
Proceedings of COLING 2012: Technical Papers, pages 577–592,
COLING 2012, Mumbai, December 2012.

A System For Multilingual Sentiment Learning On
Large Data Sets

Alex CHENG1 Oles ZHU LY N 1

(1) Department of Computer Science, University of Toronto, Canada
hyc@cs.toronto.edu, oles@cs.toronto.edu

Abstract
Classifying documents according to the sentiment they convey (whether positive or neg-
ative) is an important problem in computational linguistics. There has not been much
work done in this area on general techniques that can be applied effectively to multiple
languages, nor have very large data sets been used in empirical studies of sentiment clas-
sifiers.
We present an empirical study of the effectiveness of several sentiment classification al-
gorithms when applied to nine languages (including Germanic, Romance, and East Asian
languages). The algorithms are implemented as part of a system that can be applied to
multilingual data. We trained and tested the system on a data set that is substantially
larger than that typically encountered in the literature. We also consider a generalization
of the n-gram model and a variant that reduces memory consumption, and evaluate their
effectiveness.

Keywords: sentiment, classification, multilingual, empirical verification.

577

1 Introduction
Classifying text documents according to the sentiment they convey is an important problem
in computational linguistics. Sentiment reflects the emotional content in the document or
the attitude of the speaker to the subject matter in the document, and can be positive or
negative. For example, “Thank you for the pleasant time we spent together” conveys a
positive sentiment, while “I was devastated when you left” conveys a negative sentiment.

Sentiment classifiers that can process massive amounts of data quickly and accurately have
applications in many segments of society. Marketing and brand management firms that are
interested in how consumers generally feel about particular companies and their products
can apply sentiment classifiers to social media documents containing relevant keywords.
Government agencies that monitor electronic communications in order to identify and
locate dissidents can use sentiment classifiers to find subversive messages.

To the best of our knowledge, there has not been much work done in this area on general
techniques that can be applied effectively to multiple languages, nor have very large data
sets been used in empirical studies of sentiment classifiers. In this paper, we present
an empirical study of two sentiment classification algorithms applied to nine languages
(including Germanic, Romance, and East Asian languages). One of these algorithms is a
naive Bayes classifier, and the other is an algorithm that boosts a naive Bayes classifier
with a logistic regression classifier, using majority vote. These algorithms are implemented
as part of a system that can be applied to multilingual data. Our implementation is fast,
allowing a large number of documents to be classified in a short amount of time, with high
accuracy.

Automatic sentiment classification of text documents requires that the documents be mod-
eled in a way that is amenable to the algorithm being used. The typical approach is to
model the documents using n-grams. In this paper, we consider a generalization of the
n-gram model that is more suitable for languages with a flexible word order, and a variant
of this generalized n-gram model that helps reduce memory consumption. These models
are built into our system.

For the empirical study, we trained and tested our system on a data set that is substantially
larger than that typically encountered in the literature. To generate this data set, we wrote
custom crawlers, and mined various web sites for reviews of products and services. The
reviews were annotated by their authors with star ratings, which we used to automatically
label the reviews as conveying either a positive or a negative sentiment. For each experiment
in the study, we sampled disjoint training and testing sets uniformly at random from this
large data set. Unlike the usual approach in the literature, the testing sets were much larger
than the training sets (at least four times larger), and the experiments were repeated many
times. We did this to ensure that our results were statistically significant.

The paper is organized as follows. In Section 2, we provide a brief overview of related work
done in this area. In Section 3, we describe our large data set and how we acquired it. In
Section 4, we discuss the generalization of the n-gram model and its variant. In Section
5, we describe the sentiment classification algorithms that we considered. In Section 6, we
describe our experimental setup, and present the results. We then conclude and suggest
future directions for this work.

578

2 Related Work
Pang and Lee (Pang and Lee, 2008) have written an excellent survey on the work done in
the area of sentiment classification.

Pang et al. (Pang et al., 2002) undertook an empirical study that resembles our own. They
evaluated the effectiveness of several machine learning methods (naive Bayes (Domingos
and Pazzani, 1997; Lewis, 1998), maximum entropy (Csiszár, 1996; Nigam et al., 1999),
and support vector machines (Cortes and Vapnik, 1995; Joachims, 1998)) for sentiment
classification of English-language documents. They generated their data set by mining
movie reviews from the Internet Movie Database (IMDb)1 and classifying them as positive
or negative based on the author ratings expressed with stars or numerical values. They
modeled the movie reviews as n-grams.

Bespalov et al. (Bespalov et al., 2011) presented a method for classifying the sentiment
of English-language documents modeled as high-order n-grams that are projected into a
low-dimensional latent semantic space using a multi-layered “deep” neural network (Bengio
et al., 2003; Collobert and Weston, 2008). They evaluated the effectiveness of this method
by comparing it to ones based on perceptrons (Rosenblatt, 1957) and support vector ma-
chines. Their data set was derived from reviews on Amazon2 and TripAdvisor3, which were
labeled as positive or negative based on their star ratings.

3 Large Data Set
Our large data set consists of reviews of products and services mined from various web
sites. We wrote custom crawlers for each of these web sites. The domain for the reviews
is quite diverse, including such things as books, hotels, restaurants, electronic equipment,
and baby care products. We only looked at web sites where the reviews were accompanied
by star ratings (which we normalized to a scale between 1- and 5-stars). This enabled us
to automatically assign a sentiment to each review.

