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Abstract

In the biomedical field, the key to access information is the use of specialized terms. However,
in most of Indo-European languages, these terms are complex morphological structures.
The aim of the presented work is to identify the various meaningful components of these
terms and use this analysis to improve biomedical Information Retrieval. We present an
approach combining an automatic alignment using a pivot language, and an analogical
learning that allows an accurate morphological analysis of terms. These morphological
analysis are used to improve the indexing of medical documents. The experiments reported
in this paper show the validity of this approach with a 10% improvement in MAP over a
standard IR system.
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1 Introduction

In the biomedical domain, terminologies are the keystone of many applications. They
are used for structuring the knowledge as well as retrieving and formalizing information
contained in documents. For instance, the well-known MeSH®(Medical Subject Headings)
www.nlm.nih.gov/mesh terminology is developed to index the very popular PubMED
database (www.pubmed.gov). In most Indo-European languages, biomedical terms also have
interesting inner characteristics in that they tend to be complex morphological constructions.
Indeed, they are often resulting from the composition of several Greek or Latin roots, prefixes,
and suffixes. This morphological complexity is an important point to take into account for
basic operations like handling, understanding, translating or building semantic relationships
between these terms, and furthermore for higher level applications like machine translation
or, as we demonstrate in this paper, Information Retrieval (IR).

In this paper, we investigate the development of morphological resources and show how a
biomedical Information Retrieval task can benefit from such resources. More precisely, we
present several techniques aiming at breaking up a term into its morphological components,
namely morphs!, while labeling these morphs with some semantic information. To the
contrary of existing studies (Deléger et al., 2008; Marké et al., 2005a, for example) which
are chiefly based on human expertise, the techniques proposed here rely on unsupervised or
semi-supervised approaches.

The original idea at the heart of our approach is to use the multilingualism of existing
terminological databases. We exploit Japanese as a pivot language, or more precisely terms
written in Kanjis, to help decompose the terms of other languages into morphs and associate
them with the corresponding Kanjis, in a fully automatic way. Thus, Kanjis play the role of
a semantic representation for morphs. The main advantage of Kanjis in this respect is that
Japanese terms can be seen as a concatenation of elementary independent words that may
even be found in general language dictionaries. For example, the term photochemotherapy
can be translated in Japanese by J&{L2{%; splitting and aligning these two terms gives:
photo <+ ¥ (light’), chemo < L% (*chemistry’, 'medicine’), therapy <+ ¥% (‘therapy’). As
it is shown here, each morph is associated with Kanjis that may be used as descriptors
more convenient to index a document than the term itself. In particular, we demonstrate
here how such correspondences between morphs and Kanjis can be exploited, in different
ways, to improve the results of an IR system.

The morphological analysis, and the document indexing that it allows, thus chiefly relies on
an alignment step between morphs and Kanjis. This alignment is performed with an original
technique, suited to the biomedical domain and based on a Forward-Backward algorithm
and on analogy learning. In this paper, different versions of this alignment approach are
proposed, either fully unsupervised, or semi-supervised.

The paper is structured as follows. After a review of the related studies in Section 2, we
present the unsupervised alignment technique, its semi-supervised variants and their results
respectively in Sections 3, 4 and 5. Then, in Section 6, the use of the obtained morphological
decompositions in an IR framework is explained. Evaluations, conducted on a biomedical
IR test collection, are detailed in Section 7.

1Following Mel’¢uk (2006), we distinguish between morphs, elementary linguistic signs (segments), and
morphemes, equivalence classes with identical signified and close signifiers.
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2 Related work

Many studies have used morphology for terminological analysis. This is more particularly
the case in the biomedical domain where terminologies are central to many applications and
where terms are constructed by operations like neo-classical composition (e.g. chemotherapy,
built from the Greek pseudo-word chemo, and therapy), which are very regular, and very
productive. Unfortunately, no comprehensive database of morphs with semantic information
is available, and splitting a term into morphs is still an issue. One can distinguish two
views of the use of morphology as a tool for term (or word) analysis. In the lexematic view,
relations between terms rely on the word form, but without the need to split them into
morphs (Grabar and Zweigenbaum, 2002; Claveau and L’'Homme, 2005; Hathout, 2009).
Beside this implicit use of morphology, the morphemic view chiefly relies on splitting the
term into morphs as a first step. Many studies have been made in this framework. They
either rely on partially manual approaches in which an expert gives morphs and combination
rules (Deléger et al., 2008; Marké et al., 2005a) or heuristics (Baud et al., 1999), or on more
automatic approaches. The latter usually try to find recurrent letter patterns in word lists
as morph-candidates (Kurimo et al., 2010). But such techniques cannot associate a semantic
meaning with these morphs. To our knowledge, our approach is the first to make the most
of a pivot language to perform an automatic morphological analysis, as we propose in this
study. It can be explained by three peculiarities of the biomedical domain: the morphology
of its terms is known to be very regular, with few exceptions, the morphological composition
(producing compounds) is very fertile, and there exists many multilingual terminologies.

