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ABSTRACT
Text-to-scene conversion requires knowledge about how actions and locations are expressed
in language and realized in the world. To provide this knowlege, we are creating a lexical
resource (VigNet) that extends FrameNet by creating a set of intermediate frames (vignettes)
that bridge between the high-level semantics of FrameNet frames and a new set of low-level
primitive graphical frames. Vignettes can be thought of as a link between function and form
– between what a scene means and what it looks like. In this paper, we describe the set of
primitive graphical frames and the functional properties of 3D objects (affordances) we use in
this decomposition. We examine the methods and tools we have developed to populate VigNet
with a large number of action and location vignettes.

KEYWORDS: text-to-scene conversion, world knowledge, frame semantics, visual semantics,
linguistic annotation, crowdsourcing.
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Figure 1: Mocked-up scenes using the WASH-FRUIT-IN-SINK vignette (“John washes the apple”)
and WASH-FLOOR-W-SPONGE vignette (“John washes the floor”).

1 Introduction

3D graphics authoring is a difficult process, requiring users to master a series of complex menus,
dialog boxes, and often tedious direct manipulation techniques. Natural language offers an
interface that is intuitive and immediately accessible to anyone, without requiring any special
skill or training. The WordsEye system (Coyne and Sproat, 2001) lets users create 3D scenes
by describing them in language. It has been used by several thousand users to create over
10,000 scenes by merely describing them. We have tested WordsEye as an educational tool with
rising 5th grade children in a summer enrichment program where it was found to significantly
improve literacy skills over the students who had taken the more traditional version of the
course (Coyne et al., 2011b). As one of the students said “When you read a book, you don’t
get any pictures. WordsEye helps you create your own pictures, so you can picture in your
mind what happens in the story.” The students were also introduced to WordsEye’s face and
emotion manipulation capabilities – the children loved including themselves and other people in
scenes and modifying the facial expressions. We are currently experimenting with automatically
depicting Twitter tweets as a way to bring text-to-scene visualization to a wider audience and to
test the limits of the system in an open domain with ill-formed text. In this paper we describe
a new set annotation tools and the graphical primitives we have developed in order to build
a knowledge base that maps linguistic constructs into semantic frames representing spatial
relations and other graphical relations.

WordsEye currently focuses on directly expressed spatial relations and other graphically real-
izable properties. As a result, users must describe scenes in somewhat stilted language. Our
goal is to build a comprehensive text-to-scene system that can handle a wide range of input
text. When considering sentences such as John is washing an apple and John is washing the
floor, it becomes apparent that different graphical knowledge is needed to generate scenes
representing the meaning of these two sentences (see Figure 1): the human actor is assuming
different poses, he is interacting differently with the thing being washed, and the water, present
in both scenes, is supplied differently. If we consider the types of knowledge needed for scene
generation, we find that we cannot simply associate a single set of knowledge with the English
verb wash. Instead we need to take into account the arguments of the verb as well.

Knowledge about verbs and their arguments is encoded in FrameNet (Ruppenhofer et al., 2010).
FrameNet is a lexical resource focused on representing semantic relations and their possible
instantiations in lexical items. In FrameNet, lexical items are grouped into frames that represent
their shared semantic structure. A FrameNet frame consists of a set of frame-based roles, called
frame elements (FEs). For example, the COMMERCE_SELL frame includes frame elements for
Seller, Goods, and Buyer. These and other FEs represent the key roles that characterize the
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meaning of the lexical units in that frame. Frames can contain any number of individual lexical
units. The COMMERCE_SELL frame, for example, has lexical units for words like retail, sell, and
vend. The exact expression of FEs for a given sentence constitutes what FrameNet refers to as
a valence pattern. Valence patterns map grammatical roles to frame element for a given verb.
Every verb typically has many valence patterns, representing the various ways that verb can be
used in sentences. So, for the verb give, the sentence John gave the book to Mary has the valence
pattern of: ((Donor Subject) (Theme Object) (Recipient Dep/to)). And John gave Mary the book
has the valence pattern of ((Donor Subject) (Recipient Object) (Theme Dep/NP)). FrameNet
also supports frame-to-frame relations – these allow frames to be inherited, to perspectivize each
other, or to map to a sequence of temporally ordered subframes.

