
Proceedings of COLING 2012: Technical Papers, pages 815–832,
COLING 2012, Mumbai, December 2012.

Jointly Disambiguating and Clustering Concepts and Entities
with Markov Logic

Angela Fahrni1 Michael Strube1

(1) Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg,
Germany

Angela.Fahrni@h-its.org, Michael.Strube@h-its.org

ABSTRACT
We present a novel approach for jointly disambiguating and clustering known and unknown
concepts and entities with Markov Logic. Concept and entity disambiguation is the task of
identifying the correct concept or entity in a knowledge base for a single- or multi-word noun
(mention) given its context. Concept and entity clustering is the task of clustering mentions
so that all mentions in one cluster refer to the same concept or entity. The proposed model
(1) is global, i.e. a group of mentions in a text is disambiguated in one single step combining
various global and local features, and (2) performs disambiguation, unknown concept and
entity detection and clustering jointly. The disambiguation is performed with respect to
Wikipedia. The model is trained once on Wikipedia articles and then applied to and eval-
uated on different data sets originating from news papers, audio transcripts and internet sources.

KEYWORDS: Word Sense Disambiguation.
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1 Introduction

Recent advances in knowledge extraction from resources such as Wikipedia have allowed to
create various large-scale knowledge bases and concept networks such as Yago (Suchanek et al.,
2008), DBpedia (Bizer et al., 2009) or WikiNet (Nastase and Strube, 2012). To exploit the wealth
of world knowledge in these resources for natural language processing tasks such as information
extraction, text segmentation or summarization, words and phrases in a document first need
to be linked to the relevant entries in the respective knowledge base, i.e. to be disambiguated.
This problem has been tackled quite successfully by systems such as WikipediaMiner (Milne and
Witten, 2008), which are mainly based on word sense disambiguation techniques (Agirre and
Edmonds, 2006; Navigli, 2009) thus giving research on word sense disambiguation a new spin.

Concept and entity disambiguation is the task of identifying the correct concept or entity in a
knowledge base for a single- or multi-word noun (mention) given its context.1 In this paper we
disambiguate with respect to the English Wikipedia and consider each article as a concept. One
advantage of linking to Wikipedia is that the internal hyperlinks can be used as training data.

Concept disambiguation models the relation between mentions and concepts (Figure 1a).
For instance, the system needs to identify if the mention crocodile in the first text points to
AMERICAN CROCODILES (ANIMAL), to CROCODILE (LOCOMOTIVE) or to the person RENÉ LACOSTE

(TENNIS PLAYER) whose nick name is Crocodile. We define concept disambiguation as the task of
disambiguating both common nouns such as crocodile or biologist and proper nouns such as
FLORIDA or STATES. While the disambiguation of common nouns is usually called word sense
disambiguation (WSD), the disambiguation of proper nouns is also known as entity linking.

Although most of the work in concept disambiguation and WSD assumes that the knowledge
base is complete, several studies show that many mentions have no corresponding entry in
the English Wikipedia: While Zhou et al. (2010) report that between 10% and 23.5% of the
mentions can not be linked to Wikipedia, Lin and Etzioni (2012) report that one third of their
mentions have no corresponding entry in Wikipedia. The task of identifying mentions with no
corresponding concept in the respective knowledge base is also known as recognition of NILs.
In the example in Figure 1 Aldecoa does not refer to any entity listed in the knowledge base.

Concept clustering solves the problem of missing concepts in knowledge bases by clustering
mentions within and across documents so that mentions in one cluster refer to the same concept.
These clustering approaches, also known as cross-document coreference resolution, sense induction
or unsupervised word sense disambiguation (Pedersen, 2006), do not link mentions to entries in
an existing knowledge base, but cluster mentions as illustrated in Figure 1b.

We integrate the two research lines of disambiguating and clustering concepts and present
a novel approach for joint disambiguation and clustering using Markov Logic (ML). Given
an already existing knowledge base, mentions are linked to their corresponding entry in this
knowledge base, if one exists (Figure 1a). At the same time, mentions are clustered together
with other mentions that refer to the same concept, regardless of whether the referred concept
exists in the knowledge base or not (Figure 1b). Figure 1c shows the joint view. In contrast
most previous approaches (including systems participating at TAC (Ji et al., 2011)) use three
cascaded steps: (1) Disambiguation, (2) identification of NILs, (3) clustering of NILs.

