
Proceedings of COLING 2012: Technical Papers, pages 833–848,
COLING 2012, Mumbai, December 2012.

Flexible Structural Analysis of Near-Meet-Semilattices for
Typed Unification-based Grammar Design

Rouzbeh FARAHMAN D Gerald PENN
University of Toronto

{rouzbeh,gpenn}@cs.toronto.edu

Abstract
We present a new method for directly working with typed unification grammars in which
type unification is not well-defined. This is often the case, as large-scale HPSG grammars
now usually have type systems for which many pairs do not have least upper bounds. Our
method yields a unification algorithm that compiles quickly and yet is nearly as fast during
parsing as one that requires least upper bounds. The method also provides a natural naming
convention for unification results in cases where no user-defined type exists.

Keywords: HPSG, typed feature structures, unification-based grammar.

833

1 Introduction

In Head-driven Phrase Structure Grammars (HPSG, Pollard and Sag, 1994), most of the
on-line computation time is spent performing unifications. HPSG type systems are typically
large and involve subtyping, so computing a unification involves computing a join, the
least informative type that is subsumed by both of the argument feature structures’ types.1

Early TFS-based parsing systems like ALE (Carpenter and Penn, 1996) required that every
pair of unifiable types have a least common supertype, i.e., joins are uniquely defined
wherever they need to be defined. Type hierarchies that have this requirement are called
meet semi-lattices (MSLs) (Davey and Priestley, 2002), because the existence of a meet for
every pair of types is sufficient to guarantee the existence of a join for every unifiable pair
of types when the type hierarchy is finite. Later HPSG parsing systems such as the LKB
(Copestake and Flickinger, 2000) and PET (Callmeier, 2000) eliminated this restriction,
and it is now extremely rare to find a decent-sized HPSG with an MSL type hierarchy. The
LKB, at least in some early versions, used an on-line caching algorithm to add joins to the
user-defined type system when necessary. PET adds all of the necessary joins in advance,
during a grammar compilation stage. In either case, the time it costs to perform these
repairs is proportional to the number of new joins that must be added. It therefore makes
some sense to strive to add the least number of types necessary.

While modern HPSG type systems are never MSLs in practice, they are always almost MSLs,
in a sense that can be made mathematically precise, which we do here for the first time.
Converting an HPSG type system to an MSL would be horrendously slow if it were not the
case that HPSGs were almost MSLs already, because an exponential number of types need
to be added in the worst case. There is another cost hidden in this method, furthermore, at
least when we strive to add the least number of extra types necessary. In this case, naming
these types is also a challenge. Figure 1(a), for example, shows an input type hierarchy
that is not an MSL. In Figure 1(b), it has been converted into an MSL by adding one extra
type. Ideally, we would like to name this type in a manner that reflects its usage in the
grammar. Two possibilities that are immediately evident are e ∨ f or a ∧ b ∧ c ∧ d. Neither
of these are ideal because they do not attest to a precise pair of types that the system
needed to unify during parsing, and which therefore gave rise to the need for this extra type.
This is extremely useful for debugging understanding feature structure outputs with large
grammars. Grammar writers instantly know what user-defined types had been combined.

The key to the alternative introduced here is that it actually costs less time in practice to
compute with a larger type system provided that joins are added on-line when necessary.
This is achieved by doing a small amount of extra compilation off-line — small in practice
again because of a specific mathematical property that practical HPSGs possess - and using
the data structure that it creates to add many more types during parsing than the absolute
minimum necessary for MSL-hood. In the limit, our method creates a type hierarchy more
like a conjunctive lattice, but it only adds types as it needs them. Figure 1(c) is what it
creates from Figure 1(a). From the standpoint of naming conventions, this type system is
ideal, because every added type is named for the set (pair or larger) of types that required
it.

1Some of the HPSG community draw these subtypes below their supertypes in graphical representations of type
hierarchies, but still use the name join, even though the correct term is meet in this orientation. We will also use
the term, join, but will depict type hierarchies in the opposite orientation, in which more specific subtypes appear
above their more general supertypes.