We considered reviews accompanied by a rating of 1- or 2-stars as having a negative sen-
timent, and those accompanied by 5-stars as having a positive sentiment. For some of the
web sites (e.g. Ciao!4), along with the star ratings, the reviews were also accompanied by
a binary (recommended or not-recommended) rating. In this case, we assigned a negative
sentiment to reviews accompanied by a rating of 1- or 2-stars, and a not-recommended
rating, and a positive sentiment to reviews accompanied by a rating of 5-stars, and a
recommended rating.

The approach of automatically assigning sentiment to reviews based on accompanying
author ratings has precedents in the literature (Pang et al., 2002; Bespalov et al., 2011).
Although it is likely that there is some noise in the data with this kind of approach, an
automated approach is nevertheless essential for generating a large data set.

The data for English, French, Spanish, Italian, and German was mined from Amazon, Ciao!,

1http://reviews.imdb.com/Reviews/
2http://www.amazon.com
3http://www.tripadvisor.com
4http://www.ciao.com

579

Language Negative Positive
Japanese 1111584 8497266
English 459837 2442952
German 297028 1654456
Chinese 155221 1332076
French 146016 685136
Italian 115744 432726
Spanish 69065 272788
Dutch 34596 215586
Portuguese 20507 97759

Table 1: Number of negative and positive documents for each language in our data set

and TripAdvisor. The Portuguese data was mined from Walmart5, Opinaki6, Buscapé7,
and TripAdvisor. The Dutch data was mined from bol.com8, Ciao!, and TripAdvisor. The
Chinese data was mined from Amazon, dangdang.com9, and TripAdvisor. The Japanese
data was mined from Amazon, Rakuten10, and Kakaku.com11. Across these web sites,
these languages are not equally well-represented. As a consequence, for some of the lan-
guages (e.g. Japanese) we were able to mine substantially more data than for others (e.g.
Portuguese) (Table 1).

4 Document Representation

A text document is a sequence of tokens. Tokens can simply be single characters
within the text document. However, in sentiment classification, the tokens of interest
are typically n-grams, which are n-length sequences of contiguous whitespace-separated
words. For example, if a document is the sequence (W1,W2, . . . ,WN−1,WN), where
W2, . . . ,WN−1 are whitespace-separated words, and W1 and WN are the special symbol
<BOUNDARY>, signifying the beginning or the end of the document, then the 2-grams are
(W1,W2), (W2,W3), (W3,W4), . . . , (WN−2,WN−1), (WN−1,WN).

In Chinese and Japanese, words are not delimited by whitespace in writing. For the results
we present in this paper, we used third-party libraries (Taketa, 2012; Lin, 2012) to segment
Chinese and Japanese documents into words. These libraries are based on machine learning
methods, and do not require large dictionary files. Nie et al. (Nie et al., 2000) considered
tokenizing Chinese documents as n-grams. We also experimented with this approach for
both Chinese and Japanese documents (i.e. we treated single characters as tokens). Al-
though we do not present them here, the results we achieved in these experiments were
comparable to (though not quite as good as) the results we achieved with the third-party
libraries.

5http://www.walmart.com.br
6http://www.opinaki.com.br
7http://www.buscape.com.br
8http://www.bol.com
9http://www.dangdang.com

10http://www.rakuten.co.jp
11http://www.kakaku.com

580

Figure 1: English 2-grams most indicative of positive sentiment.

4.1 Generalized N-gram
We can generalize the n-gram model by introducing a window size k ≥ n. To iterate over
all the tokens in a sequence, we first consider every window in the sequence (that is, every
contiguous subsequence of length k). The tokens are all the (not necessarily contiguous)
subsequences of length n within each window. When k = n, this is just the standard n-gram
model. Guthrie et al. (Guthrie et al., 2006) refer to this as the skip-gram model.

This model is suitable for languages with a flexible word order (e.g. German). With a flex-
ible word order, the co-occurrence of several specific words in proximity may be indicative
of a particular sentiment irrespective of any intermediary words. In the standard n-gram
model, the relevant words can only be captured in a token along with the intermediary
words. Due to the potential variety in the intermediary words, a single document may
contain many tokens that are different, but that all correspond to the co-occurrence of
these relevant words. In contrast, the generalized n-gram model enables these relevant
words to be captured in a single token. This helps to mitigate against noise. However, for
a given document, the generalized n-gram model requires that more tokens are processed
than does the standard n-gram model.

4.2 Hitting N-gram
The hitting n-gram model is a variation on the generalized n-gram model. In the hitting n-
gram model, only the windows that are centered around (i.e. “hit”) words from a predefined
lexicon are considered. We can specify where inside a window we would like the hit to occur
by giving the window size in terms of the number of words preceding a word from the lexicon
and the number of words following that word from the lexicon.