The concept selections for the different mentions (e.g. American crocodile and crocodile) are
interrelated. Joint disambiguation and clustering enables us to exploit such connections:

1Although we use in the following the term concepts instead of concepts and entities, we always mean both.
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Figure 1: Joint concept disambiguation and clustering
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knowledge about which mentions refer to the same concept can support disambiguation
decisions. On the other hand, disambiguation influences clustering decisions. In contrast, local
approaches which disambiguate mentions independently of each other (Milne and Witten, 2008;
Csomai and Mihalcea, 2008) can not take advantage of such relations. Our joint approach
disambiguates and clusters groups of mentions at the same time. By using Markov Logic we
combine local and global features. Compared to other global models for WSD, e.g. Kulkarni
et al. (2009), we do not just consider one single global feature, but combine different global
features with local features and learn the weights for their combination.

Our model is trained on Wikipedia only and evaluated on ACE 2005 (annotated by Bentivogli
et al. (2010)). Though we are mainly interested in the ACE data, because they provide us
with annotations for proper and common nouns, we also evaluate on the TAC 2011 data which
are only annotated for named entities. Nevertheless our system performs well compared to
the systems participating at the TAC 2011 competition with a much smaller feature set – e.g.
McNamee (2010) use 200 features – and without being trained on TAC data specifically.

The paper is organized as follows. Section 2 discusses related work, Section 3 presents our
novel approach for joint disambiguation and clustering, and Section 4 presents and analyzes
experiments based on ACE 2005 (Bentivogli et al., 2010) and the TAC 2011 data sets.

2 Related Work
In recent years research in monolingual and cross-lingual concept and entity disambiguation
has been boosted by shared tasks such as the Link the Wiki Track at INEX2, the Cross-lingual Link
Discovery Task at NTCIR-9 (Tang et al., 2011) and the Entity Linking Task at TAC (McNamee
and Dang, 2009; Ji et al., 2010; Ji and Grishman, 2011; Ji et al., 2011).

Dai et al. (2011) is the work that is closest to ours. In order to link gene mentions they perform
entity disambiguation and recognition of the NILs at the same time using Markov Logic. In
contrast to us they do not cluster mentions, but focus only on one specific type of mentions in a
particular domain, namely mentions that refer to genes in a biomedical corpus.

The task of entity disambiguation, recognition of NILs and clustering has been approached in
a cascaded way (Ji et al., 2011). Bunescu and Paşca (2006) first decide, if a mention refers
to an entity in a knowledge base. Dredze et al. (2010) first disambiguate and then recognize
the NILs. NIL recognition is often done by setting a threshold (Han and Sun, 2012). Monahan
et al. (2011) interleave entity linking and clustering, but they do not approach the two tasks
jointly. After disambiguation they cluster mentions. Then each cluster is assigned an entity in
the knowledge base if there exists a corresponding one. Sil et al. (2012) circumvent the NIL
problem by an open-database approach instead of disambiguating with respect to only one
knowledge base.

Another strand of work that is similar to ours are global disambiguation approaches. While early
work often uses local classifiers or rankers that select a concept for each mention independently
(Csomai and Mihalcea, 2008; Milne and Witten, 2008; Dredze et al., 2010), recently, various
global approaches have been proposed. Kulkarni et al. (2009) propose a method that maximizes
local context-concept compatibility and global concept coherence. Fahrni et al. (2011) use a
graph-based approach and select the best combination of concepts given the graph structure.
Han and Sun (2012) use a generative model integrating topic coherence (one topic per docu-
ment) and local context compatiblity. Ratinov et al. (2011) describe a two pass method and use

2http://www.inex.otago.ac.nz

818



Joint ApproachCascaded Approach

NIL Detection

for each Text t

end for

for each Mention m in each Text t

Concept Candidates Identification

end for

 
Disambiguation

Clustering of NILs

Concept Candidates Identification

Concept Disambiguation

end for

for each Mention m in Text t

NIL Detection Clustering

Figure 2: Cascaded approach vs. joint global approach.

the input of the first pass as input for the second one. While all these approaches use a limited
number of global features, we integrate and learn the weights for various global features.

While we aim for a general domain disambiguation and clustering system that disambiguates
and clusters common and proper nouns, the Wikify! (Csomai and Mihalcea, 2008) and Wikipedi-
aMiner (Milne and Witten, 2008) systems focus on the disambiguation of a few relevant
keywords. Chen et al. (2012) only disambiguate person names, while Nothman et al. (2012)
perform event linking.

The most prominent research line for sense induction are distributional approaches (Schütze,
1998). Pedersen (2006) gives an overview over state-of-the-art techniques. Recently, the
efficency problem caused by the number of necessary comparisons has been addressed (Singh
et al., 2011). While Rao et al. (2010) apply streaming clustering, Wick et al. (2012) propose a
discriminative hierarchical model and partition entities into trees of latent sub-entities. None of
these approaches for clustering also does concept disambiguation at the same time.