834

(a) (b)

(c)

Figure 1: (a) A non-MSL type hierarchy, (b) its MSL completion based on the Dedekind-MacNeille
completion, and (c) its conjunctive lattice.

Section 2 discusses the mathematical background necessary to understand the conversion
that yields Figure 1(b). Section 3 presents a precise way of appreciating what we mean by a
“near-meet-semilattice,” through quantifying the size and number of a special kind of subset
of types called prime sets. Section 4 then introduces another special kind of subset that can
be used to efficiently compute the prime sets of a type hierarchy. Section 4.1 describes how
joins are computed with the new method, and what the compiler computes to achieve this.
Section 6 then presents an evaluation which shows that the new method has nearly the
same performance at run-time (5.4% slower) as parsing with precompiled MSLs directly,
but without the compile-time cost of the latter. We assert that in the context of grammar
design, 5% is worth less compilation time along with the better naming conventions that
naturally ensue from this method. Irrespective of compiling and parsing speed, the formal
treatment of this subject also provides a more refined theory for analyzing the structure of
type hierarchies in large-scale grammars than a binary MSL/non-MSL distinction.

835

2 Dedekind-MacNeille Completions

Let P be a partially ordered set, and S ⊆ P. The set of upper bounds of S, written Su, is the
set of all x ∈ P such that for all s ∈ S, s ≤P x . The lower bounds, S l , are all of the x ∈ P
such that for all s ∈ S, x ≤P s. The Dedekind-MacNeille completion of P (DM(P)) is the set
of all A⊆ P such that Aul = A. All of the singleton subsets of P are included in DM(P), so
informally we can say that P is included in DM(P). DM(P) is the smallest set that both
includes P and is an MSL (Davey and Priestley, 2002).

The computer science literature on lattice theory has tended to emphasize DM(P) as either
a theoretical device for understanding (but not computing) joins even when they are not
present (e.g., Aït-Kaci et al., 1989), or a goal to aim for when adding joins incrementally,
each as it becomes necessary (e.g., Bertet et al., 1997). Using DM(P) is supposed to provide
us with some sort of reassurance about the maximum amount of extra work that must
be performed to embed P into an MSL, at least if the results are pre-compiled or cached.
Because |DM(P)| is exponential in |P| in the worst case, however, this does not provide
much solace by itself. What matters in the end is the actual amount of overhead accrued for
working with a non-MSL type hierarchy. This is true even if DM(P) is not used.

That overhead can be paid either all at once during an initial compilation stage, or in small
amounts over time, with the hope that some completion types will never be needed by the
user’s queries. Obviously, we do not want to compute any completion larger than DM(P)
at compile-time if we can help it. The prospect of incrementally computing completion
types in a larger lattice is still available, however, as long as the overhead is still acceptable
in practice. It is also worth noting that the incremental algorithm of Bertet et al. (1997)
includes a line which stops execution for every type that is added and prompts the user
to name it. The problem of naming in the Dedekind-MacNeille completion extends well
beyond applications to computational linguistics.

3 Prime Sets

What remains then is to find a new source of reassurance about on-line cost that depends
upon structural properties of the input type hierarchy rather than upon the size of the
worst-case lattice using a given completion strategy. The best structural property of all is for
P to be an MSL already. In this case, DM(P) consists only of singleton sets plus possibly a
new top-most element (which is usually discarded anyway), and so |DM(P)| ≤ |P|+ 1.

Paradoxically, even if P were not an MSL, finding the upper bound of a set of arguments
S ⊆ P in many cases is as easy as combining every type of S in succession, according to
some arbitrary linear ordering of its elements. At each step, we compute the join of the
current element and a running accumulator type, or fail if they have no upper bounds in
common. That is still linear time in |S|, even if non-linear in other variables, as is the case
when P is an MSL. It is difficult to imagine doing any better in this particular dimension.