(Coyne et al., 2011a) describes an extension to FrameNet called vignettes. Vignettes are frames
that represent the graphical realization of actions and compound objects such as locations.
Vignettes can be thought of a bridge between the high-level semantics encoded by FrameNet
and the low-level semantics (spatial relations and other graphical properties of objects) required
to construct a 3D scene. Vignettes inherit high-level semantics from FrameNet via normal frame-
to-frame inheritance and decompose into low-level graphical frames using a new SUBFRAME-
PARALLEL frame-to-frame relation. Vignettes can be defined not only for actions but also for
locations or any other compound objects. For example, a living room might contain a sofa,
coffee table, and fireplace in a particular arrangement

There is a long history in artificial intelligence and cognitive linguistics of decomposing meaning
into semantic primitives. These efforts fall into two broad classes – those focusing on primitive
features of objects used to distinguish one object from another (for example in prototype theory
(Rosch, 1973)) and those focused on state changes, temporal relations, and causality (Miller
and Johnson-Laird, 1976). Conceptual Dependency (Schank and Abelson, 1977) is an early
representational system that specifies a small number of state-change primitives into which
all meaning is reduced. In lexical conceptual structure (Jackendoff, 1985), lexical relations
are decomposed into a similar set of primitives. VerbNet (Kipper et al., 2000) grounds verb
semantics into a small number of causal primitives representing temporal constraints tied to
causality and state changes. In contrast to these causally and temporally oriented approaches,
vignettes map semantics into sets of graphical constraints active at a single moment in time.
This allows for and emphasizes contextual entailment rather than causal and temporal reasoning.

In order to apply graphical primitives to objects, it is necessary to know how objects are used and
can be manipulated. The concept of affordances (Gibson, 1977; Norman, 1988) was introduced
in the study of ergonomics and the psychological interpretation of the environment and has
been examined as well from a philosophical perspective (Haugeland, 1995). Affordances are
traditionally considered to be the qualities of objects in the environment that allow people or
animals to interact with them. For example, the door of a refrigerator provides an affordance
that allows access to the interior of the refrigerator, and the handle on a door provides an
affordance that allows the door to be grasped in order to open and close it. We take a slightly
broader view and include as affordances any functional or physical property of an object that
allows it to participate not only in actions with people but also in relations with other objects.

One of our main tasks is to define vignettes to represent a wide variety of actions and locations.
Previous work explored different methods for building location vignettes. Sproat (2001)
attempted to extract associations between actions and locations from text corpora. While
producing interesting associations, the extracted data was fairly noisy and required hand
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editing. Furthermore, much of the information that we are looking for is common-sense
knowledge that is taken for granted by human beings and is not explicitly stated in corpora.
In other work Rouhizadeh et al. (2010) and Rouhizadeh et al. (2011b), Amazon Mechanical
Turk (AMT) was used to collect information about locations of different objects, their parts, and
surrounding objects. Various corpus association and WordNet similarity measures were applied
to filter the undesirable AMT inputs.Reasonably clean data was achieved by this approach.
In Rouhizadeh et al. (2011c) AMT was used for building a low-level description corpus for
locations by collecting free-form text descriptions of room locations based on their pictures.
The WordsEye NLP module was used to extract location elements from processed descriptions.
Objects and other elements of locations were extracted in the form of RELATION–GROUND–FIGURE.
Directly collecting objects of locations with AMT was investigated in Rouhizadeh et al. (2011a).
AMT was then used for annotating the orientation of those objects (for more details see
subsection 4.1).

This paper is structured as follows. In Section 2, we describe the graphical primitives used
in vignettes as well as the set of affordances on 3D objects that enable vignettes to specify
their arguments in a generic way. In Section 3, we describe how we choose and process lexical
patterns to serve as input valence patterns to be used in defining action vignettes. In Section 4,
we describe the annotation tools and graphical user interfaces we have developed to define
location vignettes and action vignettes (with their associated valence patterns). We also describe
the user interface we developed for assigning affordances and normalized part names to 3D
objects. We conclude and describe future work in Section 5.