3 Approach

Markov Logic enables us to approach the task of disambiguation, recognition of unknown
concepts and clustering jointly and to make use of global features. Instead of selecting for each
mention – independently from earlier and later decisions – a concept, the concepts for a group
of mentions are chosen at the same time.

Figure 2 contrasts the cascaded approach of disambiguation, recognition of unknown concepts
and clustering with our joint global approach. As Figure 2 illustrates, first all candidate concepts
for all mentions in a document are identified. Then disambiguation, recognition of NILs and
clustering is performed using Markov Logic.

3.1 Markov Logic Networks

Markov Logic (ML) combines first-order logic with probabilities (Domingos and Lowd, 2009). A
Markov Logic Network (MLN) consists of a set of pairs (Fi , wi), where Fi is a first-order formula
and wi ∈ R is a weight associated with the formula Fi . It builds a template for constructing a
Markov Network given a set of constants C . This Markov Network contains a binary node for
each possible grounding for each predicate of the Markov Logic Network. If a ground predicate
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is true the value of this binary node is 1, otherwise 0. In addition it contains one feature3 for
each ground formula. If a ground formula is true, the feature for this ground formula has the
value 1, otherwise 0. The weight of the feature is given by wi .

The probability distribution in the ground Markov Network is represented by

P(X = x) =
1

Z
exp

 ∑
i

wini(x)

!

where ni(x) is the number of true groundings of Fi in x . The normalization factor Z is the
partition function.

To learn the weights for the formulas and to perform MAP inference we use thebeast.4 thebeast
employs cutting plane inference (Riedel, 2008) and enables us to perform discriminative
training using a perceptron.

3.2 Disambiguation and Clustering with Markov Logic

The backbone of our model is the definition of how disambiguation, recognition of NILs and
clustering interact. To model these relations we use hard constraints. In the following we will
first describe these constraints, before we explain the features in the next section.

Table 1 shows all predicates and formulas used. Each formula is associated with a positive or
negative weight. While the weight – except for hard constraints – is learned from training data,
the polarity of the weights is set manually. In the following we indicate the direction by the +
or − in front of each formula. Formulas with negative weights provide evidence for recognizing
NILs. For some formulas the final weight consists of a learned weight w multiplied by a score
s (e.g. prior probability). In these cases the final weight for a formula does not just depend
on the respective formula, but also on the instantiation, e.g. a specific mention and candidate
concept. We indicate such combined weights by the term w · s, while w refers to cases where the
formula is exclusively weighed by the learned weight. M denotes all mentions and Cm refers to
all candidate concepts of a mention m.

Disambiguation and clustering are two different perspectives on the problem of lexical am-
biguities. While in concept disambiguation the focus lies on the relation between mentions
and concepts, clustering deals with relations between mentions. The tasks of disambiguation
and recognition of unknown concepts are interrelated, as both tasks look at mention–concept
relations. However, while in concept disambiguation the question is to which concept a mention
refers to given its context, the task of recognizing unknown concepts is to determine, if such a
concept relation exists for a given mention at all.

To approach disambiguation, recognition and clustering of NILs with ML we define a hidden
predicate for each relation we are interested in. The predicate hasConcept(Mention, Concept)
models the relation between mentions and concepts in the knowledge base (Table 1, p1). To
ensure that each mention refers to at most one concept a hard cardinality constraint is defined:
for each mention the predicate hasConcept is true at most once. This constraint allows us to
jointly disambiguate and recognize NILs (Table 1, f1).

3Note that feature is used differently in this section than in the rest of the paper.
4http://code.google.com/p/thebeast.
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To model if two mentions refer to the same concept, the predicate hasSameConcept(Mention,
Mention) is used (Table 1, p2). It is true for all mention pairs that refer to the same concept,
regardless whether the referred concept exists in the knowledge base or not. This clustering
relation is transitive and symmetric (Table 1, f2, f3).

In order to perform joint disambiguation and clustering it needs to be defined how the mention-
concept relation (disambiguation, recognition of NILs) and the clustering relation are interre-
lated (Table 1, f4, f5). Given that two mentions refer to the same concept in the knowledge
base they belong to the same cluster (f5). On the other hand, if two mentions are part of the
same cluster and one of them refers to a concept in the knowledge base, the other mention in
the cluster has to refer to the same concept (f4). Note, two mentions can also be in the same
cluster without referring to a concept in the knowledge base.