From a more technical point of view, the use of a bilingual terminology also evokes studies
in transliteration, particularly Katakana or Arabic (Tsuji et al., 2002; Knight and Graehl,
1998, for example), or in translation. In this framework, Morin and Daille (2010) propose to
map complex terms written in Kanjis with French ones, by using morphological rules. Yet,
here again, these rules are to be given by an expert, and this study only concerns a special
case of derivation. Moreover such an approach cannot handle neo-classical compounds. In
other studies, translation methods for biomedical terms which considers terms as simple
sequences of letters have been proposed (Claveau, 2009, inter alia). Such approaches share
some similarities with the one presented here: they require aligning the words at the
letter level. In most cases, this is performed with 1-1 alignment algorithms (one character,
possibly empty, of the source language word is aligned with one another character of the
target language word), but in recent work about phonetization (Jiampojamarn et al., 2007),
authors have shown that the interest of many-to-many alignment.

Concerning the use of morphological processing in Information Retrieval, the literature is
more important (Moreau and Sébillot, 2005, for a panorama). Although the results depend
on numerous factors (language, morphological tool, size of collection, domain...), there is
a broad consensus about the benefit of simple processes like stemming (or, rarer in IR,
lemmatization): such tools are available in many languages, conceptually simple, and they
usually improve the results of IR systems. It is noteworthy that the only morphological
phenomena addressed by these tools are inflection and derivation. As they mostly perform
simple operations on the prefix and suffix of the words, morphological composition remains
out of their scope. Yet, many authors have noted the importance of clever tokenisation
based on morpheme for the biomedical indexing (Jiang and Zhai, 2007; Trieschnigg et al.,
2007), but without proposing effective solutions. Recently, advanced morphological tools
developed in the framework of MorphoChallenge have been applied to IR problems (Kurimo
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et al., 2009). Here again, the authors have observed an improvement for some languages,
such as Finnish which is highly compositional, but results on English were significantly
lower than when using a simple stemmer. In that respect, the good results presented in the
next sections confirm the interest of our approach.

3 Analogy for Alignment

As it was previously explained, our morphological decomposition technique relies on the
alignment of terms with their translation in a pivot language (Japanese, Kanjis). Thus,
this approach makes a strong parallelism assumption: the term in Kanjis must be built
in the same way than the one in the studied language. This hypothesis may appear as
unrealistic, but the results presented hereafter show that it is reasonable. It is noteworthy
that the choice of Kanjis as pivot is not fortuitous. Kanjis do not have morphology, their
form is therefore invariable whatever their position in the term. One only needs to test a
few combinations when trying to segment a term made of Kanjis, compared with a term
written with the latin alphabet. Kanjis are independent of the Greek and Latin roots
used in most European languages. This prevents learning irrelevant regularities based on
common etymology. Last, a segment of a Kanji term is most of the time a valid Kanji
term by itself (to the contrary of morphs). It is thus possible to use dictionaries to access
their meaning. These different reasons make Kanji-based Japanese a very good pivot when
compared to other alternatives.

Our alignment technique is mainly based on an Expectation-Mazimization (EM) algorithm
that we briefly present in the next sub-section (Jiampojamarn et al., 2007, for more details
and examples of its use). The second sub-section explains the modification made to
this standard algorithm so that it can naturally and automatically handle morphological
variation, which is a phenomenon inherent to our morph splitting problem.

3.1 EM Alignment

The alignment algorithm at the heart of our approach is standard: it is a Baum-Welch
algorithm, extended to map symbol sub-sequences and not only 1-1 alignments. In our
case, it takes as input French terms with their Kanji translations, taken from a multilingual
terminology for instance. The maximum length of the sub-sequences of letters and Kanjis
considered for alignment are parametrized by mazX and mazY .