The trouble is that this linear-time incremental method does not always work, because of
subsets of S (or P) that we will call prime sets.2.
Definition 1. Let P be a partially ordered set, and S ⊆ P. S is an anti-chain iff for all x , y ∈ S,
neither x ≤P y nor y ≤P x .

2These should not be confused with prime ideals or filters nor the prime elements that generate them (see
section I-3 of Gierz et al., 2003)

836

Definition 2. Let P be a partially ordered set, and S ⊆ P. S is a prime set of P iff |S|> 1, S is
an anti-chain, and, for all non-empty T ⊆ S, T has a join iff |T |= |S| or |T |= 1.
Proposition 3. A partial order is a meet-semi-lattice iff its maximal prime sets are of size 2.

No non-trivial proper subset of a prime set has a join. When |S| > 2 and S is prime,
considering pairs of elements in succession will not work for any linear ordering of S. In
Figure 2(a), for example, S = {a, b, c} is a prime set because it has a join and none of its
2-subsets does. One needs to consider all three at once to see the join.

Candidate sets S of size larger than 2 are important because they naturally result from
delaying the computation of joins. A very natural strategy for performing unification in a
non-MSL is to use joins where they exist, and the union of the sets of types to be unified
otherwise, hoping that the latter will eventually be resolved to a join by the addition of
some other element later in the computation. This strategy implicitly uses the conjunctive
lattice of P to support its computations, but does not compute it. It is also the strategy that
we will adopt. The only thing we need to remember is that we should never refer to a set or
subset of types when that set has a join in P that we could refer to instead. That amounts to
using the user’s names for conjunctions vis-a-vis the subtyping relation where they exist,
and explicit conjunctions elsewhere. Operationally, it reduces unification to searching for
prime sets and prime subsets.

In a nutshell, the reason that DM(P) can be exponentially larger than P is that the prime
sets of P can grow in size linearly with |P|, as will be proven in the next section. Better still,
tabulating the number of prime sets of each size indicates how “MSL-like” a type hierarchy
is. It gives us a spectral view of the basic subsets that every large set decomposes into during
unification.

While most large HPSGs are not MSLs in practice, they do not avail themselves of the
possibility of having large prime sets either. This is evident in their spectra, and it means
that it is relatively inexpensive to enumerate all of the prime sets.

4 Pseudo-prime Sets

A close variant of prime sets turns out to be even more useful:
Definition 4. S ⊆ P is a pseudo-prime set of P iff |S|> 1, S is consistent, and, for all non-empty
T ⊆ S, T has a join iff |T |= 1.

A pseudo-prime set is as close as a set with no least upper bound can get to being a prime
set. The number of pseudo-prime sets is also an upper bound on the potential number of
new types added by a completion, because every completion type in DM(P) corresponds to
the set of upper bounds of some pseudo-prime set (Penn, 2000, though stated in different
terms).

In Figure 2(a), {a, b}, {a, c} and {b, c} are all pseudo-prime sets, for example.

Pseudo-prime sets stand in a very special relationship to prime sets and to each other:
Proposition 5. Every k-subset of a pseudo-prime set with k > 1 is a pseudo-prime set.
Proposition 6. Every proper k-subset of a prime set with k > 1 is a pseudo-prime set.

This means that we do not have to search through all
� |P|

k

�
possible k-subsets of P to

find the size-k prime sets of P. Instead, we can merely focus on the size k−1 pseudo-primes,

837

Data: A finite poset of types P = 〈T,⊑〉
Result: All the pseudo-prime PsPrime(P) and prime sets Prime(P) of P

1 begin
2 init: Prime(P)← {}, PsPrime(P)← {} ;
3 forall the consistent types t1, t2 ∈ T do

4 Mins← FindMinimal({t1, t2}u);

5 if Mins has only one element then // There is a least upper bound
6 Add {t1, t2} to Prime(P) ;

7 else// There is no join
8 Add {t1, t2} to PsPrime(P) ;
9 end

10 end

11 if if there is no set in PsPrime(P) with size 2 then
12 return PsPrime(P) and Prime(P) ;