2 Vignettes and Affordances

In this section we examine, in more detail, the set of primitive graphical frames used by vignettes
and the 3D object affordances used in applying those graphical primitives.

2.1 Primitive Graphical Frames

We observe that visual scenes can be decomposed into a relatively small and recurring set of
primitive graphical relations. These relations represent different spatial and graphical properties
such as positions, orientations, sizes, surface properties, character poses, and facial expressions.
So, for example, the man washing the floor can be decomposed into a set of relations consisting
of the man in a kneeling pose on the floor, with a bucket to his side, and holding a sponge that
he applies to the floor. To capture the different manners of performing actions within the same
high-level semantic frame, we define a specialized type of sub-frame called a vignette (Coyne
et al., 2011a). Vignettes can be thought of as a bridge between form (the way scenes look) and
function (what is happening or conveyed in a scene). They encode and map low-level graphical
relations to the high-level semantics encoded by FrameNet. To make this decomposition, the
following sets of primitive graphical frames (grouped by type) are used:

Venue and time of day: This specifies the typical time of day and the venue. The time of
day is graphically realized by controlling the position and brightness of light sources
within the scene (such as the sun position). The venue represents the local human-scale
area where the action takes place and what can be seen at one time. For example, a
living room or a kitchen would be a venue, but a typical house as a whole would contain
many venues. The venues, themselves, are arrangements of 3D objects, and hence can be
represented by location vignettes.
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Holding/Touching target or patient: These specify that an agent is holding or touching an
object. They vary in how the target object is situated. Arguments are provided to specify
the particular body part and pose involved in holding or touching the object.

GRASP/TOUCH-ON-SELF: button one’s shirt
GRASP/TOUCH FIXTURE: hold a doorknob
GRASP/TOUCH NON-FIXTURE: hold a coffee mug
POSITION-THEME-MANUALLY: put a picture on a wall

Apply Handheld Instruments: These specify a handheld instrument being applied to an
object. Handheld instruments typically have affordances (see section 2.2), such as a
HANDLE that allow them to be held and a INSTRUMENT-HOTSPOT, such as the blade of a knife
or tip of a pencil, that is applied to a target. Undirected instruments (playing a violin)
often involve specialized poses that are associated with the use of those instruments.

APPLY-INSTRUMENT-TO-HELD-PATIENT: write on a handheld notepad
APPLY-INSTRUMENT-USING-WORKSURFACE: cut carrots on a table
APPLY-INSTRUMENT-TO-TARGET: paint the wall
POSITION-THEME-WITH-INSTRUMENT: roast the marshmallow
USE-UNDIRECTED-INSTRUMENT: play the violin. talk on the phone

Using stationary machines/fixtures: Fixtures are large stationary objects. Machines are
fixtures that can be operated to achieve some effect. Machines, such as ovens, can affect
a PATIENT. The patient can rest on the machine’s PATIENT-AREA affordance. Other machines,
such as vending machines, can have INPUT/OUTPUT-AREA affordances. They differ from
instruments in that they are not held or otherwise supported by the user. See Section 2.2
for a listing of affordances.

APPLY-MACHINE-TO-PATIENT: boil the potatoes on the stove
USE-FIXTURE/MACHINE: open the door

Looking/gesturing at target: In these frames, the agent is looking or gesturing at an object
or in some direction. The particular pose or manner of gesturing can be specified.

LOOK-AT-TARGET: glance across the room
GESTURE-AT-TARGET: wave at the stranger
LOOK-AT-WITH-INSTRUMENT: take a picture of friends

Aiming and projectiles: In these frames, the agent is aiming or hurling an object at a remote
target. A projectile can be either included or not.

