizing the utility of probabilities. In
their method, the construction of a polarity lexicon is mapped to the Ising spin model of mag-
netism at a finite temperature. This mapping, in conjunction with the formalism of equilibrium
statistical mechanics, yields a probabilistic model for assigning a polarity to each word. The
optimal assignment of the polarities is determined by approximately evaluating the averages
of the spin variables. Its experimental application to a lexical network of 88,015 words demon-
strated its utility. Besides this, we would like to draw attention to the following observations:

• The classification performance is optimized at a finite temperature. This is somewhat
counterintuitive, since the cost (energy) function is not minimized unless the tempera-
ture vanishes. At a finite temperature, the probability mass is split and given to all states,
instead of a single one that minimizes the cost function. As a result, most of the spin
averages are hardly biased. This suggests that performance can be optimized by using
relatively small signals which are offered by the hardly biased spin averages.

• The experimental data indicates that the spin system exhibits a ferromagnetic phase
transition in the vicinity of the optimal temperature.

The purpose of this paper is to propose a simple but effective scheme to improve the perfor-
mance of the original spin-model-based method by clarifying the mechanism underlying the
above observations. We show that the rate of correct word classification is significantly in-
creased simply by removing the largest eigenvalue component from the weight matrix of the
lexical network, which is directly related to avoidance of the ferromagnetic phase transition.
The computational cost for the removal grows only linearly with network size, which means
that the improved method is highly practical and useful. We also show that this scheme of re-
moving the largest eigenvalue component also improves the linearized model, which is almost
equivalent to the label propagation (Zhu and Ghahramani, 2002).
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Although we focus on a specific problem of constructing the polarity lexicon in this paper,
the developed methodology can be employed for general purposes of assessing influences of a
few representative nodes in a network via local communications. In fact, network-based semi-
supervised models are used in a number of tasks in natural language processing, such as word
sense disambiguation (Yu et al., 2011), machine translation (Alexandrescu and Kirchhoff,
2009), query classification (Hu et al., 2009; Li et al., 2008).

2 Related Work

There has been much related work on building polarity lexicons.

One of the earliest studies was done by Hatzivassiloglou and McKeown (1997), who focused
on conjoined adjectives in the Wall Street Journal corpus (Marcus et al., 1993). They deduced
the polarity of adjectives by using pairs of adjectives appearing with a conjunction in the
corpus. For example, pairs of adjectives joined with an “and” tend to have the same semantic
orientation (e.g., “simple and well-received”) while those joined with a “but” tend to have
the opposite semantic orientation (e.g., “simplistic but well-received”). Because of the limited
applicability of this method, only adjectives can be entried in a polarity lexicon.

Taking a corpus-based approach, Turney and Littman (2003) built a polarity lexicon by using
two algorithms. They used a query such as “word NEAR good” and “word NEAR bad,” where
“good” and “bad” are seed words (their polarities are known), and obtained the number of
hits returned by a search engine. The association strength of the target word with positive
(negative) seed words was calculated. In their work, 3596 words from the General Inquirer
lexicon (Stone et al., 1966) were used for empirical evaluation. General Inquirer is a list of
words with polarity labels such as “Positiv” and “Negativ”, which we also used for our evalua-
tion.

Kamps et al. (2004) proposed a thesaurus-based method for adjectives that uses a network
constructed by connecting each pair of synonymous words provided by WordNet (Fellbaum,
1998) in which the shortest paths to two seed words, “good” and “bad,” are used to obtain the
polarity of a word. This method is attractive in terms of computational cost, but the shortest
paths are sensitive to local disturbances in the network topology.

Similarly, Velikovich et al. (2010) developed a method that aggregates a huge amount of un-
labeled corpus data from the Web and constructs a lexical network. They used a graph propa-
gation algorithm, in which the weighted shortest paths from seed words are used.

Kaji and Kitsuregawa (2007) proposed a method for constructing a Japanese polarity lexicon
from Web data. They collected positive (negative) sentences from the Web using structural
clues such as HTML tags and then extracted polar phrases from them.