13 else// P is not an MSL: search for primes and pseudo-primes of size greater than 2
14 size := 2 ;
15 repeat
16 forall the pp1, pp2 ∈PsPrime(P) do

17 Cand← pp1 ∪ pp2 ;

18 if |Cand | is size+ 1 then

19 Mins← FindMinimal(Cand);

20 if Mins has only one element then
21 Prime(P)+= Cand;
22 else
23 PsPrime(P)+= Cand;
24 end
25 end
26 end
27 size= size+ 1;
28 until (there is no pseudo-prime set of size);

29 return PsPrime(P) and Prime(P) ;
30 end
31 end

Algorithm 1: Algorithm for finding prime and pseudo-prime sets of a poset.

one of which must live inside every prime set. The size k− 1 pseudo-primes in turn can
be constructed from k− 2-pseudo-primes, etc., with the 2-pseudo-primes being the pairs
of types that attest to the non-MSLhood of P. This recursive search procedure is given in
Algorithm 1. Any procedure that enumerates prime sets or pseudo-prime sets is exponential
in the worst case, but this algorithm makes efficient use of the relationship between primes
and pseudo-primes to achieve efficiency when the largest prime sets are of low cardinality.

Pseudo-primes are also the key to bounding the size of prime sets:
Proposition 7. The maximum size attainable by a prime subset of a poset P is ⌊ |P|−1

2
⌋.

Proof. Let Ψ be any prime subset of P. Let n = |P| and p = |Ψ|. Consider the p distinct
subsets of Ψ of size p − 1 (i.e. K1, ..., Kp ⊆ Ψ such that |K1| = ... = |Kp| = p − 1). Let
m= |⋃1≤i≤p µ(Ki)| where µ(S) = {x ∈ Su | ∄ u ∈ Su s.t u≤ x}, the set of all minimal upper-
bounds of S. For all i, |µ(Ki)| ≥ 2 because K1, ..., Kp are all pseudo-prime sets. For the same
reason, |µ(Ki) ∩ µ(K j)| ≤ 1 when i 6= j, because then Ki ∪ K j = Ψ. In fact, µ(K1), ...,µ(Kp)
are either all pairwise disjoint or all agree on the same one element, so there are only two
cases:

Case A:
⋂

i µ(Ki) = ; Then P must have at least p+m elements and one extra element for
the join of Ψ that must exist above all the m elements in

⋃
1≤i≤p µ(Ki). So, (i) n≥ p+m+ 1.

Conservatively, we must choose p disjoint antichains of size at least 2 from the m elements,
thus we have (ii) p ≤ ⌊m

2
⌋. Therefore, from (i) and (ii), if m is even then n≥ 2p+ 1, and if

m is odd then n≥ 3p+ 2. Since 2p+ 1≤ 3p+ 2≤ n, then p ≤ n−1
2

.

838

Case B:
⋂

i µ(Ki) 6= ;. In this case, n ≥ p+m and p ≤ m− 1, subtracting for the one upper
bound that all of the Ki have in common. Therefore, n≥ p+m≥ 2p+ 1 and consequently
p ≤ n−1

2
.

There are also simple examples in which this bound can be attained, so this is tight.

A spectral decomposition of pseudo-primes is also somewhat interesting because of its
relationship to the size of DM(P), and to prime sets — the largest prime set cannot be
more than one element larger than the largest pseudo-prime, but in practice it is much less.
Figure 3 shows the decompositions for both primes and pseudo-primes for both a 1999
pre-release of the English Resource Grammar (ERG Flickinger, 1999) and Berligram (Müller,
2007). The first thing that we can observe is the very small size of all of the pseudo-primes
and primes in both grammars — at most 9 in the ERG, and 6 in Berligram. It took 27
seconds 3 to find all the primes and pseudo-primes in the ERG, and less than 1 second to
find them in Berligram. By contrast, it takes the LKB 4 seconds to compute DM(P) for
the ERG. We can also see a greater difference between the largest prime and the largest
pseudo-prime in the ERG (9-4=5) than we can in Berligram (6-4=2). Pseudo-primes lay the
groundwork for primes, so when a prime set nevertheless does not occur, this is significant.
Finally, we can observe that, although the ERG is nearly 10 times the size of Berligram in its
total number of types, it has about 25 times as many primes of cardinality 3 or greater, and
of the same maximum size (4).

