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ABSTRACT
We investigate the stacking of dependency and phrase structure parsers, i.e. we define features
from the output of a phrase structure parser for a dependency parser and vice versa. Our features
are based on the original form of the external parses and we also compare this approach to
converting phrase structures to dependencies then applying standard stacking on the converted
output. The proposed method provides high accuracy gains for both phrase structure and
dependency parsing. With the features derived from the phrase structures, we achieved a
gain of 0.89 percentage points over a state-of-the-art parser and reach 93.95 UAS, which is
the highest reported accuracy score on dependency parsing of the Penn Treebank. The phrase
structure parser obtains 91.72 F-score with the features derived from the dependency trees, and
this is also competitive with the best reported PARSEVAL scores for the Penn Treebank.
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1 Introduction
Both phrase structure and dependency parsers have developed considerably in the last decade,
cf. (Nivre et al., 2004; McDonald et al., 2005b; Charniak and Johnson, 2005; Huang, 2008). The
development has taken rather different directions as phrase structure parsers and dependency
parsers employ different techniques to parse sentences. Phrase structure parsers usually apply
probabilistic context free grammars and focus on the relationships among phrases. Dependency
parsers use edge factored models for parsing that primarily model the interaction between the
a head word and a dependent word. Second order graph-based parsers consider in addition
for the decision on a dependency edge the interaction with siblings and grandchildren. Phrase
structure and dependency parsers have both shown to be efficient and to provide accurate
parsing results. Different parsing approaches have different strengths on distinct linguistic
constructions, cf. (Nivre and McDonald, 2008).

In this paper, we exploit the difference of the representations of dependency and phrase
structure parses and the divergence in the parsing techniques. We use features derived from the
1-best automatic phrase structure parse to augment the feature set of the dependency parser
and vice versa. This way of combining parsers proved to be effective and provides a substantial
accuracy gain for both parsing approaches.

Our ultimate objective is to advance one parser by a second one. This motivation is different
from previous approaches for combining phrase-structure and dependency parsers (cf. (Klein
and Manning, 2003; Carreras et al., 2008; Rush et al., 2010)) which aimed to achieve a joint
optimum of the two approaches. Our proposal has three advantages over previous work. (i)
Our approach is simple to implement by defining new feature templates, yet very effective. (ii)
It does not require a joint representation of different parse structures. (iii) The participating
dependency and phrase-structure parsers can be easily replaced, and each can be developed
and optimized independently.

In our experiments both parsers utilize the same (training) data set – having two different
representations – without having access to external information. Thus, our results indicate that
state-of-the-art parsers can be still further improved without additional data and that there
may be approaches that reach even higher accuracy levels in a single pass. At the dependency
parser framework, we also investigated whether our approach retains its added value over
other extensions and we answer the research questions: Is there a significant improvement still
possible with two stacked dependency parsers? What is the impact on top of the results which
utilize external information?

We also describe the findings of a manual contribution analysis of the second parser. This
discussion identifies linguistic constructions which are responsible for the improvements and it
brings up ideas how the parser approaches themselves can be improved.

The contributions of this paper are as follows:

• We propose the stacking of dependency and phrase-structure parsers.

• We report outstanding scores on the Penn Treebank and on the German Tiger Treebank
for stacking a phrase structure parser on and a dependency parser and vice versa. The
added value of the approach in the dependency parsing environment is still considerable
in the presence of other extensions.

• We give explanations why the proposed stacking approach works.
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2 Related Work

A number of studies have addressed feature-rich dependency and phrase structure parsing, cf.
(Nivre et al., 2004; McDonald et al., 2005b; Charniak and Johnson, 2005; Huang, 2008).

The two main approaches to dependency parsing are transition-based dependency parsing
(Yamada and Matsumoto, 2003; Nivre, 2003; Titov and Henderson, 2007), and graph-based
dependency parsing (Eisner, 1996; McDonald et al., 2005a; Carreras, 2007; Rush et al., 2010).

The most successful supervised phrase structure parsers are feature-rich discriminative parsers
which heavily depend on an underlying PCFG (Charniak and Johnson, 2005; Huang, 2008).
These approaches consist of two stages. At the first stage they apply a PCFG to extract possible
parses, then at the second stage select the best parse from the set of possible parses (i.e. rerank
this set) employing a large feature set (Collins, 2000; Charniak and Johnson, 2005).