The method proposed by Rao and Ravichandran (2009) increases robustness against network
disturbances. It treats polarity detection as a semi-supervised label propagation problem in a
graph in which higher order correlations of network topology other than the shortest paths
are involved. They showed that the label propagation algorithm (Zhu and Ghahramani, 2002)
leads to a significant improvement in the accuracy of polarity detection for WordNet-based net-
works compared to various known heuristics. The label propagation is used for word polarity
extraction also in the recent literature (Speriosu et al., 2011; Brody and Diakopoulos, 2011).

The linearized model in Section 5.3 can also be interpreted as a graph kernel, which is used in
natural language processing (e.g., Komachi et al. (2008)).
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3 Ising spin model

3.1 Overview of Ising spin model
For later analysis, we briefly summarize the basic notation and techniques of Ising spin systems.
In general, the Ising spin model is composed of N binary variables termed (Ising) spins: S =�
S1,S2, . . . ,SN

�
, where Si ∈ {+1,−1} (i = 1,2, . . . , N), for which energy function

E(S,β) =−β
∑
i> j

Ji jSiS j −
N∑

i=1

hiSi (1)

is defined. Here, Ji j represents the efficacy of interactions between two spins, Si and S j , and
hi stands for the external field added to Si , and β is called the inverse temperature. The
most fundamental assumption of equilibrium statistical mechanics is that, when a system is
characterized by energy function E(S), the probability that microscopic state S is generated in
equilibrium at temperature T (= β−1 > 0) is provided by the Boltzmann-Gibbs distribution:

P(S) =
e−E(S,β)

Z
, (2)

where Z is the normalization factor. This equation assigns a larger probability to microscopic
state S if it has a lower value of energy (Equation (1)). This tendency is more/less significant
when β is set to a higher/lower value. Given this assumption, the main task of statistical
mechanics is to evaluate the averages of various quantities using Equation (2), which is unfor-
tunately computationally difficult.

A family of mean field approximations offers a practical solution for resolving this dif-
ficulty (Opper and Saad, 2001). The approximations are calculated on the basis of the
Kullback-Leibler divergence between Equation (2) and test distribution Q(S): D(Q||P) =∑

SQ(S)log(Q(S)/P(S))=log(Z)+F[Q,β], where

F[Q,β] =
∑

S

Q(S)E(S,β) +
∑

S

Q(S) logQ(S) (3)

is termed the variational free energy. D(Q||P) is generally non-negative and vanishes if and
only if Q(·) = P(·), which means that minimizing F[Q,β] with respect to test distribution Q(·)
leads to the correct evaluation of the true distribution, P(·).
A naïve approximation is derived by limiting the test distribution to one in factorizable form:

Q(S) =
∏

i

1+miSi

2
. (4)

Here, mi denotes the mean of spin Si with respect to the test distribution, which parameterizes
the marginal distribution as Qi(Si) =

∑
S\Si

Q(S) = (1+miSi)/2. Here, A\x generally denotes
exclusion of x from set A. Plugging Equation (4) into Equation (3) and minimizing F[Q,β]
with respect to mi (i = 1,2, . . . , N) yield the mean field equation:

mi = tanh


β

∑
j

Ji jm j + hi


 . (5)

In many cases, Equation (5) can be solved by iterative substitution. Its computational cost is
at most O(N2) per update, which is much lower than that required for the exact evaluation of
the spin average, O(2N ).
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3.2 Analytical analysis

Although obtaining the exact solution is technically difficult, one can still handle Equation (5)
analytically to a certain extent if hi = 0 (i = 1,2, . . . , N) is satisfied. For this, we set hi = 0
(i = 1,2, . . . , N) and use a Taylor series, tanh(x) = x − x3/3+ . . ., on the right hand side of
Equation (5), which yields

mi=
∑

j

βJi jm j−
1

3


∑

j

βJi jm j




3

+. . . . (6)

This guarantees that Equation (5) possesses the trivial solution1 mi = 0 (i = 1,2, . . . , N). When
T (β) is sufficiently high (low), this solution minimizes Equation (3) under the constraint of
Equation (4) since the second term (the negative entropy part) of Equation (3) is dominant
and provides an appropriate approximation. Let us decompose (symmetric) matrix J = (Ji j)
as J =