581

不错, 很好, 很喜欢, 值得, 喜欢, 很不错, 很有, 非常好, 实用, 适合, 孩子,
学习, 满意, 很, 好书, 赞, 非常, 挺好, 很快, 帮助, 实惠, 舒服, 了解, 很满,
呵呵, 方便, 本书, 生活, 哈哈, 儿子, 这本, 老师, 爱, 推荐, 很漂亮, 受益匪
浅, 精美, 很精, 可爱, 全面, 划算, 经典, 详细, 感动, 超值, 很棒, 值得一
看, 丰富, 力, 慢慢, 漂亮, 不过, 支持, 很给, 一本, 世界, 有趣, 她, 拥有,
合适, 知识, 阅读, 好用, 挺, 收藏, 感谢, 幸福, 更好, 爱不释手, 小巧, 最
喜欢, 成长, 强烈推荐, 通俗易懂, 每天, 好看, 推荐给, 历史, 就到, 挺不错,
棒, 开心, 常值, 一口气, 思考, 对于, 朋友, 快乐, 物超所值

失望, 没有, 退货, 根本, 不好, 太, 差, 不是, 了, 很不, 太差, 一般, 不要,
就, 很差, 结果, 不知道, 不, 不能, 卓越, 不如, 怎么, 客服, 没, 都没有, 只
能, 发现, 后悔, 垃圾, 怀疑, 郁闷, 坏了, 换货, 页, 是不是, 居然, 不值, 麻
烦, 吗, 盗版, 打开, 粗糙, 买, 问题, 个, 而且, 没什么, 什么, 为什么, 打电
话, 电话, 严重, 可是, 才, 竟然, 块, 无语, 建议, 不行, 你们, 我, 就不, 浪
费, 换, 实在, 都不, 完全, 算了, 只有, 烂, 不满意, 也没有, 不了, 不值得,
坏, 次, 联系, 两, 啊, 掉了, 本来, 说, 不舒服, 明显, 钱, 几, 不喜欢, 无法,
本就, 不到, 售后, 商品, 换了, 一点, 不够, 点, 产品, 上, 房间

Table 2: Top Chinese automatically segmented words most indicative of positive and negative
sentiment.

great, love, easy, highly, best, perfect, excellent, amazing,
loves, wonderful, favorite, awesome, fantastic, recommend,
book, beautiful, perfectly, pleased, sturdy, fits, works, rec-
ommended, fun, definitely, life, price, album, comfortable,
superb, happy, helps, gives, family, beautifully, brilliant,
incredible, loved, classic, makes, glad, fast, delicious, out-
standing, allows, easily, little, always, cd, heart, durable,
easier, enjoy, unique, provides, truly, beat, favorites,
solid, simple, handy, songs, collection, powerful, ease,
size, super, greatest, keeps, song, smooth, books, thank,
bonus, nicely, brings, friends, amazed, pleasantly, holds,
terrific, gift, wonderfully, hooked, read, quick, enjoyed,
skeptical, fabulous, thanks, compact, stores, favourite, al-
bums, refreshing, learning, addictive, penny, guitar, gor-
geous, sharp, journey, enjoys, lives, colors, joy, compli-
ments, worry, job, versatile, must, every, informative,
soft, everyone, daughter, comes, everyday, masterpiece,
satisfied, crisp, affordable, fascinating

poor, bad, waste, worst, money, customer, return, dis-
appointed, service, but, refund, told, terrible, returned,
nothing, did, unfortunately, hotel, didn’t, back, horrible,
worse, problem, sent, useless, ok, company, awful, disap-
pointing, off, tried, why, stay, pay, asked, send, should,
returning, do, disappointment, poorly, don’t, phone, bor-
ing, again, staff, said, call, trying, support, guess, maybe,
rude, unless, instead, get, seemed, supposed, contacted,
paid, wouldn’t, fix, went, stopped, thought, avoid, beware,
defective, customers, received, sorry, booked, <NUM-
BER>, broke, manager, wrong, warranty, junk, mistake,
wasted, rooms, contact, left, never, doesn’t, me, bro-
ken, replacement, failed, happened, crap, email, stupid,
garbage, annoying, wasn’t, least, star, cheap, reviews,
months, properly, apparently, weeks, response, checked,
working, got, frustrating, stayed, slow, going, hoping,
waiting, error, ridiculous, completely, reason, try, either,
credit, ended, please, half

Table 3: Top English words most indicative of positive and negative sentiment.

excellent, permet, plaisir, magnifique, livre, découvrir,
bonheur, recommande, facile, parfait, très, merveille, su-
perbe, excellente, petit, parfaitement, grâce, agréable,
the, régal, of, indispensable, également, grands, petits,
facilement, douce, doux, j’adore, délicieux, chansons, con-
seille, rock, l’album, bémol, idéal, simple, vivement, pou-
vez, voix, cd, parfaite, meilleur, douceur, n’hésitez, adoré,
délice, enfants, rapide, couleurs, bonne, magnifiques,
grande, famille, toutes, génial, titres, découvert, pratique,
to, pourrez, parfum, belle, adore, must, and, incontourn-
able, aime, recommander, sublime, beauté, superbes, pe-
tite, guitare, ouvrage, différentes, mélange, trouverez, bi-
jou, lait, complet, sucre, remarquable, recette, univers,
chanson, sel, modération, déguster, super

pas, ne, rien, service, client, me, réponse, disant, mau-
vaise, j’ai, je, commande, pire, clients, mauvais, demande,
aucune, déception, payer, mois, remboursement, impos-
sible, déconseille, téléphone, n’est, dit, qu’ils, sav, mail,
été, suis, déc�ue, mal, n’a, bref, bout, arnaque, deman-
dé, n’ai, envoyé, eux, décevant, éviter, eu, n’y, prob-
lème, commandé, semaines, rec�u, aucun, site, rembourser,
payé, compte, personne, tard, contrat, chez, erreur, jours,
n’était, mails, nul, courrier, déc�u, euros, responsable, là,
aurait, avons, avoir, commercial, mon, rec�ois, médiocre,
panne, désagréable, ma, sommes, vente, heureusement,
chambre, c�a, colis, dû, j’avais, dommage, m’a, d’attente,
j’appelle, semaine, retard, répond, n’ont, dossier, voulu,
lendemain, pourtant, manque, étaient

Table 4: Top French words most indicative of positive and negative sentiment.