HURL-PROJECTILE-AT-TARGET: throw the stone, kick the ball
AIM-INSTRUMENT-AT-TARGET : shoot the rifle
AIM-FIXTURE/MACHINE-AT-TARGET : shoot the cannon

Agent-in-Motion: In these frames, the agent is moving, possibly in or with a vehicle. This
frame includes a source or goal location and an area or path for the motion.

SELF-MOTION: swim across the lake
USE-VEHICLE: ride the horse
PUSH-OR-PULL-FIXTURE/VEHICLE: push the wheelbarrow

Humans and Poses: These include facial expressions, body poses, and other body states. In
the two-person interaction case, a set of specialized two-person poses can be specified.

STANCE: stand. jump, sit, ...
FACIAL-EXPRESSION: happy, excited, ...
THOUGHT-SPEECH-BUBBLE: think about home
WEAR: dressed in old pair of jeans
TWO-PERSION-INTERACTION: John hugged Mary
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Low-Level Spatial and Graphical Primitives: This is a grab-bag of lower level primitives
such spatial relations and surface properties (colors, textures, reflectivity). These are
often used to specify relations and properties on objects in the vignette (often to represent
the resulting state of an object from an action) rather than to directly encode the main
action of the input text.

PART-OF: one entity is part of another
POSITION: A flower in a vase. Note that spatial relations rely on the spatial regions

and affordances on the objects. (Coyne et al., 2010) Therefore the exact realization of
spatial relations, like other graphical primitives, will depend on the exact set of arguments
and the affordances they provide.

POSITION-BETWEEN: a figure is between a ground1 and a ground2
ORIENTATION: an entity is facing a target object or direction
SURFACE-ATTRIBUTE: the shininess, color, texture, or transparency of an entity
LIGHT-PROPERTIES: a light source color or brightness
ENTITY-SIZE-SHAPE: the size or shape of an entity
ENTITY-STATE: an entity is folded, crumpled, shattered, etc.

We note the following: 1) These graphically primitive frames themselves can sometimes be
conceptually decomposed into even finer-grained graphical operations. For example, to put a
character in a given pose, it is necessary to individually orient the limbs in a certain way. So it
could be argued that the set of graphical relations described above are not truly primitive. Our
focus, however, is to capture the cognitively salient graphical features of a scene. We therefore
handle these very low-level details in our 3D graphics subsystem rather than attempting to
represent them directly with vignettes. 2) If needed, a graphical frame can specify not just an
entity as an argument, but also what affordance on that entity is used. For example in USE-
FIXTURE/MACHINE, the TOUCH-CONTROL affordance (such as a button or switch to turn on a piece
of electronics) would typically be used. If a non-default value is needed, or there is no default, it
can be specified as an argument to the graphical primitive itself. 3) The graphical primitives can
also include arguments for necessary supports or containers. For example, the various GRASP
primitives specify not only a GRASPED-THEME argument, but also allow a CONTAINER-FOR-THEME.
This allows a single primitive to handle actions like John held the coffee which actually involves
holding a coffee mug rather than the coffee itself. We do this for convenience. In all cases, the
relations between containers and supports could be specified with separate graphical primitives.

2.2 Affordances and Spatial Tags

In order to apply graphical relations to actual 3D objects we need knowledge of the structure
of those objects. For example, opening a door involves grasping the doorknob, and putting
a flower in a vase involves putting the stem of the flower into the container area of the vase.
This knowledge of objects is captured by the notion of affordances. These affordances constrain
how objects and human characters interact with one another in the world. Note that fairly
complex poses like riding a bicycle can be accomplished by using the FOOTHOLD (pedal), GRIP-
CONTROL (handlebars), and SEAT-STRADDLING (seat) affordances. We identified the following set
of affordances by examining over 2000 3D objects in our library and identifying what parts
of those objects would function as affordances. The interface we used for assigning these
affordances to the 3D objects is described in Section 4.3.