∑N
µ=1 λµxµ(xµ)tr, where λ1 ≥ λ2 . . . ≥ λN , and xµ (µ = 1,2, . . . , N) are eigenvalues

of J and the corresponding unit eigenvectors, respectively, and tr denotes the matrix trans-
pose. As explained in Appendix A, since the eigenvalues of the Hessian of the mean field free
energy (Equation (16)) are given as β−1 − λµ (µ = 1,2, · · · , N), the trivial solution becomes
unstable in the direction of x 1 when

1−βλ1 = 0, (7)

breaking the stability condition that all eigenvalues of the Hessian are positive. When no
solutions other than the trivial one coexist, which is experimentally confirmed in our system
shown later, this signals the onset of a phase transition to a non-trivial solution. In particular,
when Ji j ≥ 0 holds for all spin pairs, which is the case for models of ferromagnetism, every
element of the critical eigenvector x 1 has an identical sign. As a consequence, the non-trivial
solution is characterized by a non-vanishing value of magnetization:

m =
1

N

∑
i

mi , (8)

whose absolute value is kept non-negligible as N becomes large if and only if mi (i =
1,2, . . . , N) mostly have an identical sign being dominated by the components of x 1. This
is considered to correspond to the emergence of spontaneous magnetization in ferromagnetic
materials, which is particularly referred to as the ferromagnetic phase transition.

More precisely, the analysis presented above means that, when the trivial solution is perturbed
by weak fields h = (hi) for β < λ−1

1 , the spin averages depend linearly on h (to the first order):

m ≃ (I − β J)−1h, (9)

where I is the identity matrix. This can be derived from Equation (6) by ignoring the O(β3)
terms, adding h, and solving m ≃ β Jm + h. An expression of eigenvalue decomposition,
(I−β J)−1 =

∑N
µ=1(1−βλµ)−1xµ(xµ)tr, suggests that the phase transition signaled by Equation

(7) is brought about by divergence of the sensitivity of the spin averages with respect to the
addition of infinitesimal external fields that are proportional to x 1.2

1Trivial solution is called paramagnetic solution in statistical mechanics.
2xµ(xµ)tr works as an operator that projects a vector h to the direction of xµ when multiplied as xµ(xµ)trh.
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4 Original Method

The original method (Takamura et al., 2005) is based on a lexical network constructed from
three types of resources: a dictionary, a corpus, and a thesaurus. Although it is not easy to
directly infer word polarities from those resources, it is relatively easy to obtain the tendency
that two words have the same polarity as described in the next paragraph. One of the simplest
probabilistic models that connect such tendency and the polarity assignment is the Ising spin
model.

First, two words taken from the dictionary are linked if one of them appears in the gloss of
the other. Each link is classified as either same orientation SL or different orientation DL. Next,
synonyms, antonyms, and hypernyms taken from the thesaurus are connected by the link.
Only antonym links are categorized as DL. Two adjectives are connected if they appear in a
conjunctive form in the corpus (Hatzivassiloglou and McKeown, 1997).

After the links are provided, the weight of each link is set:

Ji j =





1p
d(i)d( j)

(li j ∈ SL)

− 1p
d(i)d( j)

(li j ∈ DL),

0 otherwise

(10)

in order to introduce interactions into the spin model. Here, li j denotes the link between words
i and j, and d(i) denotes the degree of word i, i.e., the number of words linked directly to
word i.

We assume that a small set of seed words, for which the correct polarities are known, is
available. This assumption can be implemented into the spin model by imposing sufficiently
large external fields on the spins of the initial word set:

E(S,β) =−β
∑
i> j

Ji jSiS j −α
∑
i∈L

aiSi , (11)

where L denotes the initial word set (set of seed words), ai denotes polarity (±1) of a seed
word i, and α denotes the strength of the external field of the seed words.

Substituting Equation (11) into Equation (2) yields the joint probability that all words simulta-
neously have semantic orientations labeled by S = (Si) and P(S). P(S) can be used to evaluate
marginal distribution P(Si) =

∑
S\Si

P(S), which stands for the probability that word i has a
polarity of Si .