In contrast to the generalized n-gram model, the hitting n-gram model can drastically
reduce the number of tokens that need to be processed, depending on the lexicon that is
chosen. For this project, we processed our large data set using Pearson’s chi-squared test
to find the words that are most indicative of positive and negative sentiment to build a
lexicon for each language. We discuss this in more detail in Section 5.

5 Classifiers
For our experiments, we modeled documents using the 2-gram model, the generalized 2-
gram model with window size 3, the generalized 2-gram model with window size 5, and the
hitting 2-gram model with (preceding) window size 1. For each of these models, we trained
a naive Bayes classifier and a logistic regression classifier. During testing, we considered
the results from the naive Bayes classifier, and the naive Bayes classifier boosted with the
logistic regression classifier using majority vote. We repeated this for each language.

5.1 Hitting 2-gram Model
Yang and Pedersen (Yang and Pedersen, 1997) evaluated several automatic methods for
selecting features that were useful for categorizing text. Pearson’s chi-squared test proved

582

to be the most effective. We used Pearson’s chi-squared test to find, for each language, the
top 200 words most indicative of positive sentiment and the top 200 words most indicative
of negative sentiment, without filtering for stop words (e.g. Table 2, Table 3, and Table 4).
We used these words as the lexicon for the hitting 2-gram model.

Following Yang and Pedersen, we computed, for each word w and each sentiment s, the
goodness of fit measure:

χ2(w, s) =
N × (AD− CB)2

(A+ C)× (B+ D)× (A+ B)× (C + D)

where A is the number of documents with sentiment s in which w occurs, B is the number
of documents without sentiment s in which w occurs, C is the number of documents with
sentiment s in which w does not occur, D is the number of documents without sentiment s
in which w does not occur, and N is the total number of documents. We did this once over
our entire data set, and took the words that scored highest according to this measure.

In our experiments, we set the window size to be 1 preceding word. We also tried other
window sizes, but they did not produce substantially better results. We do not report these
other results.

The technique we used to build the lexicon can be applied to other kinds of tokens. For
example, Figure 1 is a word cloud of the English 2-grams most indicative of positive
sentiment in our data set. We generated the word cloud using Wordle (Feinberg, 2012).

5.2 Naive Bayes Classifier
For the 2-gram model, we used the training data to compute for each 2-gram, (W ,W ′), the
probability that it belongs to a document with a positive sentiment, Ppos(W ,W ′), and the
probability that it belongs to a document with a negative sentiment, Pneg(W ,W ′). Given a
document (W1,W2, . . . ,WN−1,WN)12 to classify, we apply a decision rule based on the ratio

∏
i

Ppos(Wi ,Wi−1)

Pneg(Wi ,Wi−1)

computed using the probabilities determined from our training data. If this ratio is greater
than 1, then we classify the document as positive. Otherwise, we classify the document as
negative.

The following derivation show what this ratio means.
∏

i

Ppos(Wi ,Wi−1)

Pneg(Wi ,Wi−1)
=
∏

i

Ppos(Wi |Wi−1)

Pneg(Wi |Wi−1)
× Ppos(Wi−1)

Pneg(Wi−1)
(1)

=
∏

i

Ppos(Wi |Wi−1)

Pneg(Wi |Wi−1)
×
∏

i

Ppos(Wi−1)

Pneg(Wi−1)
(2)

=
∏

i

Ppos(Wi |Wi−1)

Pneg(Wi |Wi−1)
×
∏

i

Ppos(Wi)

Pneg(Wi)
(3)

12W2, . . . ,WN−1 are whitespace-separated words, and W1 and WN are the special symbol <BOUNDARY>,
signifying the beginning or the end of the document.

583

Figure 2: Sum over the range to get the count for Wy .

Line (1) follows from the definition of conditional probability. Line (2) follows from com-
mutativity and associativity of multiplication. Line (3) follows from the fact that the
missing term

Ppos(WN)