For each term pair (#7,y") to be aligned (T and V being the lengths of the terms in letters
or Kanjis), the EM algorithm (see Algorithm 1) proceeds as follows. It first computes
the partial counts of every possible mapping between sub-sequences of Kanjis and letters
(Expectation step). These counts are stored in table 7, and are then used to estimate the
alignment probabilities in table § (Mazimization step).

The Expectation step relies on a forward-backward approach (Algorithm 4): it computes the
forward probabilities o and backward probabilities 8. For each position ¢,v in the terms,
t,, is the sum of the probabilities of all the possible alignments of (z%,y?), that is, from
the beginning of the terms to the current position, according to the current alignment
probabilities in ¢ (cf. Algorithm 2). f;, is computed in a similar way by considering
(¥, yY). These probabilities are then used to re-estimate the counts in «. In this version
of the EM algorithm, the Mazimization (Algorithm 3) simply consists in computing the &
alignment probabilities by normalizing the counts in .
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Algorithm 1 EM Algorithm

Algorithm 3 Maximization

Input: list of pairs (z7 , y")

while changes in § do
initialization of v to 0

for all pair (z7 , 3" ) do
~ = Expectation(z? , yV
§ = Maximization(~y)

return ¢

, max X, mazY

, mazX , mazy , )

Algorithm 2 Forward-many2many

T 4V, mazX, maxy

0,0 :
for t =0...T do
for v =0...V do
if (t>0Vov>0) then
aty =0
if (v>0At>0) then
for i =1..mazxX s.t. t—1>0 do
for j ..mazxY s.t. v—j>0do
Qi += 5(I§_i+1yyg_j+1>0¢z—1,v—]
return o

Input: ~
for all sub-sequence a s.t. y(a,-) > 0 do
for all sub-sequence b s.t. y(a,b) > 0 do
_ _(ab)
8(ab) = w5
return §

Algorithm 4 Ezpectation

Input: (z7,y") , mazX, mazy, ~

a := Forward-many2many( zT YV | mazX,
mazy )
B := Backward-many2many( 2T yV | mazX,
mazy )

if ap v > 0 then
fort =1..T do
for v =1...V do
for i = 1...maxX s.t. t —i >0 do
for j = 1..mazxY st. v—j >0do
7(z§—i+1vy5—j+1) +=
ai—i,u—jé(zz,wﬂ-ylf,]Jrl)31.1;
TV

a
return -y

The EM process is repeated until the probabilities § are stable. When the convergence is
reached, the alignment simply consists in finding the mapping that maximizes (7, V). In
addition to this resulting alignment, we also store the final alignment probabilities d, which
are used to split unseen terms (cf. Section 6.2).

This technique is not very different from the one used in statistical translation. Yet, some
particularities are worth noting: this approach allows us to handle fertility, that is the
capacity to align from or to empty substrings (for lack of space, it does not appear in the
above simplified version); conversely, distortion, that is reordering of morphs, cannot be
handled easily without major changes in this algorithm.

3.2 Automatic morphological normalisation

The maximization step simply compute the translation probabilities of a Kanji sequence
into a letter sequence. For example, for the Kanji B (‘bacteria’), there may exist one
entry in § associating it with bactérie, one with bactério (as in bactério/lyse) and another
one with bactéri (in myco/bactéri/ose), each with a certain probability. This dispersion
of probabilities, which is of course harmful for the algorithm, is caused by morphemic
variation: bactério, bactérie, and bactéri are 3 morphs of the same morpheme, and we would
like their probabilities to reinforce each other. The adaptation we propose aims at making
the maximization phase able to automatically group the different morphs belonging to a
same morpheme. To achieve this goal, we use a simple but well suited technique relying on
formal analogical calculus.

3.2.1 Analogy

An analogy is a relation between 4 elements that we note: a : b :: ¢ : d which can be read a is
for b what ¢ is for d (Lepage, 2000, for more details about analogies). Analogies have been
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used in many NLP studies, especially for translation of sentences (Lepage, 2000) or terms
(Langlais and Patry, 2007; Langlais et al., 2008). Analogies are also a key component in
the previously mentioned work on terminology structuring (Claveau and L’'Homme, 2005).
We rely on this latter work to formalize our normalization problem. In our framework, one
possible analogy may be: dermato : dermo :: hémato : hémo. Knowing that dermato and
dermo belong to a same morpheme, one can infer that this is the case for hémato and hémo.
Such an analogy, build on the graphemic representation of words, is said a formal analogy.