3.3 Features

All features have a corresponding predicate which is part of at least one formula. In the
following we focus on the features.

3.3.1 Local Features

Local features involve one single mention and its candidate concepts.

Prior probability (p3, f7) The prior probability is defined as the probability that a mention
m refers to a concept c. To estimate this probability all internal hyperlinks are extracted from
the English Wikipedia dump. For each linked mention (m) it is counted, how many times it
links to a particular Wikipedia page (countm,c), i.e. concept. This count is normalized by the
number of times mention m is linked to Wikipedia pages (countm):

p(c|m) = countm,c

countm

Relatedness (p4, f8, f11) This feature reflects the average pairwise relatedness of a candidate
concept for a mention to the context and is calculated in the same way as proposed by Milne
and Witten (2008). The pairwise relatedness is calculated via

rel(c1, c2) =
log(max(|C1|, |C2|))− log(|C1 ∩ C2|)

log(|W |)− log(min(|C1|, |C2|)
where c1 and c2 are two concepts, C1 and C2 denotes the articles in Wikipedia that link to the
articles c1 and c2 respectively, and W is the total number of articles in Wikipedia. The more
a candidate is related to the context, the more likely it is that a mention refers to it (f8). If a
candidate concept for a mention is not at all related to the context, i.e. the average relatedness
is zero, this is a negative indicator for a candidate (f11).

Local context similarity (p5, f9) The local context similarity measures how similar the
current local context (Km) – consisting of seven words before and after the mention – is to the
local contexts for that concept in Wikipedia. For each mention in the English Wikipedia that
is linked to a certain Wikipedia page c we extract the surrounding words (Tc) using the same
context definition as above. We then calculate the local context similarity (sim(c, m)) for a
candidate concept c of a mention m via
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sim(c, m) =
1

|Km|
∑
k∈Km

s(k, Tc)

where the first term is used for normalization and s(k, Tc) denotes the frequency of k in Tc
divided by the number of times k appears in the context of all concepts in Wikipedia.5

String edit distance (p6, f10) This feature accounts for the difference between the mention
string used in the text (m) and the preferred name (p) for a candidate concept of m. We assume
that the Wikipedia article title and the titles of its redirects are preferred names for a concept
(P). To measure the distance between preferred names and the mention in the text we calculate
the edit distance6 (distm,p) and normalize it by the length of the longer string:

simm,p =
distm,p

max(|m|, |p|)

If there exists more than one preferred term for a concept, we take the maximum. This feature
indicates a negative relation between a candidate concept and a mention. The more distant a
preferred name is from a mention, the less likely it is that the mention refers to this concept.

3.3.2 Global Features

In contrast to local features, global features involve more than one mention. From a disam-
biguation perspective these features define, which mentions are disambiguated jointly.

Shared lemma (p7, f12) The one sense per discourse assumption states that one mention
string is used to refer to one sense, i.e. in our case to one concept, in one discourse (Gale
et al., 1992). For each document we extract all mentions with the same lemma and the inverse
distance in sentences between the two. The bigger the inverse distance is, the closer the two
mentions are to each other and the more likely it is that they refer to the same concept.

Head match (p8,f6) The one concept per discourse assumption often applies to mentions
that are in a substring relation and share the same syntactic head lemma. We extract all these
pairs including the inverse distance between the respective mentions.

Acronyms (p8,f6) In texts, especially in news paper texts, acronyms are often introduced by
the following pattern: full name (acronym). We extract all these mention pairs, whereas one
mention is the full name and the other one the acronym.7

Cross-document n-gram feature (p9,f13) In contrast to the previous features this one is
a cross-document feature. The assumption is that we work with a document collection. We
extract all mention pairs with the same lemma but coming from two different documents. For
each of these mentions we extract all n-grams that include the respective mention and that
consist of nouns and adjectives. If the two mentions share at least one of these n-grams, we
consider them as referring to the same concept and add as score the number of shared n-grams.