Pneg(WN)
= 1

since the occurrence of WN , the special symbol <BOUNDARY>, in a document with a posi-
tive sentiment is equally likely to its occurrence in a document with a negative sentiment.
The numerator in the expression in line (3) is the probability that the given document
has a positive sentiment according to both the 2-gram model and the 1-gram model. The
denominator is the probability that the document has a negative sentiment according to
both models. Our decision rule classifies the document according to which of these two
probabilities is the greater. Notice that our confidence that the sentiment of the document
was classified correctly can be increased using a threshold parameter. For example, if the
ratio between the numerator and the denominator is very high, then we have high confi-
dence that the document has a positive sentiment. At the cost of leaving some documents
unclassified, the threshold parameter can be used to achieve arbitrarily high classification
accuracies.
Our implementation allows these values to be computed quickly. We represent each distinct
word that we encounter in the training data with a nonnegative 32-bit integer, and use
a hash map to store this representation. We represent each 2-gram that we encounter in
the training data by packing the two integers corresponding to the two words in the 2-
gram in a 64-bit integer. After processing the training data, we sort all the 64-bit integers
representing the 2-grams, and store the sorted list in an array. We use the index of each
2-gram in this array as an index into two other arrays: one representing the number of
occurrences of the 2-grams in positive documents, and the other representing the number
of occurrences of the 2-grams in negative documents. This approach gives us a minimal
perfect hash function from 2-grams to their counts in positive and negative documents.
Looking up a count for a given 2-gram is fast: binary search on the sorted array gives us
the index to the counts for occurrences in positive and negative documents. Our minimal
use of pointers also keeps memory consumption low.
One might be interested in computing the probabilities for a document under the 1-gram
and 2-gram models. Our implementation allows this to be computed quickly. Given a word,
one can perform binary search on the sorted list of 2-grams to find the first occurrence of
a 2-gram whose first word is the given word. After this 2-gram is found, one needs only to
sum up all the values in the list up to the last occurrence of a 2-gram whose first word is
the given word (Figure 2), and divide by the total sum of all the values in the list (which
can be computed once, when the list is built). This is the probability for a 1-gram. The

584

probability for a 2-gram can be evaluated directly from this using Bayes’ rule.

The approach we took for the generalized 2-gram models, and the hitting 2-gram model
is the same. However, the derivation for the value in our decision rule does not work out
exactly, and only gives us a rough approximation of the probabilities. The results of the
experiments reflect this fact: although classification speed is very fast, the accuracies are
somewhat less impressive than what one might expect.

5.3 Logistic Regression Classifier
We used a logistic regression classifier provided by the LIBLINEAR software (Fan et al.,
2008). For logistic regression, it is necessary to represent documents as feature vectors. We
tried three representations. In all three cases, we had a feature for each token encountered
in the training data. For the first representation, the value we used for each feature was
the frequency of occurrence of the corresponding token, in the document. We normalized
each feature to fall in the range [0, 1] (details in the following paragraph). The second
representation was like the first, except we normalized the whole vector to the unit vector,
instead of normalizing per feature. For the third representation, the value we used for
each feature was 1 or 0, depending on whether the corresponding token was present in the
document or not. We normalized the whole vector to the unit vector. All three approaches
produced similar results. We only report the results for the first representation.

The normalization that we used for the first representation is the following. Suppose D is
the total set of training documents, and T is the total set of tokens encountered across
all documents in D. For each document d ∈ D and each token t ∈ T , let f reqd(t) be the
frequency of occurrence of token t in document d (e.g. if d contains 10 tokens and t occurs
5 times in d, then f reqd(t) = 5/10= 0.5). The normalized value f req′d(t) of f reqd(t) is

f req′d(t) =
f reqd(t)−mind ′∈D(f reqd ′(t))

maxd ′∈D(f reqd ′(t))−mind ′∈D(f reqd ′(t))
.

Notice that if d is a document from the testing set, then f req′d(t) can fall outside the range
[0, 1]. This is the intended behavior (Fan et al., 2008; Hsu et al., 2010).

For our experiments, we boosted the naive Bayes classifier with the logistic regression
classifier using majority vote. If both classifiers agreed, then we returned the value they
agreed on. Otherwise, we returned no answer.

6 Experiments
6.1 Experimental Setup
For the empirical study, we evaluated two algorithms: a naive Bayes classifier, and a naive
Bayes classifier boosted with a logistic regression classifier, using majority vote. In eval-
uating each algorithm, we considered four ways of modeling text documents: the 2-gram
model (2g), the generalized 2-gram model with window size 3 (2g-w3), the generalized
2-gram model with window size 5 (2g-w5), and the hitting 2-gram model with (preceding)
window size 1 (2g-h). We repeated this for nine languages: French (fr), Spanish (es),
Italian (it), Portuguese (pt), Traditional and Simplified Chinese (zh), Japanese (ja), Ger-
man (de), English (en), and Dutch (nl). In total, this constitutes 72 different experiments.
We ran each experiment 10 times to validate the results.

585

Figure 3: Mean accuracy (in percent, over ten runs) of naive Bayes classifier for each model and
each language.

For each of the ten runs and each language, we sampled disjoint training and testing sets
uniformly at random from the large data set. We ensured that the testing set was always at
least four times larger than the training set. For each way of modeling text documents, we
trained each algorithm using the training set, and tested it using the testing set. In Table
8, we report the mean and standard deviation, over ten runs, for the number of positive
and negative documents in the training and testing sets for each language.

We performed our experiments using commodity hardware consisting of a quad-core Core
2 (Q9650) processor running at 3.0GHz, 16GB DDR2 memory running at 800MHz, and a
64-bit operating system with Linux kernel version 3.0. Our sentiment classification system
was implemented using Java, and we ran it using Oracle Java SE Runtime Environment
(build 1.6.0 30-b12). Our system makes use of several third-party libraries. The versions
of these that we used are Java LIBLINEAR version 1.8 (Waldvogel, 2012), Apache Lucene
Core version 3.6.0 (The Apache Software Foundation, 2012), cMeCab-Java version 2.0.1
(Taketa, 2012), and IK Analyzer 2012 upgrade 5 (Lin, 2012).