After Stroppa and Yvon (2005), formal analogies can be defined in terms of detOrlZathIlb.
Let us note & the (non-commutative) concatenation operator at the rliht abcéBd = abed),
and @ its assoc1ated string subtraction operator (abc@d@d = abc@c@c = abc), and
similarly for EB and © operating at the left of the first argument. Let a be a string (a term
in our case) over an alphabet ¥, a factorization of a, noted f,, is a sequence of n factors
fo=(fL, ..., f), such that a = f;%ff%%f; A formal analogy can be defined by as:

Definition 1 Y(a,b,c,d) € ¥,[a : b :: ¢ : d] iff there exist factorizatiom (fa, fo, fer fa) €
(™) of (a,b,c,d) such that, Vi € [1,n], (fE, f) € {( D, (fL fR } The smallest n for
which this definition holds is called the degree of the analogy.

For most European languages, as French and English, morphology is mostly concerned
with prefixation and suffixation. Thus, we are looking for formal analogies of degree at
most 3 (ie, 3 factors: prefix @ base @ suffix). In our approach, such analogies are searched
by trying to build a rule rewriting the prefixes and the suffixes to move from dermato to
dermo and to check that this rule also applies to hémato-hémo. The base is considered as
the longest common sub-string (lcss) between the 2 words. In the previous example, the
rewriting rule r would be:

r = less(morphy ,morphs) 5 ato <6_9 o.

This rule makes it possible to rewrite dermato into dermo and hémato into hémo; thus,
hémato,hémo is in analogy with dermato,dermo.

3.2.2 Using analogy for normalization

The main problem is that we do not have examples of morphs that are known a priori
to be related (like dermato and dermo in the previous example). Thus, we use a simple
bootstrapping technique: if two morphs are stored in v as possible translations of the same
Kanji sequence, and if these two morphs share a sub-string longer than a certain threshold,
then we assume that they both belong to the same morpheme. From these bootstrap pairs,
we build the prefixation and suffixation rewriting rules allowing us to detect analogies, and
thus to group pairs of morphs (which can be very short, unlike the bootstrapping pairs).
The more a rule is found, the more certain it will be. Therefore, we keep all the analogical
rules generated at each iteration along with their number of occurrence, and we only apply
the most frequently found ones. The whole process is thus completely automatic.

This new Mazimization step is summarized in Algorithm 5. It ensures that all the morphs
supposed to belong to the same morpheme have equal and reinforced alignment probabilities.

4 Semi-supervision and bootstrapping

The approach described above can be considered as unsupervised since no example of
alignment or decomposition is provided. Yet, in some cases, expert knowledge is available
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Algorithm 5 Maximization with analogical normalization

Input:

for all sub-sequence a s.t. y(a,-) > 0 do

for all mi,ma s.t. y(a,m1) > 0A~(a,mz2) > OA less(mi, mz) > threshold do
build the prefixation and suffixation rule r for mj, ma
increment the score of r

for all sub-sequence b s.t. y(a,b) > 0 do
build the set 4 of all morphs associated to b with the help of the n most frequent analogical rules
from the previous iteration

=, 0,0
LICR) Fp e —
y(a, )
z
return ¢

and can be used to add some supervision to this morpho-semantic alignment task. It is
important to note that this human intervention can be more or less costly and requires more
or less expertise. While manually building a full morphological resource from scratch is a
tedious task, providing light information during the alignment process is more accessible.
In the following sub-sections, we propose different strategies to improve the unsupervised
alignment process, implementing different trade-off between human cost and performance.

4.1 Active alignment

In analogy with active learning (Settles, 2009), the first semi-supervised strategy that we
propose is active alignment. Its principle is the following: a human expert, the oracle, adds
information about the pair during the expectation step. Different information can be used:
decomposition of the Kanji term, of the English term, partial or full alignment. The interest
of these pieces of information is twofold. First, it helps reduce the complexity, by avoiding
to consider certain alignments in the pair. Secondly, it possibly improves the final results
by reinforcing the probability for this pair on a few realistic alignments.