Human Location: WALKING-AREA, PATH, WALKTHROUGH-OPENING, DOOR-GATE, VIEWING-WINDOW,
VIEWING-OPENING-AFFORDANCE
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Hotspot: INSTRUMENT-HOTSPOT, MACHINE-PATIENT-AREA, SOUND-SOURCE, LIGHT-SOURCE

Container and Surface: WORK-SURFACE, MACHINE-PATIENT-AREA, STORAGE-AREA, CONTAINER-
BASIN, CAP-COVER, RECEPTICLE

Self-Support: SEAT-WITH-BACK, SEAT, SEAT-STRADDLING, HANDHOLD, FOOTHOLD, HANDHOLD-
FOOTHOLD, LYING-SUPPORT, ARM-REST, LEG-REST, HEAD-REST

Touch-Grip: INSTRUMENT-GRIP, CARRYING-GRIP, OPEN-CLOSE-GRIP, PUSH-PULL-GRIP, TOUCH-CONTROL,
GRIP-CONTROL, PEDAL, EYEPIECE, EARPIECE, NOSEPIECE, MOUTHPIECE, INSERTION-PIECE

Functional area: OUTPUT-AREA, INPUT-AREA, DISPLAY, WRITING-AREA

Spatial regions: BASE, STEM, CANOPY, TOP-SURFACE, BOTTOM-SURFACE, WALL

3 Preparation for Action Vignette Annotation

In this section we discuss how we prepared a set of approximately 1000 core verbs and their
arguments to serve as input for the action vignette annotation process. These verbs were
manually chosen, using subjective judgements, to include verbs that are commonly used as well
as those that are concrete in nature and hence could be readily depicted. We also specified
relative priorities to further guide our annotation efforts. Some of these verbs are shown in
Figure 6. The list of actual verb phrases to annotate was obtained from the British National
Corpus (BNC), which we parsed with the MICA parser (Bangalore et al., 2009). An AWK script
was written to extract verbs from the output along with particles, direct and indirect objects, and
prepositional phrases which convey salient information about the action. These verb-argument
tuples provided the skeletal sentences and valence patterns representing the typical ways these
verbs would be used. It is these verb-argument tuples that would then be annotated.

3.1 Parsing

MICA (Bangalore et al., 2009) is a dependency parser that uses tree insertion grammars and
supertagging. A supertag is an elementary tree of a tree grammar, associated with a lexical
item. The tree insertion grammar MICA is trained on was automatically extracted from a TIG-
converted version of the Penn Treebank. The parser first assigns n-best supertags to an input
token sequence, and then extracts from the lattice of super-tags the most likely complete tree
insertion grammar derivation. Each supertag carries information about the syntactic context the
lexical item may occur in and other lexical information. The Mica post-processor can use this
information to augmented the resulting dependency parse with deep linguistic features, such as
ubcategorization information and voice. Verbal arguments associated with each supertag can be
identified as deep syntactic roles (subject, object, indirect object in normalized active-voice word
order). The referents of empty arguments in control and raising constructions can be identified
and re-attached to their verbs. This makes extraction of verb/core-argument seeds much easier
and more reliable.

3.2 Extraction and Sorting

The script works in the following way: any verb that is not marked as passive voice is recorded
by the script in its lemma form, which then looks for verb particles, objects, and prepositional
phrases. Verb particles, irrespective of their position in the original sentence, are placed with
the verb, and the verb–particle combination is treated as a distinct lexical item. The script
then searches for the direct and indirect objects of the verb. Object pronouns which refer to
people are normalized to someone, and those referring to objects to something; the exception
is them, which is ambiguous in this respect. Reflexive pronouns are similarly normalized to
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oneself. Articles are normalized to a or an, and possessive adjectives to one’s. No other noun
modifiers are preserved. The script then looks for prepositions which are children of the verb,
and finds their objects, making the same modifications to these objects as to direct and indirect
objects. The preposition and its objects are returned as a single prepositional phrase unit. The
direct object, indirect object, and prepositional phrase are returned after the verb in the order
in which they appear in the sentence. Finally, if the script detects an infinitive verb which is
subject-controlled by the verb being processed, the phrase to do something is added to the very
end of the phrase.