6.2 Results
Our multilingual sentiment classification system achieved very high accuracy (Table 6 and
Table 7), without resorting to ad hoc NLP techniques, like parts-of-speech tagging and
regular expression matching. It was also very fast (Table 5), because it did not rely on
these techniques, which tend to be slow. The no answer rate for the naive Bayes classifier
boosted with the logistic regression classifier is the rate at which documents were left
unclassified because the two classifiers did not agree. Despite some documents being left
unclassified, the two classifiers boosted together achieved a significantly higher accuracy
than the naive Bayes classifier alone.

Recall from 5.2 that, in our implementation, the probability ratio in the decision rule of the
naive Bayes classifier is only a rough approximation of the true value for the generalized
2-gram model and the hitting 2-gram model. The consequence of this is that we do not
see a substantial improvement in classification accuracy for these models (Figure 3).

The less impressive performance overall for the Portuguese language is due to the quality
of the data. For Portuguese, we had fewer documents to train on (Table 8), and the testing
documents were, on average, quite short in length (Table 10). Notice that while we also
had fewer training documents for the Dutch language, the average testing document length

586

Figure 4: Mean classification speed (in documents per second per CPU core, over ten runs) of
naive Bayes classifier boosted with logistic regression classifier for each model and each language.

Classification speed (documents/second)
2g 2g-w3 2g-w5 2g-h

fr 2140±39 1589±41 1072±14 2662±63
es 2142±16 1589±63 1116±56 2642±26
it 1877±73 1388±73 985±32 2593±87
pt 9656±354 8653±272 7480±305 10073±408
zh 5355±64 4483±109 3663±90 4983±657
ja 1136±12 1067±32 1025±13 1134±14
de 2516±110 1859±107 1306±69 3328±151
en 5367±53 4086±20 2840±25 6795±101
nl 4277±703 3874±73 2857±82 4634±382

Table 5: Classification speed (mean and
standard deviation, in documents per sec-
ond, over ten runs) of naive Bayes classifier
boosted with logistic regression classifier for
each model and each language.

Accuracy
2g 2g-w3 2g-w5 2g-h

fr 83.6±0.1 83.5±0.1 82.6±0.1 81.6±0.1
es 83.3±0.1 83.2±0.1 82.6±0.1 82.5±0.1
it 84.0±0.1 84.0±0.1 83.3±0.1 82.5±0.2
pt 74.7±0.5 72.4±0.7 70.4±0.7 77.3±0.3
zh 85.3±0.1 85.3±0.1 84.5±0.1 84.4±0.1
ja 91.6±0.1 92.3±0.1 91.6±0.1 91.2±0.1
de 89.1±0.1 88.9±0.1 87.8±0.1 87.1±0.0
en 85.5±0.0 85.2±0.0 84.2±0.0 84.3±0.0
nl 86.2±0.4 87.0±0.3 86.7±0.3 87.3±0.4

Table 6: Accuracy (mean and standard de-
viation, in percent, over ten runs) of naive
Bayes classifier for each model and each
language.

for Dutch is substantially greater than that for Portuguese. This is why the classification
accuracy for Dutch did not suffer as much as it did for Portuguese. On the other hand, while
the average testing document length for Chinese and Japanese is very short, we trained
the algorithms with far more documents for these languages, and so the classification
accuracies did not suffer. Thus, we can see a tradeoff between the amount of training data
and the average length of the documents being classified. In our experiments with data
from Twitter13 (which we do not report in this paper), we found the same tradeoff: more
training data is needed to achieve higher classification accuracies with documents that are
so short in length.

As expected, more unique tokens need to be processed during training as the window
size for the generalized 2-gram model is increased (Table 9 and Figure 5). These are
the unique tokens that are used to compute the probabilities, and construct the data
structure discussed in 5.2. When the number of unique tokens encountered during training
is greater, the amount of memory that is consumed during classification is also greater. The
classification speed also decreases as the number of unique tokens increases. The hitting
2-gram model drastically reduces the number of unique tokens, and, unsurprisingly, has a
faster classification speed than the other models. The hitting 2-gram model also achieves

13http://www.twitter.com

587

Figure 5: Mean number of unique tokens after training (over ten runs) for each model and each
language.

Figure 6: Mean accuracy per million unique tokens after training (in percent, over ten runs) of
naive Bayes classifier for each model and each language.

greater accuracy than the other models when the amount of training data is less (i.e.
for Portuguese and Dutch). In Figure 6, we see that when we normalize for the number
of unique tokens, the hitting 2-gram model achieves far greater accuracy than the other
models. Thus, for faster classification speed, reduced memory consumption, and lower
quality training data, the hitting 2-gram is the way to go.

Our sentiment classification system was aggressively optimized for high speed and reduced
memory consumption. The data for each language was aggregated in one flat file for
ease of processing. Running the full set of ten runs of all experiments took less than an
hour. Loading everything into memory consumed less than 3.5GB of the heap, which is
unprecedented. When we ran the same set of experiments using LingPipe (Alias-i, 2012)
for only the Spanish language and using only the 2-gram model, we found that more than
12GB of heap memory were required to even finish training.

Our results show that a simple and straightforward statistical approach with a large amount
of training data rivals the many complex, ad hoc NLP approaches that are optimized
for small amounts of training data. Important advantages of our approach are increased
training and classification speeds, and reduced memory consumption. These are practical
concerns that are not generally adequately addressed in the literature, particularly for
the NLP approaches, which place a great emphasis on classification accuracy at the cost
of speed and memory consumption. Our sentiment classification system achieves a good
balance between these concerns.