There is little related work on combining the two approaches. Some generative parsing
approaches have exploited the differences between phrase structure and dependency parsers.
For instance, Klein and Manning (2003) introduced an approach where the objective function
is the product of the probabilities of a generative phrase structure and a dependency parser.
Model 1 of Collins (2003) is based on the dependencies between pairs of head words. On
the other hand, the related work on this topic for discriminative parsing is sparse, and we are
only aware of the following works. Carreras et al. (2008) and Rush et al. (2010) introduced
frameworks for joint learning of phrase and dependency structures, and showed improvements
on both tasks for English. These frameworks require special formulation of – one or both –
parsing approaches while our approach allows the usage of arbitrary dependency parsers and
any feature-based phrase structure parser.

Our motivation differs from these solutions as we focus on advancing one approach rather
than achieving a joint optimum. Our approach can be regarded as a special stacking procedure
(Nivre and McDonald, 2008), specifically, the stacking of a phrase structure parser with a
dependency parser. In our previous work (Farkas et al., 2011), we reported results with a
stacking approach for phrase structure parsing evaluated on a German corpus. We focus herein
on the reverse direction as well, i.e. we define features for dependency parsers, we report
performance outstanding scores on English for both directions, compare to the state-of-the-art
results and carried out a detailed analysis of the stacking’s contributions.

Wang and Zong (2010) introduced a procedure that exploits dependency parses to improve
a phrase structure parser. They used automatic dependency parses for pruning the chart of a
phrase structure parser and reported a significant improvement. One of our feature templates
for the phrase structure parser can be regarded as a generalization of this approach.

3 Dependency Parser Exploiting Phrase Structure Parses

In this study we focus on graph-based parsers, however, our features from the phrase structures
can also be adapted to a transition-based parser. Graph-based dependency parsers decom-
pose the dependency structure into factors. Each factor of the first order graph-based parser
corresponds to a dependency edge. McDonald et al. (2005a) first used second order factors
which incorporates siblings of the head and dependent.

The second order algorithm of Carreras (2007) uses three second order factors: the sibling, the
leftmost and rightmost grandchildren. The edge labeling is an integral part of the algorithm,
which requires an additional loop over the labels. This algorithm has a complexity of O(n4L).
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Koo and Collins (2010) presented a parser that can evaluate factors of three edges.

In this paper, we utilize the state-of-the-art parser of Bohnet (2010), a graph-based parser
which employs online training with a perceptron which employs the MIRA update (Crammer
and Singer, 2003). The parser contains a feature function for the first order factor, one for the
sibling factor, and one for the grandchildren. We integrated in each of the functions features
representing information on the phrase structure.

3.1 Features Defined on Phrase Structure Parses

We explore new feature templates to include features from the phrase structures. These
templates are defined on the phrase structures themselves which is an important difference
compared to previous work on joint parsing. Joint parsing requires a joint representation of
phrase and dependency structures and is traditionally carried out by – explicitly or implicitly
– converting the phrase structures into bilexical dependencies. For a comparative analysis of
these two approaches please refer Section 6.3. Here we introduce our feature template utilizing
the original phrase structures.

The feature templates provide information for the dependency parser about the embedding of
the nodes in the phrase structure. A first order factor consists of the head and the dependent. A
second order factor comprises of two connected edges, which additionally consist of a sibling or
grandchild. The feature templates represent the location of the nodes in the phrase structure
and the label of the phrase involved. We use the following abbreviations to define the feature
templates: L represents the edge label; hP, dP, and xP the part-of-speech tag of the head,
that of the dependent and the sibling or grandchild. The hPoPS,dPoPS, xPoPS denote the
part-of-speech tag provided by the phrase structure parser for the head, dependent, and sibling
or grandchild, respectively.

hPS, dPS, xPS denote the label of the phrase where the corresponding terminal node is
embedded, respectively. hPPS, dPPS, xPPS denote the phrase that contains the phrase of the
corresponding terminal of the head, dependent and sibling/grandchildren, respectively. The
relative location, rl, of the head and dependent in the phrase structure: rl=Phd, if the head
and dependent are terminals of the same phrase; rl=Ph->Pd, if the dependent is in a subphrase
of the phrase of the head; rl=Pd->Ph denotes the inverse relation; otherwise rl=Pd?Ph. rlx
stands for the relative location of the head and dependent, grandchild or sibling in the sentence,
e.g. if the head is before or after the dependent in the sentence rlx=h<d or rlx=d>h. We
count all pairwise combinations of the above nodes.