There were, at times, problems with the parse which impeded the function of the extractor,
prompting the addition of code in the extractor work around these errors. For example, the
contraction I’m was parsed as two lexical items by MICA: I and ’m. However, ’m was not
recognized as a form of the word am—itself a form of the verb to be—but rather was analyzed
as a distinct verb. Thus, the extractor was modified to detect and fix this particular case.

After a list of verb phrases was produced from the BNC, it was pared down to a more manageable
size. First, the verb phrases were sorted by frequency, so that the most common phrases appeared
at the top of the list. From this, we filtered out verb phrases based on whether they were part
of our list of core verbs. Some examples of final extracted verb-argument tuples:
(131 (:VERB "eat") (:DIRECT-OBJECT "something")) – 131 verb phrases with eat and a pronoun.
(24 (:VERB "eat") (:DIRECT-OBJECT "a meal")) – 24 verb phrases with eat and meal.

4 Annotation Methods and Tools

In this section we describe some of the different methodologies and user interfaces we have
developed for defining vignettes and assigning affordances and normalized part-names to 3D
objects.

4.1 Using AMT to build location vignettes

We have been investigating the use of Amazon Mechanical Turk (AMT) for building locations
vignettes. The inputs to our AMT tasks are ’typical’ photos of different rooms, that show large
objects typical of that particular room. We carefully selected the picture from the results of
image searches using Google and Bing. Turkers of each task had to be in the US and had
previous approval rating of at least 99%. Restricting the location of the Turkers increases the
chance that they are native speakers of English, or at least have good command of the language.

Phase 1: Collecting the functionally and visually important objects of rooms

The functionally important objects for a room are those that are required in order for the room
to be recognized or to function properly. The visually important objects are those that help
define the basic structural makeup of that particular room instance, such as large objects and
those that are fixed in location. Examples of those objects in a kitchen can be “stove", “oven",
“sink", “cabinets", and so on. After collecting the objects from several AMT tasks, we post-process
them with the following steps (Rouhizadeh et al., 2011a):

1. Manual checking of spelling and converting plural nouns to singular.
2. Removing conjunctions such as “and",“or", and “/".
3. Substituting the objects belonging to the same WordNet synset with the most frequent

word of the synset. (“tub", “bath", and “bathtub"⇒ “bathtub")
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4. Substituting words with major substrings in common (“night stand", “night-stand" ⇒
“nightstand").

5. Selecting the head nouns of compounds (“computer monitor"⇒ “monitor").

Phase 2: Collecting the visual properties of the rooms

Turkers should determine the room layout (diagonal or horizontal), room size (small, medium,
or large), ceiling height, wall texture (painted color, wallpaper pattern, fabric, wood paneling,
tile, concrete, or stone), and floor texture (tile, wood, carpeted, stone, or concrete).

Phase 3: Collecting the spatial relations between the objects

For each object O that is collected in phase 1 Turkers should answer the following questions:
(see Figure 2)

1. Is O located against a wall? If so, determine the wall.
2. Is O near another object? If so, determine the object, determine the direction (front, back,

or side), and the distance (1 ft, 2 ft, 3 ft, or 4 ft or more).
3. Is O supported by (i.e. on, part of, or attached-to) another object? If so, determine the

object.
4. Is O facing another object? (e.g. chair facing a table) If so, determine the object.

We have completed phases 1 and 2 for 85 rooms and are now performing phase 3 for those
rooms. To evaluate the results of phase 1, we compare the objects we collect to a gold-standard
set of objects that are found in five rooms compiled by an expert. 91% of our collected objects
were correct (precision) and we could gather 88% of the objects that we expected (recall).