Given the marginal probabilities, the Bayesian framework guarantees that assigning a polarity
σi = argmaxSi

{P(Si)} to word i maximizes the rate of correct classification (Iba, 1999). In
practice, this can be approximated as σi = sign(mi) = mi/|mi | by solving the mean field
equation (Equation (5)).

The performance of the method was evaluated for a lexical network constructed from
WordNet (Fellbaum, 1998), the Wall Street Journal and Brown corpora of the Penn Tree-
bank (Marcus et al., 1993), partially using TreeTagger (Schmid, 1994). The network was com-
posed of 88,015 nodes (words) that were sparsely connected as they were characterized by
a power-law-type degree distribution with an average of 18.94 (Figure 1). Only 5.63% of
the weights were negative, which suggests that the spin system had a tendency to exhibit the
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Figure 1: Degree distribution of constructed lexical network (log-log plot). Average degree
was 18.94; maximum was 5144 (circle on the horizontal axis).
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Figure 2: Temperature dependence of classification accuracy (circles) and magnetization
(squares) for original method for 14 seed words.

ferromagnetic phase transition described above. The performance was assessed by using the
General Inquirer labeled word list (Stone et al., 1966) as the gold standard. Of the 88,015
words in the network, 3596 were included in this list. Of these words, 1616 were positive, and
1980 were negative.

Testing was performed by varying β from 0.1 to 2.0 by 0.1 and setting α to 1000. The num-
ber of fixed seed words ranged from 2 to 14: {good, bad}, {good, superior, bad, inferior},
and {good, nice, excellent, positive, fortunate, correct, superior, bad, nasty, poor, negative,
unfortunate, wrong, inferior}.

Figure 2 shows how the classification accuracy (rate of classifying words correctly) and mag-
netization depended on temperature for the case of 14 seed words. Classification accuracy
was maximized at β ≃ 1.0, where non-zero magnetization appeared, signaling the ferromag-
netic phase transition, but deteriorated drastically as soon as β was raised to β > 1.0. Similar
behavior was observed for four and two seed words.
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Figure 3: Classification accuracy and magnetization with improved method for 14 seed words.
Circles ◦ denote classification accuracy. Squares � and triangles △ denote magnetization
evaluated using all words and only the 3596 labeled words, respectively.

5 Improved Method

5.1 Attention to Largest Eigenvalue

The setting and results described above naturally led to the following considerations.

1. Because external fields are added to only a small number of seed words, a spin system
operating at high temperature (small β) can be handled as a perturbed state from the
trivial solution.

2. When the temperature is lowered from a sufficiently high value, classification accuracy
monotonically improves until non-vanishing magnetization appears. This suggests that
the ferromagnetic phase transition is the main cause of the drastic performance deterio-
ration.

The second consideration suggests that the classification accuracy can be improved by pre-
venting the ferromagnetic phase transition. Equations (7) and (9), in conjunction with the
first consideration, imply that the phase transition is caused by divergence of the sensitivity
matrix, (I − β J)−1 =

∑N
µ=1(1− βλµ)−1xµ(xµ)tr, in the direction of x 1. This means that a

possible way to prevent this transition is to simply expurgate the λ1 component from weight
matrix J = (Ji j):

J ′ = J − λ1x 1(x 1)
tr. (12)

Figure 3 shows the profiles of the classification accuracy and magnetization versus β for the
modified weight (Equation (12)) for 14 seed words. Similar profiles were obtained for the
other two cases. Note that solving the mean field equation for J ′ does not increase the compu-
tational cost significantly; x 1 can be obtained using the power method, for which the compu-
tational cost is similar to that of solving the original mean field equation. The λ1x 1(x 1)tr term
requires only O(N) computations per update in the iterative substitution scheme.
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Seeds SP LP Original Improved Improved (II)
2 70.0 74.8(0.6) 75.2(0.8) 84.5(1.2) 84.4(1.2)
4 70.0 74.2(0.7) 74.4(0.6) 83.5(1.2) 83.7(1.1)
14 74.2 81.6(0.9) 81.9(1.0) 86.2(1.2) 86.2(1.2)

Table 1: Optimal classification accuracy (%) for 2, 4, 14 seed words, and the cross-validation
setting. “SP” corresponds to the method based on shortest path. “LP” corresponds to la-
bel propagation. “Original” and “Improved” correspond to original method (Takamura et al.,
2005) and one based on Equation (12). “Improved (II)” is same as “Improved” except that
second largest eigenvalue component, λ2, is also removed from Equation (12). Values in
parentheses are β value at which accuracy was optimized.