1. first order features:
L+hP+dP+hPS+rl, L+hP+dP+dPS+rl, L+hP+dP+hPS+dPS+rl,
L+dP+hPS+hPPS+dPS+rl, L+dP+hP+dPPS+hPS+rl, L+hPoPS+dPoPS.

2. sibling features:
L+hP+dP+xP+hPS+rlx, L+hP+dP+xP+dPS+rlx, L+hP+dP+xP+xPS+rlx,
L+hPS+dPS+xPS+rlx, L+xP+hPS+dPS+xPS+rlx, L+xP+hPS+dPS+xPS+xPPS+rlx,
L+xP+hPPS+dPS+xPS+rlx, L+xP+hPPS+dPS+xPS+xPS+rlx,
L+hPoPS+dPoPS+xPoPS.

3. We use as grandchildren features the same feature set as for the sibling features and
replace x by the grandchild.
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4 Phrase Structure Parser Exploiting Dependency Parses

Phrase structure parsers use a PCFG to extract possible parses. The full space of possible parses
cannot be iterated through in practice, and they are usually pruned as a consequence. The n-best
list parsers keep just the 50-100 best parses according to the PCFG (Charniak and Johnson,
2005). Other methods remove nodes and hyperedges whose posterior probability is under a
pre-defined threshold from the forest (chart) (Huang, 2008). The task of the second stage is to
select the best parse from the set of possible parses (i.e. rerank this set). These methods employ
a large feature set (usually a few millions features) (Collins, 2000; Charniak and Johnson,
2005). The n-best list approaches can straightforwardly employ local and non-local features as
well because they decide at the sentence-level (Charniak and Johnson, 2005) while involving
non-local features is more complicated in the forest-based approaches and studies show only a
minor empirical advantage of the latter approach (Huang, 2008; Wang and Zong, 2011). In this
study, we experiment with n-best list reranking using a Maximum Entropy machine learning
model and our goal is to investigate the extension of the standard feature set of these models
by features extracted from the automatic dependency parse of the sentence in question.

4.1 Features Defined on Dependency Parses

The objective of the features defined for phrase structure parsing is to characterize the di-
vergence/similarity of constituents with the corresponding part of the automatic (1-best)
dependency parse of the sentence in question. We defined three feature templates for represent-
ing hyperedges (i.e. CFG rules applied over a certain span of words). We illustrate them on two
possible subparses of Figure 1.

  

invite  all  of  you    to Mumbai

PP

VP

NP

(A)   

all    of     you        to Mumbai

PP

NP

PPNP

(B)

Figure 1: A dependency parse and two hyperedges (A and B) of the phrase structure chart for
the introduction of feature templates.

outArc features are counting the dependency arcs which "go out" from the constituent in
question. More precisely we count the words within the span whose parent in the dependency
tree lays outside the span of words in question. We use the absolute count and the ratio of
outArcs among the words of the span. The more arcs go out, the further away is the dependency
subtree over the words of the constituent from a dominating subtree. Hence, these features try
to capture the "phraseness" of the span of words in question based on the dependency tree. The
example A in Figure 1 gets outArc=1 and outArcRatio=1/6 as only the parent of invite lays
outside the constituent. For B we have outArc=2 and outArcRatio=2/5 because of all and
to.

POSRel features indicate the dependencies which occur in the dependency parse (explicitly)
as well as in the phrase-structure parse (implicitly). For this we gather the daughter constituents
whose lexical head is linked in the (undirected) dependency tree to the head of the parent
constituent. We define features from them using the pair of the two heads’ POS tag and a
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triplet using the POS tags and the corresponding dependency label. For A we have the following
binary valued features: VBP-DT, VBP-DT-OBJ (from invite–all), VBP-IN, VBP-IN-LOC (from
invite–to) as both daughter attachments have the corresponding arcs in the dependency tree.
For B we do not extract features for the second PP daughter attachment as the lexical head
of the parent (all) and the lexical head of the daughter (to) are not linked in the dependency
parse.

ConstRel features are similar to POSRel but use the constituent labels rather than the
POS tags of the heads. Thus, for A we have VP-NP, VP-NP-OBJ (from invite–all), VP-PP,
VP-PP-LOC (from invite–to).

We also investigated the role of case and grammatical functions of the phrase structure parser
in German and extended the POSRel and ConstRel feature sets by adding this information to
the labels.