4.2 Defining Location Vignettes using a Text-to-Scene System
We are also using WordsEye itself to define location vignettes for rooms (see Figures 3, 4).
Annotators use WordsEye to textually describe rooms, and in the process see what those rooms
look like. Those textual descriptions correspond to the graphical relations needed to define
vignettes. We have currently defined about 50 fairly detailed rooms of different types using
this method. The main advantage over the menu driven approach described in 4.1 is that the
annotator can much more quickly and easily describe simple spatial relations (e.g. the bed is
against the wall and 3 feet to the right of the dresser) than finding and filling in parameters for the
objects, the relations, and their arguments on a complex set of menus. In addition, this method
also has advantages over “working blind” with either menus or the purely textual descriptions
described in Rouhizadeh et al. (2011c). The visual feedback of seeing the location of the room
as it is described lets the annotator gauge how their specifications will actually be interpreted
and depicted. In addition, the annotator can work incrementally and base additional input on
an actual rendered scene rather than relying on a fleeting mental image or an interpretation of
existing text or menu specifications. Furthermore, this makes it easier for annotators to use
already-defined locations as a textual and visual starting point for additional variations.

Using the text-to-scene system to depict locations as they are described also serves to ensure that
the inputs are well formed. All inputs are parsed and converted to a semantic representation
consisting of objects and graphical primitives. As a result the input text is automatically
converted into the graphical relations used by the vignette being defined. No post-processing is
required. This applies not only to the relations but also to the specific object types that are used
in the location. For example, if the user specifies that a chair is in a kitchen, they can pick the
specific type of chair and avoid inappropriate chairs like lounge chairs and electric chairs.
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Figure 2: Collecting spatial relations between objects in Phase 3 of the AMT task

Figure 3: Kitchen location vignette defined with WordsEye

Figure 4: Other location vignettes defined with WordsEye
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4.3 Assigning Part Names and Affordances

WordsEye utilizes a library of 2200 common 3D objects. The parts of these objects are often
named (by the 3D artist who created them) with some abbreviated form of a normal English
word. For example, the left and right tusks on one of the 3D models for an elephant are named
ltusk and rtusk. In addition to normalizing part names, we need to specify which parts function
as affordances. We developed a web-based user interface to assign both a normalized part name
and any corresponding affordances for every part (see Figure 5).

It is important to note that we are defining parts and affordances on actual 3D objects rather
than on conceptual types in the ontology. This eliminates a typical problem in ontologies where
higher-level concepts define properties that may not apply to all lower level concepts. For
example, in WordNet (Fellbaum, 1998), the synset shoe has a meronym (part designation) of
shoelace. Not all types of shoes, however, have shoelaces. In particular, the synset loafer is a
hyponym of shoe, but loafers don’t have shoelaces. Since our taxonomy contains actual 3D
objects, we can instead assign the exact set of parts, affordances, and other properties that
apply to those specific objects. We can then infer by induction that most shoes have laces, but
not all.

We have successfully annotated our entire 3D library in this manner, in the process renaming
about 18,000 parts and assigning 2,400 affordances. Since our interface lets the annotator
assign part names by typing in a word, there were cases of unknown or misspelled words. There
were also cases of ambiguity, with multiple word senses for the same input part name. These
were fixed in a post-process by automatically finding all problematic cases (those with either no
known word sense or more than one) and manually assigning the correct sense.

Figure 5: Parts and affordances for a door 3D object

4.4 Defining Action Vignettes

Action vignettes are specialized FrameNet frames that represent different ways of decomposing
an action into graphical primitive frames. Like other frames, they can be evoked by a lexical
item in its syntactic context. In order to simplify the annotation process, we are currently
mapping vignettes directly to valence patterns, bypassing any corresponding FrameNet frames.
We are decoupling the vignette definition process from FrameNet for a couple reasons. First,
many common verbs (such as bounce) have no defined lexical items within FrameNet. About
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17% of our core verbs have no FrameNet equivalent. Secondly, the mapping from frames to
vignettes would complicate and slow down the annotation process, forcing the annotator to
understand much of FrameNet in addition to our graphical primitives. These problems will be
addressed in future work (see Section 5).

Annotating action vignettes involves mapping each verb-argument tuple to sets of primitive
graphical frames representing how that verb (with arguments) would be depicted. See Figure
7. These decomposed tuples implicitly define new vignettes, where the tuples correspond to
valence patterns that specify when that vignette is invoked. Since many tuples can be depicted
in the same basic manner (albeit with different input arguments), we allow inheritance between
vignettes. Inherited vignettes decompose to the same set of graphical primitives as their parent,
but can override the values of the arguments. For example, wash an apple and wash a pear
would invoke the same vignette, which we can think of as WASH-FRUIT-IN-SINK. The user interface
supports this functionality by allowing the annotator to select and assign multiple input tuples
to the same vignette.