5We take its logarithm.
6We use the Lingpipe implementation (http://alias-i.com/lingpipe/).
7In our Wikipedia training data, acronyms are relatively rare. Hence it is difficult to learn a weight for the acronym

feature. As it is similar to the head match feature, we use the same predicate and weight for the two features.
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Predicates
Hidden predicates
p1 hasConcept(m, c)
p2 hasSameConcept(m, n)
Predicates realizing Wikipedia Miner features
p3 hasPriorProbability(m, c, s)
p4 hasRelatedness(m, c, s)
Additional predicates involving one mention and one entity
p5 hasContextSimilarity(m, c, s)
p6 hasStringDistance(m, c, s)
Predicates involving two mentions (intradocument)
p7 isSubStringHeadMatch(m, n, s)
p8 haveSameLemma(m, n, s)
Predicates involving two mentions (cross-document)
p9 shareNgram(m, n, s)

Formulas
Hard constraints
f1 ∀m ∈ M : |{c ∈ C : hasConcept(m, c)}| ≤ 1
f2 ∀m, n ∈ M : m 6= n∧ hasSameConcept(m, n)→ hasSameConcept(n, m)
f3 ∀m, n, l ∈ M : m 6= n∧m 6= l ∧ n 6= l

∧ hasSameConcept(m, n)∧ hasSameConcept(n, l)→ hasSameConcept(m, l)
f4 ∀m, n ∈ M : m 6= n∧ hasSameConcept(m, n)∧ hasConcept(m, c)

→ hasConcept(n, c)
f5 ∀m, n ∈ M : m 6= n∧m 6= n∧ hasConcept(m, c)∧ hasConcept(n, c)

→ hasSameConcept(m, n)
Formulas with learned weights
f6 + (w · s) ∀m, n ∈ M ∀c ∈ Cm : m 6= n∧ isSubStringHeadMatch(m, n, s)

→ hasConcept(m, c)∧ hasConcept(n, c)
f7 + (w · s) ∀m ∈ M ∀c ∈ Cm : hasPriorProbability(m, c, s)→ hasConcept(m, c)
f8 + (w · s) ∀m ∈ M ∀c ∈ Cm : hasRelatedness(m, c, s)→ hasConcept(m, c)
f9 + (w · s) ∀m ∈ M ∀c ∈ Cm : hasContextSimilarity(m, c, s)→ hasConcept(m, c)
f10 − (w · s) ∀m ∈ M ∀c ∈ Cm : hasStringDistance(m, c, s)→ hasConcept(m, c)
f11 − (w) ∀m ∈ M ∀c ∈ Cm : hasRelatedness(m, c, s)∧ s = 0→ hasConcept(m, c)
f12 + (w · s) ∀m, n ∈ M : m 6= n∧ hasSameString(m, n, s)→ hasSameConcept(m, n)
f13 + (w · s) ∀m, n ∈ M : m 6= n∧ shareNgram(m, n, s)→ hasSameConcept(m, n)

Table 1: Predicates and formulas used for disambiguation and clustering (m, n, l represent
mentions, M sets of mentions, c concepts and entities, C sets of concepts and entities, and s
scores)
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Within the States, American crocodiles 

live in Florida. 

Recently, the biologist Aldecoa captured 

an older crocodile in the sunshine state.

The biologist Aldecoa caught the 

hatchlings.

Input

States: 
State of matter, State (Polity), United States

American crocodiles: 
America Crocodiles (Animals) 

Florida:
Florida (US State), Florida (Puerto Rico)

biologist:
Biologist

Aldecoa:
Ignacio Aldecoa, Emilio Aldecoa

crocodile:
American Crocodiles (Animals), 
Crocodile (Locomotive), René Lacoste 

sunshine state:
Florida (US State)

Mention and Concept Candidates Identification

biologist:
Biologist

Aldecoa:
Ignacio Aldecoa, Emilio Aldecoa

hatchlings:
Hatchling

hasPriorProbability(States, State of matter, 0.3)
hasPriorProbability(States, State (Polity), 0.3)
hasPriorProbability(States, United States, 0.4)
...

hasRelatedness(States, State of matter, 0.01)
hasRelatedness(States, State (Polity), 0.03)
hasRelatedness(States, United States, 0.31)
...

isSubStringHeadMatch(sunshine state, 
                                     states, 0.5) 
isSubStringHeadMatch(American crocodiles,
                                     crocodiles, 0.5)

Feature Extraction
hasPriorProbability(Aldecoa, Ignacio Aldecoa, 0.3)
hasPriorProbability(Aldecoa, Emilio Aldecoa, 0.7)
hasPriorProbability(hatchlings, Hatchling, 1.0)
...

hasRelatedness(Aldecoa, Ignacio Aldecoa, 0.0)
hasReletedness(Aldecoa, Emilio Aldecoa, 0.01)
hasReletadness(hatchlings, Hatchling, 0.3)
...

sharedNgram(biologist (text 1), biologist (text 2), 1.0)
sharedNgram(Aldecoa (text 1), Aldecoa (text 2), 1.0)

American crocodiles, crocodile:
isSubStringHeadMatch(American crocodiles, crocodiles, 0.5)
...