Note that the value of outArc is 1 iff the word span in question has a dominating dependency
subtree in the automatic parse. Wang and Zong (2010) prune hyperedges with outArc 6= 1
thus this feature can be regarded as a generalization of their approach.

These features are similar in nature to the lexical head-based features of Charniak and Johnson
(2005) and Versley and Rehbein (2009) but their role is different. Those dependency-like
features try to describe the local hyperedges using the internal state of the parsing approach
while we exploit here a globally (i.e. sentence-level) optimized dependency parse tree which
represents external knowledge to the parser.

5 Experimental Setting

5.1 Data Sets
We used the Penn Treebank (section 23 served as test set and section 22 and 24 were used as
development set in the phrase-structure and dependency experiments, respectively) with the
Penn2Malt converter, and the head-finding rules of Yamada and Matsumoto (2003) for our
experiments on English because most of the published state-of-the-art results were obtained
on these datasets and conversion. For German, we used the Tiger Treebank and followed the
split of the Parsing German (PaGe) shared task (Kübler, 2008) for phrase structure parsing.
For dependency parsing, we used the dependency corpora of the CoNLL-2009 shared task, cf.
(Hajič et al., 2009) (which consists of automatically converted trees from a part of the Tiger
Treebank).

The phrase structure parsers traditionally conduct POS tagging during parsing (the different POS
alternatives are on the chart). For obtaining POS tags for the dependency parsing experiments,
we jackknifed the training data 10 fold, i.e. we trained the POS tagger on nine folds and tagged
the tenth fold. On the English training set, the POS tagger of Toutanova et al. (2003) achieves
an accuracy of 97.1, on the development set, 97.2 and the test set, 97.3. For German, we used a
SVM-based tagger and we obtained on the training set an accuracy of 97.2, on the development
set, 97.5 and on the test set, 97.4.

We followed the same jackknifing procedure in the stacking experiments in order to obtain the
parses from which the features are extracted. We generated the dependency and constituent
parses of the training corpus by training the respective parser on nine folds and parsing the
tenth fold. During parsing the test set and development set we utilized the parses from the
second parser which was trained on its entire training corpus.
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5.2 Implementation Details

For our experiments, we utilize the second-order graph-based parser of the dependency
parsers of Bohnet (2011)1. The second-order parser employs online training with a perceptron
(Crammer and Singer, 2003) and it is based on a Hash Kernel. We employed this parser since
it is quick to train, provides useful labeled dependency trees and achieves state-of-the-art
accuracies. We used the transition-based parser that is included in the same package for our
experiments as well.

For the phrase structure parsing experiments, we also employed state-of-the-art parsers. We
used the first-stage parser of Charniak and Johnson (2005) for English and Bitpar (Schmid,
2004) for German. The latter employs a grammar engineered for German (Farkas et al., 2011).
At the second stage, we used the 50 and 100-best parses to rerank and filtered out rare features
(which occurred in less than 5 sentences). We employed the ranking MaxEnt implementation of
the MALLET package (McCallum, 2002) and optimized the L2 regularizer coefficient on the
development set.

5.3 Baseline Feature Sets

For conducting baseline dependency parsing experiments, we employed the feature set of
Bohnet (2010). For the stacking of graph-based and transition-based dependency parsers, we
used the feature template definitions from Nivre and McDonald (2008) which was extended by
grandchildren factors (similarly to Torres Martins et al. (2008)).

For phrase structure reranking we utilized the features of Charniak and Johnson (2005) and
for German we reimplemented the feature templates of Versley and Rehbein (2009) as baseline
feature sets. The latter is the state-of-the-art feature set for German, which consists of features
constructed from the lexicalized parse tree and its typed dependencies along with features
based on external statistical information (like the clustering of unknown words according to
their context of occurrences and PP attachment statistics gathered from the automatic POS
tagged DE-WaC corpus, a 1.7G words sample of the German-language WWW).

5.4 Evaluation Metrics

For the evaluation of the dependency parses, we use the standard labeled (LAS) and unlabeled
attachment scores (UAS) excluding punctuation for English and including punctuation for
German. We use the predicted POS tags everywhere thereafter.