From an algorithmic point-of-view, the implementation is straightforward. The information
provided by the oracle is interpreted as a set of constraints on the possible decomposition
and/or alignments used to compute .y, B, and v(zﬁ_iﬂ,y;’_ﬁl) in the Forward,
Backward, and Expectation steps respectively.

As for active learning, one can think of different strategies to choose the pairs to be presented
to the oracle (Settles, 2009). The goal is of course to find the strategy that best helps the
alignment algorithm and thus results in a faster convergence and/or better performance.
In this paper, two strategies are experimented and both will ask the oracle for providing
full alignment of a pair. The first one is a random strategy and serves as baseline: at
each iteration, randomly selected pairs are proposed to the oracle. The second strategy
is a difficulty-driven one: at each iteration, pairs with many equi-probable alignments are
proposed to the oracle. In practice, the equi-probability is measured with the probability
gathered at the previous iteration.

4.2 Bootstrapping the oracle

The previous active alignment approach can also be used, to some extent, without human
intervention. Indeed, when processing multiple languages, it is sometimes possible to make
the most of the existing probabilities from a language L1 to help estimate the alignment
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probabilities for the new language L2. Several ways to use these alignment probabilities of
other languages can be imagined. In the experiments presented below, we used a simple
approach. We adopt the difficulty-driven presented above, but instead of presenting the
pairs (of L2) to a human oracle, they are processed as follows:

if the Kanji term is known in the L1 alignment pairs, the closest term of L1 (edit distance)
among the known translations is chosen; this L1-term and the Kanji term are then aligned
and the alignment is propagated to the L2 pair. This step is done by representing alignment
as characters in the L1 term and by adding the marks in L2 so that it minimizes the edit
distance.
— if the Kanji is not known, the most probable alignment, based on the previous iteration
probabilities is proposed.

5 Experiments
5.1 Evaluation Data

The data used in the experiments presented below come from the UMLS MetaThesaurus
(Tuttle et al., 1990). The MetaThesaurus groups several terminologies for several languages
and associates to each term a concept identifier (CUI). The CUI are language independent
and thus make it easy to build lists of terms in the spotted language with their Japanese
equivalents. In this paper, we present experiments for English and French. In both cases,
we only considered Japanese terms composed of Kanjis, and only simple (one-word) French
or English terms. About 14,000 English-Kanjis pairs and 8,000 French-Kanjis ones are

2.9

formed this way. An ending mark (’;’) is added to each French or English term.

We randomly selected 1,600 pairs for French and 500 for English in order to evaluate the
performance of our alignment technique. These pairs have been aligned manually to serve
as gold standard.

5.2 Alignment results

In the different experiments presented below, the performance is evaluated in terms of
precision: an alignment is counted as correct only if all the components of the pair are
correctly aligned (thus, it is equivalent to the sentence error rate in standard machine
translation).

For each pair, the EM algorithm indicates the probability of the proposed alignment.
Therefore, it is possible to only consider alignments having a probability greater than a
given threshold. By varying this threshold, we can compute a precision according to the
number of terms aligned. Figures 1 and 2 respectively present the results obtained on
the French and English test pairs. We indicate the curves produced by the EM algorithm
with and without our morphemic normalization. For comparison purpose, we also report
the results of giza++ (Och and Ney, 2003), a reference tool in machine translation. The
different IBM models and sets of parameters available in giza++ were tested; the results
reported are the best ones (obtained with IBM model 4 without distortion).

As expected, the interest of the morphemic normalization appears clearly in these two
experiments; in the worst case (that is, when all the terms are kept for alignment), it yields
a 70% precision for French and 80% for English. Indeed, the normalization brings a 10%
improvement whatever the number of aligned pairs. Normalization also has an interest
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in terms of complexity since it reduces the needed iteration number by improving the
convergence of the EM estimation.

A manual examination of the results shows that most of the errors are caused by the
falsification of our hypothesis: some French-Japanese pairs cannot be decomposed in a
similar way. For example, the French term anxiolytiques (anxiolytics) is translated by a
sequence of Kanjis meaning literally 'drugs for depression’. Among these errors, some pairs
imply terms that are not neo-classical compounds in French, Japanese or both (eg. méninges
(meninges) is translated by & 'brain membrane’). Other errors are caused by a lack of
training data: some morphs or sequences only appear once, or only combined with another
morph, which mislead the segmentation.