As we speculated, the ferromagnetic phase transition was prevented, as shown by the mag-
netization for “all words” (squares) in Figure 3. As a consequence, classification accuracy
was improved beyond β ≃ 1.0. Classification performance was evaluated on General Inquirer
as in the previous work (e.g., (Turney and Littman, 2003)). Table 1 shows the optimal clas-
sification accuracy achieved for the original method (Original) and two improved methods,
together with two existing state-of-the-art algorithms (SP and LP). SP is the method based on
the shortest-path from seed words on the network (Velikovich et al., 2010). LP is the label
propagation (Rao and Ravichandran, 2009). Note that, since we are interested in the impact
made by the choice of algorithms, both of SP and LP were test on the lexical network that
we used for our method, except that the edges with negative weights are removed because SP
and LP cannot work properly with negative weights.3 Also, although the label propagation by
Rao and Ravichandran (2009) did not have the parameter β , we introduced it to LP for the
purpose of fair comparison. Its value is optimized on the test set.

The performance of Original was improved in all cases by using the proposed scheme (Im-
proved). All the differences were statistically significant in the sign test with significance
level of 1%. The result also shows that the improved methods are significantly better than
the shortest-path based method and the label propagation.4 Note that the increase in ac-
curacy compared with the values previously reported in some other papers (e.g., 82.8%
(Turney and Littman, 2003) and 82.2% (Esuli and Sebastiani, 2005)) is substantial.

The results with a few seed words (e.g., 2, 4, and 14) are more important since semi-supervised
methods should be applied to resource-scarce languages or new domains where creating a
large amount of seed words is not very practical. However, in order to examine the behavior
of our method when we have many seed words, we employed 10-fold cross validation (i.e.,
approximately 3,200 seed words). The accuracy of 91.5% (Original) was slightly improved to
91.8 (Improved) and 91.9 (Improved (II)).

5.2 Removal of more eigenvalue components

Figure 3 also shows that the performance still deteriorated at a higher β value (1.3). To clarify
the reason for this, we also plotted “selected magnetization” (triangles), which was evaluated

3The label propagation is not guaranteed to converge in the presence of negative weights.
4 Yu et al. (2011) used the shortest-path based method on an extended lexical network, and compared it with the

label propagation on a non-extended lexical network, resulting in a better performance of the former method. The
combination of their extended network with our algorithm would be a promising piece of future work.
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using only the 3596 labeled words for checking a possibility that a certain phase transition
relevant to only the labeled words brings about the deterioration. The plot indicates that the
selected magnetization bifurcates to a finite value for β ≃ 1.3. This indicates that another
phase transition occurred due to the second largest eigenvalue component, λ2.

However, this indication is only partially correct. Figure 4 plots the profiles of the first and sec-
ond eigenvectors. While the components of the first eigenvector (top) are evenly spread across
almost all sites, those of the second one (bottom) are significantly localized at several sites.
This “localization” feature is actually quite common for the eigenvectors of many other rela-
tively large eigenvalues. Figure 5 plots the 30 largest eigenvalues and the inverse participation
ratio (IPR), which is defined as

IPR =

∑
i v4

i

(
∑

i v2
i )

2
, (13)

for a real vector, v = (vi), of their eigenvectors (Biroli and Monasson, 1999). This quantity IPR
takes a value between 0 and 1. In particular, as the dimensionality tends to infinity, it remains
positive for localized vectors but vanishes for spread ones, so this quantity is widely used as a
standard measure for characterizing the localization property of high dimensional vectors.