We use the standard evalb implementation of PARSEVAL on every sentence without length
limitation as evaluation metric for phrase structure parsers. As the grammatical functions of
constituents are important for downstream applications – especially in German –, we also report
PARSEVAL scores on the conflation of constituent labels and grammatical functions (the scores
in brackets in Table 3). We have to mention that our F-values are not directly comparable to
the official results of PaGe Shared Task – which was our original goal – because the evaluation
metric had a special implementation for calculating the F-measure (which differs from evalb

for example in handling punctuation marks) and it used gold-standard POS tags in the input
(which we thought to be unrealistic).

1Downloadable from http://code.google.com/p/mate-tools/
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6 Results

6.1 Oracle Experiments

In order to validate the value of our new feature templates, we carried out the following
oracle experiment. We used the gold standard parse trees from the second parser for training
and parsing, i.e. we extracted features from the gold standard phrase structure parses for
dependency parsing and vice versa. Our dependency parser achieved an UAS of 98.52 and LAS
of 98.17 on the English test set. The re-ranking phrase structure parser achieved 95.78 where
the oracle score – i.e. selecting the best candidate from the candidate list – is 96.83. Hence
using the gold standard trees of the second parser yield scores close to the theoretical upper
bound, which empirically proves that our new feature templates can effectively capture the
information present in the other syntactic representation.

6.2 Dependency Parsing Results

Table 1 shows the results achieved on the test and development sets of English and German.

Our baseline parsers here are the transition-based parser (baseline T) and graph-based parser
(baseline G) of (Bohnet, 2011). The row “G+T features” presents stacking results for the
transition-based and graph-based parser. In this setting, the graph-based parser uses the output
of the transition-based parser. This setting shows already a high accuracy improvement of 0.44
and obtained an unlabeled accuracy score of 93.5 in English. This result shows that the stacking
idea of Nivre and McDonald (2008) works well on this higher accuracy level obtained with the
offspring of their parsers.

The row “G+P features” shows the results when the graph-based parser exploits the features
extracted from the phrase structure parser. The unlabeled accuracy score achieved the current
best results for this data set with 93.95 UAS. When we use the output of the transition-based
parser and the phrase structure parser as input to the graph-based parser (G+P+T features),
we are able to obtain an even higher accuracy score of 94.04. Exploiting phrase structure parses
achieves a gain in UAS of 0.89 and 0.54 employing them as an extension of the graph-based and
the stacked dependency parser G+T. The added value of the features from the transition-based
dependency parses on top of the extended feature set (i.e. the difference between G+P and
G+P+T) is minor – and there is a decrease at 2 out of the 8 settings. These results indicate
that the features gathered from the phrase structure parse contain almost all of the information
which can be gathered from the transition-based dependency parse.

The two last rows show scores when we use in addition cluster-based features similarly to Koo
et al. (2008). The cluster-based feature provided an improvement of 0.17 on top of the results
of the graph-based parser (G+C features). The last row (G+P+T+C features) shows the scores
for the features from all sources where we finally obtain 94.14 UAS.

Similarly to the results for English, we can also report large improvements for the German
Tiger Treebank. With the G+T features, we gain 0.24 UAS and 0.71 with the “G+P features”
compared with the “baseline G”. When we utilized each feature set, the parser achieved 91.88
UAS and 89.90 LAS (0.81 improvements in UAS), which is the highest reported accuracy score
for this data set.
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English German
Devel. Test Devel. Test

baseline T 91.46/90.10 92.71/91.56 90.27/87.76 90.39/88.05
baseline G 92.09/90.81 93.06/91.95 90.37/88.01 91.02/88.81
G+T features 92.34/90.96 93.50/92.53 90.45/88.29 91.26/89.13
G+P features 92.81/91.71 93.95/92.99 90.64/88.47 91.73/89.50
G+P+T features 92.83/91.70 94.04/93.10 90.70/88.54 91.69/89.69

G+C features 92.14/90.87 93.23/92.15 90.53/88.31 91.40/89.19
G+P+T+C features 92.96/91.80 94.14/93.17 90.73/88.50 91.88/89.90

Table 1: Dependency parsing results achieved by the enriched feature sets. The accuracy scores
are statistically significant between the baseline G and G+T, G+P, and G+P+T+C with p <
0.001 and between G+P and G+P+T+C with p<0.05. We used two sample t-test.