5.3 Semi-supervised approaches

To compare the two active alignment strategies and the bootstrapped one presented in
Section 4, we are interested in the alignment performance and the convergence speed.
Thus, Figure 4 presents, for these three semi-supervised approaches together with the
original unsupervised version, the precision on the French dataset after different number
of iterations of the EM loop. For comparison purposes, we also report the results of the
original unsupervised version. For a fair comparison between the unsupervised versions
requiring the oracle, the same amount of pairs (20) is presented to the oracle at each
iteration. The bootstrapped version is based on the alignment probabilities gathered from
the English-Kanji alignment task. Of course, to prevent any bias, none of the pairs processed
by the oracle are used as test pairs.

As expected, the three active alignment strategies converge faster than the original one,
but also yield better overall results. Adding information at each iteration clearly helps
the alignment to produce more relevant association between Kanjis and morphs. The
difficulty-driven strategy obtains good results. In particular, it outperforms the random
strategy after a few iterations. Before that, when iteration < 5, the probabilities collected
are not reliable enough to propose interesting pairs to the oracle, and the oracle even seems
to decrease the performance of the alignment. The combination of this strategy with the
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bootstrapping also performs better than the original version, but not as well as the real
oracle one. This result can be explained by the fact that the difficulty-driven strategy asks
for pairs that are difficult to align, not only for the studied language (here, French), but
also for the one serving as bootstrap (English). Nonetheless, it still remains a good option
to improve the results without any human supervision.

6 Morpho-semantic analysis for Information Retrieval

As it was previously said, biomedical Information Retrieval (IR) has some important
characteristics due to the use of specialized terms. In that respect, taking into account
rich morphological information has already been proved useful, but only with hand-crafted
resources (Marké et al., 2005b). Beside the intrinsic evaluation of our approach presented
in the previous section, we evaluate its use in a large scale IR experiment in English.

6.1 Morpho-semantic graphs

Once all the terms are aligned, one can study the recurrent correspondences between English
morphs and Kanjis. The more a morph is aligned with a sequence of Kanjis, the more
they are ’semantically’ related. All these links can be represented as a graph: the vertices
represent Kanjis and morphemes (i.e a set of morphs grouped during the analogical step
of the alignment), and the edges are weighted according to the number of times that a
particular morpheme is aligned with a Kanji sequence among the 14,000 training pairs
from the umls. Figure 3 shows a toy example of such a graph. The size of the edge lines is
proportional to the associated weight.

This representation allows us to shed light on different types of semantic relations between
the morphemes. It is done by exploring the neighborhood of each morpheme: each vertex
receives an amount of energy which is propagated to the connected vertices proportionally
to the edge’s weight. For instance, Figure 5 presents the closest morphemes reached, in the
form of tag clouds, for the French morpheme ome (oma in English, a suffix for cancer-related
terms). The size and color represent the energy that reach the neighboring morpheme
vertices. The reached vertices are expected to be conceptually related and to exhibit
synonym or quasi-synonym morphemes of the suffix ome. It is interesting to see that other
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related suffixes are found, but also prefixes like onco.

The alignment and the segmentation produced by our algorithm also make it possible
to study the co-occurrences of morphemes in English (or French) terms. One can study
first-order affinities (which morphemes are frequently associated with other morphemes)
and, more interesting, second order affinities (morphemes sharing the same co-occurring
morphemes). The second-order affinity allows us to group morpheme according to their
paradigm. For instance, the tag cloud in Figure 6 illustrates the morphemes associated
with gastro (morpheme for stomach) according to this second order affinity. Most of the
morphemes identify organs, and the closest ones are for biologically close organs.

This information of different nature makes it possible to identify relationships between
terms, or build synonyms, or explore the termbase using these morphological elements. Yet,
to our knowledge, such specialized morpho-semantic resources do not exist. It makes a
direct evaluation of these three different uses of the alignment results not possible. But
in the remaining of this paper, we propose to evaluate them in an Information Retrieval
framework.

6.2 Morphemic representation for Information Retrieval

In order to integrate the morphological information in an IR system, we adopt a simple
indexing representation: the documents are considered as bags-of-morphemes and words.
The morphemes are those obtained by decomposing biomedical terms, and for some
experiments those associated to the former ones as second order affinities. The goal
is of course to be able to associate a query containing stomachalgia with a document
containing gastrodynia.