588

Accuracy No answer rate
2g 2g-w3 2g-w5 2g-h 2g 2g-w3 2g-w5 2g-h

fr 91.3±0.1 91.0±0.1 90.6±0.1 90.7±0.1 14.2±0.1 13.9±0.1 14.1±0.0 15.6±0.1
es 90.4±0.1 90.3±0.1 90.1±0.1 89.8±0.1 14.5±0.1 14.5±0.2 14.7±0.2 14.2±0.2
it 91.7±0.1 91.6±0.1 91.3±0.1 91.1±0.1 14.9±0.1 14.8±0.2 15.1±0.2 15.5±0.1
pt 84.7±0.2 84.1±0.2 83.6±0.2 85.2±0.2 18.7±0.8 20.5±0.9 22.4±1.1 16.9±0.6
zh 91.0±0.0 90.8±0.1 90.3±0.0 90.6±0.1 11.7±0.1 11.2±0.1 11.0±0.1 12.3±0.1
ja 95.4±0.0 95.5±0.0 95.2±0.0 95.1±0.0 7.8±0.1 7.2±0.1 7.3±0.1 7.7±0.1
de 94.1±0.0 93.8±0.0 93.3±0.0 93.5±0.0 10.9±0.1 10.6±0.0 10.8±0.1 12.1±0.0
en 90.6±0.0 90.2±0.0 89.5±0.0 90.7±0.0 13.9±0.0 13.4±0.0 13.2±0.0 18.9±0.0
nl 92.0±0.1 91.7±0.1 91.0±0.1 91.7±0.2 17.1±0.2 15.3±0.1 14.3±0.1 16.2±0.2

Table 7: Accuracy and no answer rate (mean and standard deviation, in percent, over ten runs) of
naive Bayes classifier boosted with logistic regression classifier for each model and each language.

Positive documents Negative documents
trained # tested # trained # tested

fr 26455±79 116704±93 26556±66 116704±93
es 12234±158 55267±92 12061±102 55267±92
it 21175±140 92502±70 20272±89 92502±70
pt 3593±78 16349±43 2931±41 16349±43
zh 30914±194 124232±48 30989±48 124232±48
ja 218278±526 889453±391 219019±396 889453±391
de 54351±255 237839±206 54578±142 237839±206
en 87833±400 367812±224 85626±207 367812±224
nl 6907±83 27691±65 6765±67 27691±65

Table 8: Number of positive and negative documents in the training and testing sets (mean and
standard deviation, over ten runs) for each language.

Number of unique tokens
2g 2g-w3 2g-w5 2g-h

fr 2914884±9360 6172487±20129 11914397±39474 882036±2352
es 2140713±12048 4406273±26340 8373245±51332 664764±3752
it 3425993±7458 7223768±16530 13926488±33039 749045±1400
pt 608836±1041 1165038±1953 2033085±3804 251139±499
zh 1640449±5753 3321802±11719 6219173±23299 667135±1756
ja 4142506±6055 10307368±14345 20572997±26398 2140987±2610
de 5372769±14153 10754868±29605 20217297±56647 1306724±2862
en 3290897±3804 6713768±7239 12604478±13434 1021480±1497
nl 809873±2663 1508605±5762 2634343±11110 359049±1642

Table 9: Number of unique tokens after training (mean and standard deviation, over ten runs) for
each model and each language.

Conclusion and Future Work
In this paper, we presented an empirical study of two sentiment classification algorithms
applied to nine languages (including Germanic, Romance, and East Asian languages).
One of these algorithms is a naive Bayes classifier, and the other is an algorithm that
boosts a naive Bayes classifier with a logistic regression classifier, using majority vote.
We implemented these algorithms as part of a system for classifying the sentiment of
multilingual text data. Our implementation is fast, and has high classification accuracy.

We also considered a generalization of the n-gram model for representing text data, and

589

Document length in test data
fr 1941±2
es 2116±2
it 2373±2
pt 210±1
zh 112±0
ja 132±0
de 1769±2
en 746±1
nl 859±1

Table 10: Mean document length, with standard deviation, over ten runs, in test data.

a variant of this generalization that helps reduce memory consumption. Along with the
standard n-gram model, these two models are built into our system. We evaluated all of
these models in the empirical study that we presented in this paper.

For the empirical study, we trained and tested our system on a data set that is substantially
larger than that typically encountered in the literature. We generated this data set by
crawling and mining various web sites for reviews of products and services. For each
experiment in the study, we sampled disjoint training and testing sets uniformly at random
from this large data set. Unlike the usual approach in the literature, the testing sets were
much larger than the training sets (at least four times larger), and the experiments were
repeated many times. We did this to ensure that our results were statistically significant.

As we have shown in this paper, statistical methods applied to large amounts of data are
effective for the sentiment classification problem. It would be interesting to investigate
the application of this approach to the problem of relevance (i.e. determining whether
a document conveys any sentiment at all). Previous efforts have been overly complicated
(Pang and Lee, 2004). One approach that we are considering is to take a list of n-grams that
are most indicative of sentiment (determined using Pearson’s chi-squared test, as discussed
in 5.1), and computing the mean and standard deviation for the frequency of occurrence
of these words in the training documents. During testing, the frequency of occurrence for
these words in the test documents can be compared to the mean we computed. If the
frequency of occurrence is not less than one standard deviation below the mean, then a
document can be deemed relevant.