6.3 Stacking of Converted Parses

An alternative approach for stacking phrase structures into a dependency parser is to convert
the phrase structures into dependency trees and extract features from this representation.
We investigated this approach on the English dataset2. We used the Penn2Malt converter
on the automatic phrase structure parses and then employed the same dependency stacking
features which were used for “G+T features” and were described in Section 5.3. Table 2
repeats the scores from Table 1 achieved by the baseline parser and by the feature templates
defined directly on phrase structures and compares these scores with the results achieved by
the conversion-based stacking.

English
Devel. Test

baseline G 92.09/90.81 93.06/91.95
G+P converted 92.48/91.23 93.74/92.73
G+P direct 92.81/91.71 93.95/92.99

Table 2: Results achieved by utilizing features defined directly on phrase structures vs. defined
on converted trees. The accuracy scores are statistically significant between the two approaches
with p<0.05. We used two sample t-test.

6.4 Phrase Structure Parsing Results

Table 3 summarize the results achieved by phrase structure parsers3. In the reranking approach
we used 50-best lists for English and 100-best lists for German as it is standard in previous
work.

The “generative” row stands for the results achieved by the first-stage parsers. The “oracle”
score is the highest available score in the 50-best and 100-best lists, thus serve as an upper

2Unfortunately, we do not have access to the conversion scripts for German. As the conversion in the reverse
direction (i.e. converting dependency parses into phrase structures) is not straightforward we restricted ourself to
phrase structure to dependency conversion and the English dataset.

3Note that the difference in German scores between this table and the scores reported in our previous study (Farkas
et al., 2011) is because we report score on each sentences – and compare our results here against re-trained baseline
parsers – while we limited the evaluation to sentences shorter than 40 tokens in the previous study – in order to be able
to compare those results against previously published scores on the same corpus.
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bound for rerankers. The last three rows contain the results of reranking on top of first-stage
parsers employing the baseline4, only the new features defined from dependency parses (dep)
and their union (bl+dep).

English German
Devel. Test Devel. Test

generative 88.86 89.71 77.83 (66.88) 76.81 (65.76)
oracle 95.90 96.83 86.18 (76.10) 83.37 (73.07)
baseline features 90.59 91.38 79.76 (67.99) 78.41 (67.05)
dep features 89.90 90.66 79.82 (69.28) 78.01 (67.46)
bl+dep features 90.92 91.72 80.90 (70.39) 79.45 (68.73)

Table 3: Phrase structure parsing PARSEVAL scores achieved by utilizing various feature sets.
The figures in brackets for German are PARSEVAL scores including grammatical functions. The
accuracy scores are statistically significant between “baseline features” and “bl+dep features”
with p<0.05. We used two sample t-test.

As Table 3 shows, the reranking parser using only our features constructed from the automatic
dependency parse of the sentence achieved a 1.0 improvement on the English development and
test sets, respectively and they added a value of 0.3 over the baseline feature set as well.

The results for German are even more convincing. The simple dependency parse-based features
are competitive with the German-specific feature set of Versley and Rehbein (2009). Moreover
these two feature sets have a certain level of diversity as their union could achieve significantly
better results (over 1.0 point of improvements), than any of them alone. The added value of
the dependency parse-based features is higher if we consider the evaluation metric which also
takes into account the grammatical function labels as well.

6.5 Comparison to previous work

Table 4 shows labeled and unlabeled accuracy scores of previous work reported for the
Penn2Malt conversion with the head finding rules of Yamada and Matsumoto (2003). Carreras
et al. (2008) (CCK) combine a dependency parsing decoder with parsing based on TAG. Koo
and Collins (2010) (Koo’10) used a parser with third order factors and obtained an unlabeled
accuracy of 93.04. Martins et al. (2010) introduced a parser (Turbo) with even higher accuracy
(93.26 UAS), which is one of the highest accuracy scores for a parser that does not employ
additional sources of information.

The following approaches use additional sources of information. Suzuki et al. (2009) (SICC) use
a second order dependency parser that employs siblings and grandchildren factors. They apply
the semi-supervised learning approach of Suzuki and Isozaki (2008) to dependency parsing
and include additionally the cluster-based features of Koo et al. (2008) (KCC).

The improvement of the accuracy achieved by our stacking approach is surprisingly high. We
achieved an error reduction of 16.5% (an absolute gain of 1.1 percentage points) over our
baseline and it outperforms the best reported scores with combining dependency and phrase
structure parses (Carreras et al., 2008) by 0.6.