Thus, when indexing the collection, terms are decomposed. Two cases may occur: the term
is either known as it appears in the alignment pairs, either not. In the first case, we simply
use the decomposition produced by the alignment algorithm. In the second case, we make
the most of the § probabilities to generate the most probable translation. To do so, we
use a simple approach: the translation probability in ¢ are used by a Viterbi algorithm
to generate the most probable Kanji translation. We do not use language modeling. It is
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important to note that this translation process produces at the same time the decomposition
of the initial term by associating each morph with its Kanji translation. This translation
process is thus equivalent to the desired morpho-semantic analysis for unknown terms (i.e.
absent from the pair list used in the alignment step).

In these two cases, another alignment product is also used: the analogical rewriting rules
collected at the last alignment iteration. They allow us to detect the morphs belonging to
a same morpheme. Such information makes it possible to match a query containing hemo
with a document containing haemo, hemato or even emia;.

A baseline system and four indexing systems using the morphological information are
proposed. They all rely on a standard IR approach, namely a vector space model with an
Okapi BM25 weighting scheme (Robertson et al., 1998, for details, see) and a tokenizer
similar to Terrier’s one (Ounis et al., 2006); the standard values of the BM25 parameters b,
k1, k3 have been kept. The baseline system performs a standard indexing of the documents
with a Porter stemming (Porter, 1980).

1 — The first morphologically-enhanced system is morpheme-based. It simply considers the
morphemes produced by the decomposition of the term in the documents (and queries) as
words to index (the original terms are no longer used for indexing, only its morphemes).
The morpheme weights take the decomposition probability into account; it is defined as the
product of this probability and the BM-25 weight.

2 — The second system is Kanji-based. Here again, the terms of the documents are
decomposed, and the closest Kanjis are used as indexing words. These Kanjis are those
identified in the neighborhood of the morphs produced when decomposing the terms (see
Section 6.1).

3 — The third system adopts the same morpheme-based representation as the first system,
but expands the queries with first-order affinities of their morphemes. The morphemes used
as expansion are weighted according to their proximity in the graph and the weight of the
morphemes that they expand.

4 — The last system is similar to the third one but uses the second-order affinities to expand
the queries.

7 Biomedical IR experiments

7.1 Experimental setting

For the following experiments, we use the dataset built for the filtering track of the TREC-9
conference. This dataset is itself based on the document collection ohsumed, which is
composed of about 350,000 medline abstracts. In addition to this, about 4,000 queries
and the corresponding relevance judgments were developed for TREC-9. The queries are
composed of several fields: the subject, which a MeSH term, and a definition of this term.
Although the collection was initially built for evaluating filtering systems, here we use this
dataset as a standard IR collection, and only consider the subject field as the query.

7.2 Results

Table 1 presents the results of the baseline IR system and the system based on the
morphological analysis. The performance of the systems are evaluated using the standard
IR evaluation measures: we compute precision on top 5, 10... 1,000 documents (P@x),
mean average precision (MAP), interpolated average precision (IAP) and the R-precision
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baseline (BM-25 System 1 System 2
+ stemming) morpheme-based Kanji-based
MAP 29.93 33.94 (+13.4%) | 32.76 (+9.5%)
IAP 31.74 35.55 (+12%) | 34.49 (+8.6%)
R-prec 35.28 39.64 (+12.3%) | 38.59 (+9.4%)
P@s 69.87 7345 (+5.1%) | T1.70 (+2.6%)
P@10 67.99 TL3L (+4.9%)  69.65 (+2.4 %)
P@50 52.98 56.90 (+7.4%) | 55.24 (+4.3%)
P@100 40.86 4456 (+9.1%)  43.39 (+6.2%)
P@500 15.11 17.21 (+13.9%) | 16.92 (+12%)
P@1000 8.72 10.10 (+15.86%) = 9.95 (+14.2%)

Table 1: Performance of the morpheme and Kanji based IR systems on the OHSUMED
collection, with the TREC queries

(R-prec).In order to assess if the differences between the two systems are statistically
significant, we run a Wilcoxon test (p = 0.05) (Hull, 1993); those differences with the
baseline that are not judged statistically significant are italicized.