A large number of primes, a skewed distribution of primes towards small cardinalities, a
large number of pseudo-primes, and a large difference between the size and/or number of
pseudo-primes and primes are all strong indicators that a type hierarchy is more MSL-like
when interpreted relative to the total number of types. The total number of types is not a
good indicator, nor is “join density,” which is common to formal concept analysis (Besson
et al., 2005).4 The (relative to P) size of DM(P) is not bad, but it fails to indicate just how
far the tails of these distributions extend. A type hierarchy with 106 pseudo-primes of size 2
is more MSL-like than one with 105 pseudo-primes of size 9, and simple counts of |DM(P)|
often cannot tell the difference, especially with high join densities.

One conclusion to draw from this particular comparison is obviously that the ERG is more
MSL-like, which implies that it is more conservative in its structure, and would be easier
to compute with than many other potential 3414-type hierarchies. On the other hand, the
sheer number of types may make finding the right part of the type hierarchy to modify more
difficult than it needed to have been. Another way to look at it is that Berligram makes
more efficient use of the amount of information that a 434-type hierarchy can carry. There
is more information embedded in its structure relative to its size, but that information may
make it more difficult to predict the consequences of type unification than in some other
hierarchies of its size. The ERG and Berligram do not have the same number of types, nor

3All the timing results reported in this paper were obtained on an Intel R©-based system with a 3.6 GHz
XeonTMprocessor and 3 GB of RAM running the Ubuntu 6.06.2 Linux operating system.

4Join density, in terms of our partial orders, is calculated as the ratio of the size of the extension of the
(transitively and reflexively closed) subtype relation to the square of |P|. The join density of the ERG is .001; that
of Berligram is .006.

839

do they attempt to account for the same constructions, nor even the same language, so we
can only speculate here. But prime sets and pseudo-primes can illuminate these issues.

4.1 Building an Automaton-based Index

The final application of prime and pseudo-prime sets considered here is to unification itself.
As mentioned above, it is possible to maintain argument sets of types from a non-MSL as
argument sets even after unification, provided that all of the prime subsets are replaced
with their joins. For the unifier not to perform this replacement is tantamount to it simply
handing back a candidate pair of types from an MSL ununified.

If we use topologically sorted lists (as induced by the subtype relation) as our representations
of prime sets, pseudo-prime sets and argument sets, then Propositions 5 and 6 will allow us
to use a simple automaton-based index to perform this replacement. The index has a linear
number of states relative to the number and size of the pseudo-primes, because each state
corresponds to a prefix of one or more pseudo-primes in topological order. It has two kinds
of edges: suffix edges and redex edges, and both kinds of edges are labelled with elements of
pseudo-prime or prime sets.

All of the pseudo-prime sets can be arranged into a tree such that every path through the
tree from the root to any node corresponds to a pseudo-prime or a singleton set. Paths from
the root to a leaf correspond to maximal pseudo-primes — no pseudo-prime contains them.
These trees are connected with suffix edges, each of which is labelled with the kth element
that extends a k−1-length prefix of one or more pseudo-primes to a k-length prefix. On top
of this skeleton, we add the redex edges, which map a pseudo-prime prefix, X , that contains
a k− 1-length prefix of a size-k prime set to the result of replacing that prime set within X
by its join, transitively closed under all possible further replacements. The redex edge is
labelled with the kth element that completes the prime set.