Regrouping across Documents
Aldecoa (text 1), Aldecoaa (text 2):
hasRelatedness(Aldecoa (text 1), Ignacio Aldecoa, 0.0)
hasReletedness(Aldecoa (text 1), Emilio Aldecoa, 0.03)
hasRelatedness(Aldecoa (text 2), Ignacio Aldecoa, 0.0)
hasReletedness(Aldecoa (text 2), Emilio Aldecoa, 0.01)
...
sharedNgram(Aldecoa (text 1), Aldecoa (text 2), 1.0)

...

Inference

American Crocodiles (Animal): American crocodiles, crocodiles

United States: States

Florida (US State): Florida, sunshine state

Biologist: biologist (text 1), biologist (text 2)

Hatchling: hatchlings

Nil 3456: Aldecoa (text 1), Aldecoa (text 2)

Output

Figure 3: Example for the whole process.

3.4 Illustration of Our Approach
Given several documents – in Figure 3 just two – we first detect mentions in these documents by
identifying noun phrases. If a mention is in our lexicon (see Section 4), we obtain all candidate
concepts from there. Otherwise we just keep the mention, if it is at most of a length of four
tokens and starts and ends with a noun. We keep mentions with no candidate concepts for two
reasons: (1) It can happen that during disambiguation and clustering a mention is linked to a
concept even if it does not have a candidate concept. (2) As we also want to cluster mentions
with no candidate concept, they need to be kept in the network. In the next step we extract
all features, we use for disambiguation and clustering (see Section 3.2). As features can cross
document boundaries, we then regroup the mentions into pseudo documents, which are given
to the inference module. One pseudo document contains all mentions that are linked by global
features. The output is shown at the bottom of Figure 3.

4 Experiments

This section describes experiments on two different data sets. All experiments, including the
ones for the baseline systems such as WikipediaMiner, are based on the same English Wikipedia
dump8, the same lexicon, which includes all anchor texts that occur more than two times with
a certain concept (Milne and Witten, 2008),9 and the same preprocessing. This way we ensure

8We use the dump from January 4th, 2012.
9We use a query expansion technique and also consider redirects and article titles and retrieve the candidate for the

closest anchor.

824



Dataset No. of Documents No. of Mentions in KB NILs Ave. Amb.
WP Training 500 46,810 43,547 3,263 2.18
WP Dev 100 7,197 6,610 587 2.11
ACE 2005 597 29,300 27,184 2,116 5.72
TAC 2011 2162 2250 1124 1126 4.51

Table 2: Datasets: Statistics

that differences in the results are caused exclusively by algorithm and features.

4.1 Data Sets

Disambiguating with respect to Wikipedia has the advantage that training data can be derived
from the internal hyperlinks in Wikipedia automatically without manual annotation.

While training and development is done exclusively on Wikipedia (WP Training, WP Dev), we
evaluate our approach and compare it to previous work using two data sets containing texts
from different sources such as news papers, audio transcription records and the internet (ACE
2005, TAC 2011). Table 2 summarizes some statistics for each data set, namely the number
of documents and mentions to disambiguate, the number of mentions with a corresponding
concept in the knowledge base (in KB), the number of NILs and the average ambiguity.

4.1.1 Training and Development Data

For training and development we use featured articles from the English Wikipedia data (featured
articles are supposed to be of high quality). We randomly select articles among those articles
and consider all internal hyperlinks that point to an existing article as an concept-annotated
mention. In Wikipedia only the first occurrence of a concept in an article is linked to the
respective page. Since our aim is to disambiguate all occurrences we re-wikify the articles: all
mentions, that – according to our lexicon – can refer to a linked article, are linked automatically
to the respective concept. For training we collect for each annotated mention all candidate
concepts from our lexicon. For obtaining NILs we randomly remove some of the concepts from
the annotations and the lexicon. The development data set is processed in the same way.

4.1.2 Testing Data

The English part of the ACE 2005 data set has been manually annotated with links to Wikipedia
by Bentivogli et al. (2010). ACE 2005 consists of 597 texts from newswire reports, broadcast
news, internet sources and transcribed audio data. Both common and proper nouns that are
part of a coreference chain are annotated with one or more links to the English Wikipedia or as
NILs. Some of the mentions are annotated with more than one link. We consider a mention as
correctly disambiguated, if one of the annotated links is identified.