The morpheme-based system, only relying on decomposing term and grouping its morph
into morpheme, yields very good results with a 13% MAP gain. As expected, decomposing
the terms improves more specifically the performance at the end of the retrieved document
list (P@100 and higher), since it makes it possible to retrieve relevant documents even
though they do not contain the exact terms of the queries. The Kanji-based system yields
very similar results. Although the Kanjis were expected to be a more generic representation,
no additional gain is obtained. In practice, in some queries, the Kanjis are too generic to
capture the specific meaning expected or bring no additional information compared with the
original morphemes. Moreover, no selection is performed on the morpheme to be translated
into Kanjis, and some Kanjis have properties (document frequencies) that highly differ from
the source morpheme since they can be translation of different morphemes. A weighting
scheme taking the initial document frequencies into account seems an important foreseen
work.

Table 2 presents the results of the two last systems, based on query expansion. The two
expansion-based systems have more contrasted results. On the one hand, expanding the
queries with first-order affinities gives good results; although it yields a lower precision
at the top of list than system 1, it obtains a slightly better recall. On the other hand,
second-order affinities produce bad results compared with morphological decomposition
alone. The affinities added to the query, most of the time, break the specificity of the
information asked; it makes the system retrieve too much non-related documents.

8 Conclusion and future work

The original idea of making the most of another language like Japanese in order to help the
morphological decomposition and analysis of compounds offers many new opportunities to
automatically handle biomedical terms. The new alignment approach based on analogy that
we propose takes the particularities of the data into account, and also offers different ways
to balance quality, convergence speed and human intervention through the semi-supervised
approaches proposed. The high quality results obtained allow us to address IR problems
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baseline (BM-25 System with System with
+ stemming) 1st order affinities  2nd order affinities

MAP 29.93 34.40 (+14.9%) 28.74 (-3.9 %)
IAP 31.74 36.63 (+15.4 %) 30.80 (-2.9 %)
R-prec 35.28 39.92 (+13.2%) 34.38 (-2.6 %)
Pas 69.87 71.76 (+2.7%) 68.65 (-1.7%)
pP@10 67.99 70.46 (+3.6 %) 66.20 (-2.6 %)
P@50 52.98 56.30 (+6.7 %) 50.50 (-4.68 %)
P@100 40.86 44.69 (+9.4%) 39.07 (-4.38%)
P@500 15.11 17.98 (+18.9%) 15.01 (-0.64 %)
P@1000 8.72 10.56 (4+21.1%) 8.77 +0.66 %)

Table 2: Performance of the expansion based IR systems on the OHSUMED collection,
with the TREC queries.

caused by the morphological complexity of the biomedical terminology that could not be
addressed with usual IR tools like stemmers. In this respect, our concerns about the role
of morphology to access information are similar to existing studies (Marké et al., 2005a;
Deléger et al., 2008), but to our knowledge, we are the first to propose an automatic
process, directly available for many languages. Of course, our approach chiefly relies on the
availability of multilingual terminologies, but such databases like UMLS are now widely
developed, on the contrary of usable morphological resources.

Many perspectives are foreseen from this work. First, from a technical point of view, we
plan to consider more complex segmentation than the linear one we implemented. Indeed,
the syntactic properties of the Kanjis (some of them expect an agent or object), could help
to better structure the different morphemes. One could also exploit the semantic relations
between Kanjis that can be easily found in general Japanese dictionaries.

Concerning the analysis aspects illustrated in the last section, many possibilities are also
under consideration. As the links between morphs that we produce are not typed, the
use of heuristics (such as string inclusion used by Grabar and Zweigenbaum (2002)) or
techniques from distributional analysis could provide useful additional information to better
characterize the relationships. Yet, the problem of evaluating this type of work arises,
especially the ground truth construction, since such resources do not exist. The IR setting
used in this paper could be used again, possibly with more biomedical collections such as
the TREC Genomics ones (Hersch and Voorhees, 2009).

Finally, an adaptation of these principles for complex terms is under study. The main
difficulty in this case is to manage the reordering of the words composing these terms, and
thus manage the distortion in the alignment algorithm. This issue is important for IR since
these multiword terms are known to occurs with many variants and thus prevent to match
queries and documents with different variants of the same term (Nenadic et al., 2005).
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