The plots in Figure 5 show that, although λ1 is isolated, many other eigenvalues are distributed
in a rather degenerated manner and are accompanied by localized eigenvectors. The localized
eigenvectors have non-negligible values only for a few elements. Therefore, removal of one
of such components does not provide significant effects for most spins. This suggests that the
bifurcation of the selected magnetization is caused by not only the λ2 component but also
by many other components that are simultaneously excited at β ≃ 1.3. Accordingly, little
improvement in the classification accuracy can be gained by removing the components of
the second largest eigenvalue component from the weight matrix, as shown in the rightmost
column of Table 1. The performance was not improved significantly by further removing the
third and the fourth eigenvalue components.

Note that most of the edges in the current network have positive weights, i.e., very biased
to the same sign. This is the reason why the first eigenvector is not localized and the first
eigenvalue is much larger than the others. Also, the localization of eigenvectors with large
eigenvalues, which is observed except for the first eigenvalue in the current network, of-
ten happens in complex network. The theoretical background can be found in the paper by
Kabashima and Takahashi (2012). Therefore, the characteristics of the network is not com-
pletely accidental.

5.3 What is Essential?

The analysis presented so far indicates that high classification performance is achieved for
a relatively small β , at which no magnetization appears unless external fields are imposed.
Figure 6 plots the average of spins obtained using the improved method for β = 1.2 and
1.3 for 14 seed words. Most of the absolute values of the spin averages were rather small
when a high classification accuracy was gained (β = 1.2, top) and became much larger after
the performance deteriorated due to a phase transition (β = 1.3, bottom). When the spin
averages have small absolute values, one can handle the system as a state produced by slightly
perturbing the trivial solution by external fields imposed on only the seed word spins. This
suggests a possibility that the linear response for the external fields plays a key role for the
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Figure 4: Eigenvectors of λ1 (top) and λ2 (bottom) of weight matrix J .
Seeds 14 4 2

Accuracy 81.6(0.9) 74.2(0.7) 74.8(0.7)

Table 2: Optimal classification accuracy (%) of linearized model. Values in parentheses are β
at which accuracy was optimized.

high classification accuracy. For checking this possibility, we examined the performance of a
simplified model defined by the linear approximation of Equation (9):

m = (I − β J ′)−1h0, (14)

where h0 = (h0
i ) is provided as h0

i = αai if i is included in the set of seed words and vanishes
otherwise. A power series expression, (I − β J ′)−1 =

∑∞
n=0(β J ′)n, indicates that this can be

practically assessed by iterating the recursive equations:

m t+1 =m t + u t and u t+1 = (β J ′)u t , (15)

a sufficient number of times by setting the initial conditions as m0 = 0 and u0 = h0. This can
be carried out with a computational cost similar to that of the naive mean field method.

Table 2 shows the optimal classification accuracy obtained with the linearized model. These
results, in conjunction with those in Table 1, indicate that the performance of the linearized
model was worse than that of the improved method, but similar to those of the original
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Figure 5: 30 largest eigenvalues of J (top) and inverse participation ratio (IPR) for corre-
sponding eigenvectors (bottom). Larger IPR suggests that the corresponding eigenvector is
more localized.

one (Takamura et al., 2005). This suggests that much of the information needed to correctly
classify words is included in the linear response of the spin averages to the polarities of the
seed words at high temperature.

As shown in Figure 5, the eigenvectors of large eigenvalues, which are emphasized at low
temperature, are mostly localized and could contain relevant classification information only
for a few words that corresponds to non-negligible values of elements. Therefore, they are
individually insufficient for correctly classifying most other words corresponding to negligi-
ble elements. This means that, assigning polarities at high temperature so that information
for all spin alignments is summed up with moderate probabilities is essential in the current
spin-model-based method. This is achieved by assessing the linear response of the trivial so-
lution to external fields representing the polarities of the seed words in the simplified scheme
of Equation (14), and employment of the mean field equation (Equation (5)) offers a further
gain under favor of the nonlinearity effect of tanh(·). This is in contrast to other approaches
in which a single state that (approximately) optimizes a certain cost function is used for deter-
mining polarities (Blum and Chawla, 2001; Blum et al., 2004; Choi and Cardie, 2009).