4The small difference between the original Brown parser and reranking with baseline features is due to the different
MaxEnt implementations employed.
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English (UAS) German (LAS)
Devel. Test Devel. Test

CCK’08 92.5 93.5 GHPT’09 87.28
Koo’10 93.04 B’10 88.06
Turbo’10 93.26
This work (G+P+T) 92.14 94.04 88.54 89.69

KCC’08 91.85 93.16
SICC’09 93.8
This work (G+P+T+C) 92.96 94.14 88.50 89.90

Table 4: Comparison to previous work. We report UAS only for the English Penn Treebank
since usually unlabeled scores were published and labeled attachments scores only for the
German Tiger Treebank since in the CoNLL shared task 2009 only labeled attachment scores
were reported.

For German the two top scoring parsers of the CoNLL 2009 shared task on Syntactic and
Semantic Dependency parsing were the parser of Gesmundo et al. (2009), who had the best
overall scores and the parser of Bohnet (2010), which performed best on English and German.
However we note that directly comparing these results to our ones is not fully fair since the
POS tagging accuracy of the data sets were lower than 95.5 at the CoNLL 2009 shared task.

Table 5 sketches the phrase-structure parsing results in the context of previously published
results. We retrained the current version of the Charniak and Johnson (2005) parser5 (C&J)
for English. We also cite the scores reported by Rush et al. (2010) who also exploited phrase
structure and dependency parsers together. Our final scores are competitive with the best
reported supervised PARSEVAL score in the Penn Treebank by (Huang, 2008) who also extended
the feature set of Charniak and Johnson (2005) and applied forest-based reranking.

English German
Devel. Test Devel. Test

C&J 90.60 91.36 Berkeley 76.60 (65.25) 76.05 (64.00)
Rush’10 – 90.7 PyNLP 76.76 (66.29) 76.27 (65.21)
Huang’08 – 91.69

This work (bl+dep) 90.92 91.72 80.90 (70.39) 79.45 (68.73)

Table 5: Comparison to previous work. Our method significantly outperforms state-of-the-art
systems.

For German, we trained the current version of the Berkeley parser6 (Petrov et al., 2006) and
PyNLP7 parsers (Versley and Rehbein, 2009). Note that the results of the generative Berkeley
parser is competitive with the PyNLP parser which utilizes reranking, while the first-stage
parser, which we employ here – using a fine-tuned German-specific tree annotation schema
– outperforms both of them. The discriminative approach with the baseline feature set we
employed gave an improvement of 2 percentage points over the first-stage parser and the
features gathered from dependency parsers could add an additional 1 point to this.

5http://www.cog.brown.edu/ mj/Software.htm
6http://code.google.com/p/berkeleyparser/
7https://bitbucket.org/yannick/pytree
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7 Discussion

We manually analyzed the outputs of the parsers in order to identify linguistic constructions
where one or another parser performed better. Our findings help understand the reasons why
the approach works and they might suggest ways of improving data-driven parsers as well.

7.1 Why did the phrase structures help dependency parsing?

In order to find the explanation why phrase structure parse-based features help the dependency
parser we manually investigated the sentences of the English development set where the parsers
with and without these features gave different output.

We found that the most frequent error fixing categories are related to longer phrases, typically
noun phrases and named entities. For example, the phrase structure parser could recognize
the phrase boundaries of US Today ’s total paid ad pages and St. Therese , Quebec and with the
phrase structure-based features the dependency parser was able to fix its errors here. Note
that in the latter example if the parser analyses the entity as two separated entities St. Therese
and Quebec, it introduces 3 attachment errors (for Therese, for the comma and for Quebec).
Besides noun phrases the parses of institutionalized phrases like with or without and rather
than to were also considerable improved. These improvements can be probably attributed to
the phrase-based thinking of the second parser.

Phrase structure-based features improved considerably the accuracy of coordinations. It is a
known issue that the representation of coordination in the dependency structure has an impact
on the accuracy. The Penn2Malt converter builds dependency structures where the conjunction
is the head. Nilsson et al. (2007) showed that this representation of coordinations yields a lower
parsing accuracy – across four languages – than a representation where the conjunction and the
members of the coordination form one chain. Our features defined on the phrase structure trees
can be regarded as a third type of representation of coordination. Although these features help
in the current setting we expect a smaller contribution if a different dependency representation
(like the chain type) is targeted.

The counting of the errors – or error fixes – related to coordination is not straightforward
because besides the wrong attachment of a CC it introduces several attachment errors in the
construction. For instance, we observed several article attachment errors related to this as well.
For example in the agreement and consent decree the article can be attached to the agreement or
to the decree according to the analysis of the coordination.