We have so far annotated about 90 core verbs using this interface. In the process, we have
specified 450 top-level vignettes and 2500 inherited vignettes (some of which override the
inherited values). We have found that the original set of graphical primitives (Section 2.1) has
remained fairly stable during this process, with an occasional new parameter or value type
being added as new cases were encountered. We have made changes to the user interface (for
example, adding different sorting keys and viewing options) based on experience using it. See
Figure 8.

Figure 6: Action Vignette Browser for selecting verbs and showing annotation status
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Figure 7: Action Vignette Editor for wash fruit and chop carrot

Figure 8: Action Vignette Editor. Left side shows vignette for the current input pattern. Top-left
shows vignette arguments and bottom-left shows graphical decomposition applied to those
arguments. Right side shows input tuples. Color coding is used on tuples to denote inheritance
relations and annotation status. Different filtering and sorting options allow the annotator to
focus on particular valence patterns.

691



5 Conclusion and Future Work

In this paper we have presented approaches to acquiring real-world knowledge to be used
in a text-to-scene system. The core of our approach is embodied in the notion of vignettes.
Vignettes are frames that are decomposable into grounded graphical relations. To implement
vignettes we haved defined a specific set of graphical primitives that allow us to map between
high-level to low-level semantics. These graphical primitives enable a wide variety of scenes
to specified with a sufficient level of detail. In order to apply these graphical primitives to
3D objects we have defined a set of affordances representing the structure of those objects
and how they are used and manipulated. Finally, building on this framework of vignettes,
graphical primitives, and affordances, we have developed several methods for populating our
resource with both locations and action vignettes. For action vignettes, this involved preparing
a corpus of verb-argument tuples to be used as input data and developing tools to annotate that
data with vignettes. To define location vignettes we used both AMT crowdsourcing methods
and WordsEye, our text-to-scene system, as an annotation tool itself. Our resulting resource
(called VigNet) is a lexically-oriented knowledge-base with lexical inputs mapping to vignettes,
which in turn map to graphical primitives and actual 3D objects. VigNet will be made publicly
available at http://www.cs.columbia.edu/speech/text2scene.

Future work includes finishing the vignette annotation process. In addition, action vignettes, as
defined in the user interface, will require some amount of post-processing in order to be used.
In particular, we need to handle unknown words and word sense ambiguity issues for those
words that were typed in by the annotator. Those will be normalized and disambiguated in a
separate semi-automatic pass as we did for part names (Section 4.3). We will also perform a
separate post-processing task to link vignettes to their corresponding FrameNet frames.

One main challenge in using vignettes is that there won’t be a vignette to match every possible
input. Instead, it will be necessary to generalize the input arguments to find the closest vignette.
For example, a vignette defined for wash an apple (using a sink) can be applied to washing any
small round fruit. This is partially addressed by annotators listing multiple possible values to
fill arguments when defining the vignette. In general, however, finding the closest vignette will
involve estimating the semantic distance between the arguments of the candidate vignettes
and those of the input sentence. To do this, we will leverage information in our ontology that
specifies the sizes, shapes, substances, and other semantic properties of all 3D objects and their
parents. We also note that vignettes, themselves, can explicitly specify arbitrarily complex sets
of constraints and restrictions on their arguments to help make these matches.

A second major challege in using vignettes is to compose actions vignettes with location vignettes
in the course of text-to-scene generation. We intend to accomplish this as follows. If an action is
mentioned, then the default venue for that action will evoke a set of possible location vignettes.
Any affordances required by the action will be unified with those provided by the location.
For example, the vignette for chop carrots, might supply a default VENUE of a kitchen and
APPLY-INSTRUMENT-USING-WORKSURFACE. The kitchen vignette includes a counter and kitchen
table, both of which provide a WORK-SURFACE affordance.
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