A question that arises would be whether or not the removal of the largest eigenvalue compo-
nent improves the linearized model. To answer this question, we conducted more experiments
with the linearized model with the largest eigenvalue component being removed. The result
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Figure 6: Spin averages mi for β = 1.2 and 1.3 for 14 seed words. The mean of the absolute
value of |mi | increased more than ten times, from 0.0028 (β = 1.2, top) to 0.0310 (β = 1.3,
bottom).

is shown in Table 3. The comparison with the result in Table 2 suggests that the removal of
the largest eigenvector also improves the linearized model. We note that the linearized model
is almost equivalent to the label propagation (see the Taylor series in (Equation (6)); the dif-
ference is simply the presence of the normalization step. In fact, the result of the linearized
model (Table 2) is almost the same as that of the label propagation (Table 1). The experimen-
tal result in Table 3 suggests that an idea similar to the removal of eigen components might
also improve the label propagation, although we need to overcome the difficulty that the label
propagation is not guaranteed to work properly if some edge weights are negative.

Conclusion

We have provided an analytical analysis of the behavior of a previously proposed spin-model-
based method for constructing a polarity lexicon from the viewpoint of statistical mechanics.

Seeds 14 4 2
Accuracy 85.3(1.1) 83.8(1.1) 83.8(1.1)

Table 3: Optimal classification accuracy (%) of linearized model with the largest eigenvector
being removed. Values in parentheses are β at which accuracy was optimized.
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On the basis of this analysis, we proposed a scheme for improving the performance of polarity
lexicon extraction, i.e., removing the largest eigenvalue component from the weight matrix
of the lexical network, the result is quite significant. For example, classification accuracy was
increased from 75.2 to 84.5% for the case of two seed words without significantly increasing
computational cost. This scheme also improves the linearized model.

We also examined the possibility of improving the performance further by removing more
eigenvalue components. However, the resulting degeneracy of the eigenvalues in the weight
matrix, which is accompanied by eigenvector localization, minimizes the gain improvement.
In addition, we investigated a linearized model to characterize the classification performance
and found that the linear response to the polarities of the seed words at high temperature
contains essential information. While many methods have been proposed for binary classifi-
cation, apparently most of them are based on optimization of a certain cost function or on
achievement of the low-temperature state of the Boltzmann-Gibbs distribution. In general,
high-temperature states are technically easier to handle than low-temperature ones because a
greater variety of perturbative techniques can be used. The utility of the (linear) response in
the high-temperature state shown here offers a novel promising approach to generic classifica-
tion when labels are provided for a small fraction of representative instances.

The developed methodology can be employed for general purposes of assessing influences of
a few representative nodes in a network via local communications. The Ising spin model or
similar models including its linearized model are used in a number of tasks in natural language
processing.

Future work includes more use of language data and development of applications using this
polarity lexicon construction method as well as use of other approximation schemes such as ad-
vanced Markov chain Monte Carlo methods in which equilibration is significantly accelerated
by using extended ensembles (Iba, 1999).
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A Stability of Trivial Solution
Inserting Equation (4) into Equation (3) and setting hi to zero (i = 1,2, . . . , N) yields an
expression of the mean field free energy:

FMF(m) = −β
∑
i> j

Ji jmim j +
N∑

i=1

∑
Si=±1

(1+miSi)
2

log
(1+miSi)

2
. (16)

To examine the local stability of the paramagnetic solution, mi = 0 (i = 1,2, . . . , N), we evalu-
ated the Hessian of FMF(m):

H =

 
∂ 2FMF(m)
∂mi∂m j

�����
m=0

!
=−β J + I . (17)

The solution is locally stable if and only if H has no negative eigenvalues. Equation (17)
indicates that the eigenvalues of H are given as β−1−λµ (µ= 1,2, . . . , N) using the eigenvalues
of J , λ1 ≥ λ2 ≥ . . . ≥ λN . Thus, as β increases from a very low value, the stability condition
that all eigenvalues are positive is broken when β−1− λ1 = 0 holds, i.e., Equation (7).
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