The English TAC dataset from 2011 consists of 2,250 queries and focuses on named entities
such as persons, organizations and locations. A query consists of a query term, i.e. a name for a
named entity, and a document, in which the query term appears. The documents are newspaper
and web texts. Given our approach we disambiguate the whole document and not just the
query terms. In contrast to ACE 2005 the NILs are not just annotated as NILs but also clustered,
which allows us to evaluate the entity clustering performance in a direct way and not just its
influence on the disambiguation performance as on the ACE data.
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4.2 Experiments

4.2.1 Baselines, Other Systems, Upper Bounds

To evaluate our approach we compare it to different baseline systems. For all systems and
baselines we cluster the remaining unclustered NILs in a postprocessing step using a string
match heuristic, which is a hard-to-beat baseline for this task (Ji et al., 2011). For the upper
bound we assume that the clustering is perfect given the disambiguation results.

Upper bound I (UB): The first upper bound shows the performance which can maximally be
reached using our lexicon. Each mention is considered as correctly disambiguated, if the correct
concept is among the candidates for that mention given our lexicon. If a mention is a NIL
according to our gold standard, we also consider it as correct.

Upper bound II (UBD): The second upper bound considers all candidate concepts for all
mentions in a document as candidate concepts for a mention. If the correct concept is among
these candidates, it is considered as correct. This is the upper bound for our final ML system.

First concept baseline (First concept): In WSD the first sense baseline is known as hard to
beat as the distribution of the concepts given a mention obeys Zipf’s law. The first concept
baseline only makes use of the prior probability of a concept given a mention and always selects
the one with the highest prior probability.

WikipediaMiner: WikipediaMiner (Milne and Witten, 2008) is a state-of-the-art system which
is freely available. We use version 1.1, extract all the necessary information from the 2012
Wikipedia dump and train it on the same training data that we use to learn the weights for our
ML systems.

SVM Rank I (SR I): A common approach for named entity disambiguation is to use a ranker to
rank the candidate concepts for each mention and then select the highest ranked concept for
each mention. We use SV MRank (Joachims, 2002) trained on our Wikipedia training data using
the same features as for MLN Dis. (see below).

SVM Rank II (SR II): This system also uses SV MRank (Joachims, 2002) and the same features
as for ML Dis.+NILs (see below).

SVM Rank NIL Classifier II (SRC II): This system uses the SVM Rank II system to obtain
for each mention the highest ranked concept. Then we apply a classifier to decide for each
mention-concept pair, if it is a valid mapping or if the mention is a NIL. We use decision trees as
a classifier (Witten and Frank, 2005) and the same features as for ML Dis.+NILs.

Other systems: For the TAC 2011 data we also add the best (Best system) (Monahan et al.,
2011) and median (Median system) performance of all participating systems in the English
entity linking task at TAC 2011.

4.2.2 Our Systems

ML Dis.: ML system using predicates p1, p3, p4, the local formulas f7, f8 and the global
constraint f1. This system uses only information that is also used by WikipediaMiner and do not
recognize NILs as no negative information is integrated.

MLN Dis.+NILs: ML system using predicates p1, p3-p6, the local formulas f7-f11 and the
global constraint f1. While ML Dis. assigns each mention a concept, this system performs
concept disambiguation and recognition of NILs jointly.
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ACE 2005
Non NILs NILs

P R F P R F Acc
UB 90.1 87.3 88.7 71.4 100.0 83.3 88.2
UBD 95.8 93.3 94.5 75.0 100.0 85.7 93.8
First Concept 68.3 69.4 68.8 49.9 39.5 44.1 67.2
WikipediaMiner 86.5 59.1 70.2 16.9 85.8 28.3 61.0
SR I 69.1 70.2 69.7 49.9 39.5 44.1 68.0
SR II 69.7 70.8 70.2 49.9 39.5 44.1 68.5
SRC II 79.7 57.8 67.0 19.0 86.0 31.1 59.8
ML Dis. 71.2 72.4 71.8 49.9 39.5 44.1 70.0
ML Dis.+NILs 79.0 74.2 76.5 36.0 63.9 46.1 73.5
ML Dis.+NILs+Clust. 78.0 75.6 76.7 41.1 57.4 47.9 74.3

Table 3: Evaluation on ACE 2005 data

ML Dis.+NILs+Clust.: Joint ML system that performs disambiguation, recognition of NILs and
clustering jointly. While we use all predicates and formulas for the TAC data, we do not consider
predicate p9, formula f13 on the ACE data.

4.2.3 Results

Table 3 and Table 4 show the results on the ACE 2005 and English TAC 2011 data set respectively.
We report precision (P), recall (R) and F-measure (F) for the non NILs and the NILs as well as
the overall accuracy (Acc), also known as micro-average. In addition we also present the B3

precision, recall and F-measure for the TAC data sets in order to evaluate the entity clustering
performance.10 Significance is calculated for the overall accuracy using a paired t-test.