The index for Figure 2(a), for example, is shown in Figure 2(b). Its pseudo-prime sets
are: {{a, b}12, {a, c}13, {a, z}14, {b, z}15, {b, c}16, {d, z}17, {c, z}18, {g, z}19, { f , z}20, {e, z}21,
{h, z}22, {a, b, z}23, {a, c, z}24, {b, c, z}25; and its prime sets are: {a, f }, {b, g}, {d, c}, {d, g},
{d, f }, {d, e}, {g, f }, {g, e}, { f , e}, {a, b, c}.5 Suppose {a, b, c, z} is of interest. The automaton
consumes a and b, which is a pseudo-prime (12) and the prefix of the pseudo-prime,
{a, b, z}23, but upon seeing c traverses a redex edge that reduces the prime set {a, b, c} to its
join, e, which is a singleton and therefore not subject to further replacement. Consuming z
next leads to the pseudo-prime, {e, z}21. So if the union of the argument sets provided to
the unifier is {a, b, c, z}, what the unifier should return is {e, z}, which should be interpreted
as the conjunctive type, e&z. This is as close to the grammar writer’s idioms as we can come
in describing this result, given that the type hierarchy is not an MSL.

Having constructed the automaton directly from the pseudo-prime and prime sets, it can
then be pruned by eliminating states that correspond to singletons with no outgoing suffix
edges and no outgoing or incoming redex edges. Singleton sets clearly do not need to be
fed to the automaton. In the example in Figure 2(b), states 9, 10 and 11 would be pruned.

Some statistics for the automata constructed for the ERG and Berligram are presented in

5These sets are sorted according to the following topological order (subscripts are topological ordinals):
⊥0 < a1 < b2 < d3 < c4 < g5 < f6 < e7 < h8 < z9 < y10 < x11.

840

Table 1. Our implementation of the automaton compiler has been written in Prolog and

Before pruning After pruning
ERG Berligram ERG Berligram

of suffix edges 9508 1425 7058 1205
of redex edges 2296 554 2296 554

Total # of edges 11804 1979 9354 1759
Total # of states 8967 1314 6517 1094

Table 1: Statistics related to the constructed automaton-based index for type hierarchies of the ERG
(Flickinger, 1999) and Berligram (Müller, 2007).

generates the automaton as Prolog clauses, too, which are then also compiled. The two
stages of compilation together consumed 30 milliseconds for Berligram and 2.2 seconds for
the ERG, which is well within the range of compilers that add joins on-line. Further speed
improvements are doubtlessly possible, since the automaton can in principle be constructed
incrementally as Algorithm 1 is being executed.

5 Unification

Having constructed the automaton directly from pseudo-prime and prime sets, we are
implicitly assuming that every input set to the automaton is an anti-chain. The algorithm
for unification, given as Algorithm 2, shows how the result should look.

Data: P = 〈T,⊑P〉 ;
two sets of types A, B ⊆ T ;
the automaton-based indexMP ;
ψ: the topology of P used for construction ofMP ;
Result: minimal upper bound of A and B or failure

1 begin
2 Feed← AntiChainReduce(P, ψ ,A∪ B);
3 if Feed has only one element then
4 return Feed;
5 else
6 AutResult← Aut(start state ofMP , Feed);
7 return AutResult;
8 end
9 end

Algorithm 2: The algorithm for unification of two sets of types.

AntiChainReduce reduces an input argument set to the topologically sorted, maximally
specific anti-chain that contains it. This can be accomplished in quadratic time as a function
of the size of the input set, simply by considering every pair of types and replacing the pair
with the higher of the two if they are ordered.

6 Parsing Evaluation

To evaluate how this unification algorithm performs in practice, we evaluated three systems
on a common grammar and corpus of sentences. The grammar was the ERG, and the
corpus, called the FUSE corpus, has 2354 sentences, ranging from 1 to 50 words in length,
192 of which are ungrammatical according to the ERG. All three of the systems that we

841

tested had memory allocation problems while parsing this corpus, so every sentence that
resulted in at least one system running out of memory was excluded, leaving a remainder of
1727 sentences, 159 of which were ungrammatical.6 We also imposed a maximum of 8000
chart edges after which parsing was terminated. The excluded sentences were those that
exceeded the memory available to one of the processes with that cap in place. The three
systems were:

(1) ALE version 4.0 beta, running on the Dedekind-MacNeille completion of an ALE port
of a 1999 pre-release version of the ERG, with 45 rules, 155 features, 1314 lexical entries,
no lexical rules and 3412 types, plus a most general type, ⊥, plus a built-in type for strings.
DM(P) added another 893 types to the system. We compiled ALE with SICStus Prolog
3.12.10 (compact code). 7

(2) the LKB, version as at March, 2009: This system allows non-MSL grammars as input,
but it automatically computes the Dedekind-MacNeille completion on their type systems at
compile-time, naming newly added types with a number. The 1999 pre-release of the ERG
no longer runs on the LKB because of non-backwards-compatible changes in the system
over the last 10 years. Porting an LKB grammar to ALE is very tricky because the LKB’s
input syntax is very heavily overloaded. So instead of porting the current ERG to ALE, we
reported our existing port of the 1999 pre-release of the ERG back to this version of the LKB.
We have verified that these two ports generate exactly the same edges on the non-excluded
sentences of this corpus. We compiled the LKB with Allegro Common Lisp Enterprise 8.0.

(3) an experimental system, obtained by replacing ALE 4.0’s type unifier with the one
described in this paper. This system generates the same object code as ALE 4.0 when the
input grammar’s type system is an MSL. We ran this on the 1999 pre-release of the ERG
without computing the Dedekind-MacNeille completion, which thus results in different
object code.

The results are shown in Figure 6. These are log-linear graphs, so the roughly even separa-
tions attest to a nearly constant factor of speed-up, not a constant difference in milliseconds.
The LKB is approximately 1.82 times slower than ALE 4.0, and the experimental version
implemented for this study is approximately 1.054 times slower than ALE 4.0. Thus the
experimental system produces a run-time parser that is 5.4% slower than ALE after having
compiled out the Dedekind-MacNeille completion in advance, but is still more than 40%
faster than the LKB, a commonly used system that caches them on-line.

The figure of 5.4% obtains with an experimental system that does not cache the results
of prime-set reduction on previously seen argument sets. Caching is best implemented by
caching not only previously seen argument sets that are consistent, but also previously seen
argument sets that are inconsistent. As shown in Figure 6(d), however, the difference is
not large. In the latter case, one obtains a system that is an average of 5.7% slower than
parsing with precompiled MSLs on a first pass of parsing, but only 2.7% slower on a second
pass through the same corpus of sentences (for which all of the cache entries are in place).
We used the built-in SICStus term_hash/2 predicate to hash argument sets, which gave us
a perfect hash (one set per hash). Here again, a comparison with the LKB is informative in
that argument set caching behaves surprisingly like the LKB’s lexicon caching: while we

6 The test sentences and results are available at http://www.cs.toronto.edu/̃ rouzbeh/resources.html.
7The MSL-ERG in ALE syntax is available at http://www.cs.toronto.edu/̃ rouzbeh/resources.html.

842

might naturally expect to see a steady stream of new words throughout the parsing of a
corpus of this size, we also see a steady stream of new argument sets, even though the
number of types and their relative ordering are held constant throughout the experimental
parsing runs. As a result, it would take a much larger sample to witness a convergence of
the second pass with the first. This suggests that argument set caching is only worthwhile
over much longer timespans of use with the same type system.

7 Conclusion

We introduced two new mathematical constructions, prime sets and pseudo-prime sets, and
showed that they provide a reasonable alternative to the Dedekind-MacNeille completion,
by providing a means for manipulating conjunctive sets of types at very low overhead. These
sets provide better naming conventions for newly added types than any implementation
based on Dedekind-MacNeille could hope to do because they effectively allow for a trace
of partial unifications of a set of arguments. Prime and pseudo-prime sets also form the
basis of a more refined method for analyzing the upper bounds of a type system than simply
calling it an MSL or non-MSL. This is of independent value to grammar designers.