We are also interested in commercializing our sentiment classification system by selling
it to social media analytics firms, such as Sysomos14 and BrandWatch15. The existing
players in the sentiment classification field (e.g. Saplo16, Lexalytics17, OpenAmplify18,
and SNTMNT19) are not transparent about what they are doing, and it is not clear how
robust their offerings are. If commercialization fails, then we intend to make our sentiment
classification system freely available under the GPL20, since one of our great passions is
educating the public on the power of machine learning methods.

14http://www.sysomos.com
15http://www.brandwatch.com
16http://saplo.com
17http://www.lexalytics.com
18http://www.openamplify.com
19http://www.sntmnt.com
20http://www.gnu.org/copyleft/gpl.html

590

References
Alias-i (2012). Lingpipe version 4.1.0. http://alias-i.com/lingpipe/index.html.

The Apache Software Foundation (2012). Apache Lucene Core version 3.6.0. http:
//lucene.apache.org/core.

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural probabilistic
language model. The Journal of Machine Learning Research, 3(Feb):1137–1155.

Bespalov, D., Bai, B., Qi, Y., and Shokoufandeh, A. (2011). Sentiment classification
based on supervised latent n-gram analysis. In Proceedings of the 20th ACM International
Conference on Information and Knowledge Management (CIKM ’11), pages 375–382.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2(3):27:1–27:27. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Collobert, R. and Weston, J. (2008). A unified architecture for natural language process-
ing: deep neural networks with multitask learning. In Proceedings of the 25th International
Conference on Machine Learning (ICML ’08), pages 160–167.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to
Algorithms. MIT Press and McGraw-Hill, 2nd edition.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3):
273–297.

Csiszár, I. (1996). Maxent, mathematics, and information theory. In Hanson, K. M. and
Silver, R. N., editors, Maximum Entropy and Bayesian Methods: Proceedings of the 15th
International Workshop on Maximum Entropy and Bayesian Methods, pages 35–50.

Domingos, P. and Pazzani, M. (1997). On the optimality of the simple bayesian classi-
fier under zero-one loss. Machine Learning - Special issue on learning with probabilistic
representations, 29(2-3):103–130.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). LIBLIN-
EAR: A library for large linear classification. The Journal of Machine Learning Re-
search, 9(Aug):1871–1874. Software available at http://www.csie.ntu.edu.tw/~cjlin/
liblinear.

Feinberg, J. (2012). Wordle. http://www.wordle.net/.

Guthrie, D., Allison, B., Liu, W., Guthrie, L., and Wilks, Y. (2006). A closer look at
skip-gram modelling. In Proceedings of the Fifth International Conference on Language
Resources and Evaluation (LREC – 2006), pages 1222–1225.

Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2010). A practical guide to support vector
classication. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.

Joachims, T. (1998). Text categorization with suport vector machines: Learning with
many relevant features. In Proceedings of the 10th European Conference on Machine
Learning (ECML ’98), pages 137–142.

591

Joachims, T. (1999). Making large-scale support vector machine learning practical. In
Schölkopf, B. and Smola, A., editors, Advances in kernel methods, pages 169–184. MIT
Press Cambridge, MA, USA.

Lewis, D. D. (1998). Naive (bayes) at forty: The independence assumption in information
retrieval. In Proceedings of the 10th European Conference on Machine Learning (ECML
’98), pages 4–15.

Lin, L. Y. (2012). IK Analyzer 2012 upgrade 5. http://code.google.com/p/
ik-analyzer.

Nie, J.-Y., Gao, J., Zhang, J., and Zhou, M. (2000). On the use of words and n-grams
for chinese information retrieval. In Proceedings of the Fifth International Workshop on
Information Retrieval with Asian Languages (IRAL ’00), pages 141–148.

Nigam, K., Lafferty, J., and McCallum, A. (1999). Using maximum entropy for text
classification. In Workshop on Machine Learning for Information Filtering (IJCAI ’99),
pages 61–67.

Pang, B. and Lee, L. (2004). A sentimental education: sentiment analysis using subjec-
tivity summarization based on minimum cuts. In Proceedings of the 42nd Annual Meeting
on Association for Computational Linguistics (ACL ’04).

Pang, B. and Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and
Trends in Information Retrieval, 2(1-2):1–135.

Pang, B., Lee, L., and Vaithyanathan, S. (2002). Thumbs up?: sentiment classification
using machine learning techniques. In Proceedings of the ACL-02 conference on Empirical
methods in natural language processing (EMNLP ’02), pages 79–86.

Rosenblatt, F. (1957). The perceptron–a perceiving and recognizing automaton. Technical
Report 85-460-1, Cornell Aeronautical Laboratory.

Taketa, K. (2012). cMeCab-Java version 2.0.1. http://code.google.com/p/
cmecab-java.

Waldvogel, B. (2012). Java LIBLINEAR version 1.8. http://www.bwaldvogel.de/
liblinear-java/.

Yang, Y. and Pedersen, J. O. (1997). A comparative study on feature selection in text
categorization. In Proceedings of the Fourteenth International Conference on Machine
Learning (ICML ’97), pages 412–420.

592