4.2.4 Discussion of the Results

The full system, which does joint disambiguation, recognition of NILs and clustering (ML
Dis.+NILs+Clust.), significantly outperforms the other systems in the two tables – except the
best performing system at TAC 2011 (Best system) – with p < 0.01. Bryl et al. (2010) report
on the ACE data an F-Measure of 71.5 for non-NILs, but these results are not comparable
as they use gold mentions instead of system mentions and consider a mention as correctly
disambiguated only if it links to the first mentioned Wikipedia article in the gold standard.
Ratinov et al. (2011) – another state-of-the-art system – report an accuracy of 78.8 and a B3

F-Measure of 76.2 on the TAC 2011 data set (Ratinov and Roth, 2011).

The system ML Dis. is close to WikipediaMiner. It uses only positive evidence, i.e. the two
described WikipediaMiner features, and links each mention to a concept in Wikipedia. No
NILs are identified. Hence the results for the NILs on the ACE data set are the same as for
the first concept baseline (First Concept), the ranking systems (SR I and SR II), which also
assign each mention a concept, and ML Dis.. On the TAC 2011 data set the results for the
NILs differ between the First Concept baseline, the ranking systems (SR I, SR II) and ML Dis..
The difference comes from the fact that the TAC knowledge base is not identifical with the
knowledge base we use for disambiguation. If the system links a mention to an entry in our
knowledge base, which is not part of the TAC knowledge base, it is considered as NIL. The
system ML Dis.+NILs performs disambiguation and recognition of NILs jointly. Compared to

10We use the offical TAC scoring scripts.
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TAC EN Test 2011
Non NILs NILs

P R F P R F Acc B3 P B3 R B3 F
UB 100.0 75.0 85.7 80.0 100.0 88.9 87.5 87.5 87.2 87.4
UBD 100.0 95.2 97.5 95.4 100.0 97.7 97.6 97.6 97.4 97.5
First Concept 61.8 54.2 57.7 76.5 85.9 80.9 70.0 65.4 69.6 67.4
WikipediaMiner 86.1 55.1 67.2 70.0 95.2 80.7 75.2 70.7 73.7 72.2
SR I 72.8 66.5 69.5 81.5 88.5 84.8 77.5 73.7 76.4 75.0
SR II 73.2 66.9 69.9 81.2 88.2 84.5 77.6 73.7 76.5 75.1
SRC II 87.7 59.1 70.6 72.3 95.8 82.4 77.5 73.3 74.6 73.9
Best System 84.6
Median System 71.6
ML Dis. 71.4 65.5 68.3 81.4 88.1 84.6 76.8 72.9 75.7 74.3
ML Dis.+NILs 79.5 64.1 70.9 77.5 92.5 84.3 78.3 74.2 76.6 75.4
ML Dis.+NILs+Clust. 80.3 74.5 77.3 85.1 91.3 88.1 82.9 79.2 81.1 80.1

Table 4: Evaluation on TAC 2011

the two step process (SRC II), which uses the same features, but performs ranking and the
classification of NILs in a cascaded way, the performance of the joint approach (ML Dis.+NILs)
is higher. As the differences between the systems ML Dis.+NILs and ML Dis.+NILs+Clust.
show, addressing clustering and disambiguation jointly improves the results even further. The
improvement mainly comes from two different cases: (1) Mentions with no candidate concepts,
which are recognized as NILs in ML Dis.+NILs are correctly disambiguated and clustered by
ML Dis.+NILs+Clust. While for example ML Dis.+NILs recognized Marinello in “We pretty
much know that Marinello, while on the board, has arranged to get future money” as a NIL,
ML Dis.+NILs+Clust. links it to the correct entry in the knowledge base by also taking into
account other occurrences of Marinello such as “because the fact that Randy Bauer is already
talking about Beatriz Marinello”. (2) Wrongly disambiguated mentions are – thanks to discourse
knowledge – correctly disambiguated. This especially applies to occurrences of common nouns
such as region or friends. Whereas the system ML Dis.+NILs wrongly disambiguated friends as
the TV series, ML Dis.+NILs+Clust. correctly links it to the entry on friendship by taking into
account other occurrences of friends in the text.

5 Conclusions

This paper presents a new approach for joint disambiguation, NIL recognition and clustering
using Markov Logic. Our approach significantly outperforms all baseline systems and shows
state-of-the-art performance. To our knowledge this is the first approach for joint disambiguation
and clustering of concepts and entities. At the moment, we tested on a relatively small data set.
For future work, we will work on scalability and on more linguistically informed features.
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