We have not yet looked at the frequency distributions of primes and pseudo-primes encoun-
tered during parsing with the ERG over the FUSE corpus, for example. Both our compilation
strategy and the spectral decomposition method would benefit from taking this information
into account, because some portions of a completed lattice are clearly more important than
others, simply as a result of certain types being used more often in parsing representative
corpus input than others.

Some additional work on the combinatorial properties of prime and pseudo-prime sets also
remains. Although we have identified a tight upper bound on the possible sizes of prime
sets, the only known bounds on the numeracy of prime and pseudo-prime sets are based on
the classical problem (the so-called Dedekind Problem), of finding the number of anti-chains
of a given poset. The field had settled on a fairly stable bound until recently (Korshunov
and Shmulevich, 2000).

843

(a)

(b)

Figure 2: (a) A non-MSL type hierarchy and (b) its automaton-based index). The redex edges are
depicted as dotted arcs; if those eliminated from the automaton, a suffix tree is obtained.

844

(a) (b)

Figure 3: Number and size of the prime and pseudo-prime sets of (a) the English Resource Grammar
(3412 types in total), and (b) the German Berligram (434 types). The horizontal and vertical axes
show the number and size of the sets, respectively.

845

(a) (b)

850 900 950 1000 1050 1100 1150

10
3

LKB−cached−lexicon
Experimental ALE
MSL−restricted ALE
ALE(success+failure)

1850 1900 1950 2000 2050

10
3.4

10
3.5

Sentence Number

MSL−restricted
cached success+failure
success+failure
cached success only
success only

(c) (d)

Figure 4: Evaluation of the MSL-restricted ALE, Experimental ALE and the LKB on FUSE. The
LKB caches the lexicon as it parses, so each sentence was parsed twice in succession. The parsing time
of the first parse is given in (a) and that of the second in (b). Figure (c) is a close-up of a portion of
Figure (b), along with Experimental ALE plus caching of consistent and inconsistent argument sets
(first pass). Figure (d) shows the effect of caching in close-up detail.

846

References

Aït-Kaci, H., Boyer, R., Lincoln, P., and Nasr, R. (1989). Efficient implementation of lattice
operations. ACM Trans. Program. Lang. Syst., 11(1):115–146.

Bertet, K., Morvan, M., and Nourine, L. (1997). Lazy completion of a partial order to the
smallest lattice.

Besson, J., Robardet, C., Boulicaut, J.-F., and Rome, S. (2005). Constraint-based concept
mining and its application to microarray data analysis. Intell. Data Anal., 9(1):59–82.

Callmeier, U. (2000). Pet – a platform for experimentation with efficient HPSG processing
techniques. Nat. Lang. Eng., 6(1):99–107.

Carpenter, B. and Penn, G. (1996). Efficient parsing of compiled typed attribute value
logic grammars. In Bunt, H. and Tomita, M., editors, Recent Advances in Parsing Technology,
pages 145–168. Kluwer Academic Publishers, Dordrecht, Boston, London.

Copestake, A. and Flickinger, D. (2000). An open-source grammar development envi-
ronment and broad-coverage English grammar using HPSG. In In Proceedings of LREC
2000.

Davey, B. and Priestley, H. (2002). Introduction to Lattices and Order. Cambridge University
Press.

Flickinger, D. (1999). LinGo, the English Resource Grammar.

Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., and Scott, D. S.
(2003). Continuous Lattices and Domains, volume 93 of Encyclopedia of Mathematics and
its Applications. Cambridge.

Korshunov, A. D. and Shmulevich, I. (2000). On the distribution of the number of monotone
boolean functions relative to the number of lower units. Discrete Math., 257(2-3):463–479.

Müller, S. (2007). Berligram: German grammar based on Head-driven Phrase Structure
Grammar: Eine Einführung.

Penn, G. (2000). The Algebraic Structure of Attributed Type Signatures. PhD thesis, School
of Computer Science, Carnegie Mellon University.

Pollard, C. and Sag, I. (1994). Head-Driven Phrase Structure Grammar. Chicago University
Press, Chicago, Illinois.

847