The rest of the improvements is heterogenous but we observed two other quite frequent error
types. The first one is the attachment to a verb if multiple verbs are present in the sentence,
most typically the choice between the auxiliaries and the main verbs. For instance in having
just passed the dependency parser attached just to the main verb while was able to correctly
attach it to the auxiliary with the help of phrase structure-based features. We counted down
the attachment errors of the dependency parser where it chose a wrong verb. The phrase
structure-based features could eliminate 245 such errors while introduced 117 new attachment
errors.

A related interesting issue is that the incorporation of the phrase structure-based features into
the graph-based parser improves the selection of the sentence’s root by almost 1 percentage
point (the F-score of the ROOT label increased from 96.24 to 97.1). This might be an artifact of
the two-stage approach of the phrase structure parser, i.e. the reranking second stage could
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choose from candidates having different roots. We intend to more deeply investigate this issue
in the future as it seems to be promising to design a reranking phase for dependency parsers
which can select from parses with different roots.

7.2 Why did the dependency structures help phrase structure parsing?

We followed the methodology of contribution analysis for phrase structure parses and we
manually investigated the sentences of the English development set where the discriminative
parsers with and without these features gave different output. We identified two categories
of improvement. The first one is the “attachment” of adverbs and adjectives, especially in the
case of collocational modifiers like more like and many more. The second phenomenon where
the dependency parse-based features could eliminate a considerable amount of errors – much
more than was introduced – is PP attachment. The explanation for both of these contributions
might be the “lossless” lexicalization of the dependency parsers. Although the PCFG parser of
Charniak (2000) is lexicalized8 and the re-ranking stage is deeply lexicalized, using only 50
candidate parses and a frequency-based feature pruning implies some extent of information
loss while dependency parsers can exploit very rare lexical cues.

7.3 What is the difference between stacking directly and stacking after
conversion?

We also manually compared the parses of the two stacking approaches, i.e. the one where
the features are defined directly on phrase structures versus the other where the features are
defined on a dependency tree which were automatically converted from the phrase structures
(see Section 6.3). Although the difference between the two approaches is significantly different
we cannot conclude that the first one is clearly better than the second one. There are 214
sentences in the development set where the direct appraoch achieves higher attachment scores
than the other while there are also 197 sentences where its scores were worse.

Interestingly, the most frequent linguistic constructions which are responsible for these differ-
ences are related to conjunctions at both the directions. We found that in the case of noun
phrase coordinations, the features defined directly on the phrase structures are more useful
than after conversion. This further supports our earlier discussion that our features as a repre-
sentation type of coordination is more useful than the “conjunct is the head” representation
used in the Penn2Malt conversion.

On the other hand, in the case of compound sentences (i.e. the conjunction of independent
clauses) the converted parses contributed frequently more than features directly defined on
the phrase structures (this is expressed also by the F-score of the ROOT label which is 0.3
higher in the first case). The cause for this effect is that the phrase structure puts the two (or
more) independent clauses to same level while the dependency tree – at least in the Penn2Malt
conversion – has to label a single token as the root of the sentence. The root selection among
the heads of the independent clauses follows a deterministic rule during the conversion process,
thus the converted trees do not face the problem of root ambiguity in these compound sentences.

8 Conclusions

We proposed here the stacking of dependency and phrase structure parsers. We introduced a
feature set for describing phrase structures for data-driven dependency parsers and dependency

8However, it utilizes just the head of the parent instead of bi- (or higher order) lexicalization.
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parses for discriminative phrase structure parsers. We investigated the performance of our
stacking approach on English and German and we reported a significant improvement over the
state-of-the-art parsers in both directions. We believe that the key factor of this success is that
we designed our framework to advance one parser exploiting the other, rather than optimizing
a joint objective function.

In our experiments both parsers utilize the same (training) data set without having access to
external information. We argue that our results – especially the gain at dependency parsers
– indicate that state-of-the-art parsers can be still further improved without additional data.
To facilitate these further developments, we manually analyzed several parses of different
approaches and identified linguistic phenomena where the gain was considerable. For instance,
for the dependency parsers these phenomena are named entities, longer noun phrases, coor-
dination and root selection. Investigating them more deeply could probably reveal parsing
techniques which can yield considerable added value to current procedures.
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