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ABSTRACT
Studies of computational models of language acquisition depend to a large part on the input
available for experiments. In this paper, we study the effect that input size has on the per-
formance of word segmentation models embodying different kinds of linguistic assumptions.
Because currently available corpora for word segmentation are not suited for addressing this
question, we perform our study on a novel corpus based on the Providence Corpus (Demuth
et al., 2006). We find that input size can have dramatic effects on segmentation performance
and that, somewhat surprisingly, models performing well on smaller amounts of data can
show a marked decrease in performance when exposed to larger amounts of data. We also
present the data-set on which we perform our experiments comprising longitudinal data for
six children. This corpus makes it possible to ask more specific questions about computational
models of word segmentation, in particular about intra-language variability and about how the
performance of different models can change over time.1

KEYWORDS: word segmentation, language acquisition, resources, Bayesian modelling, unsu-
pervised learning.

1The corpus and the code to run the experiments is available at http://web.science.mq.edu.au/
~bborschi/.

325



1 Introduction

Segmenting a stream of sounds into discrete words is one of the first tasks that children
acquiring their native language have to tackle. Computational models of word segmentation
enable us to study this problem in a controlled and detailed manner, allowing for example
for an examination of the usefulness of different kinds of cues or different learning strategies.
Just as important as the actual models, however, is the adequacy of the input used to evaluate
them — if we are interested in answering questions about human language acquisition, the
data we evaluate our models on needs to be comparable to what children are likely to have
access to. To this end, several datasets of phonemically transcribed child directed speech (CDS)
have been constructed in several languages, ranging from English to Italian, Polish, Sesotho and
Chinese (Brent and Cartwright, 1996; Gervain and Erra, 2012; Boruta and Jastrzebska, 2012;
Johnson, 2008a; Johnson and Demuth, 2010). In addition to cross-linguistic variation, however,
adequate computational models also need to handle language-internal variation along several
dimensions, a topic that has so far received little interest. In this paper, we look at a basic point
of variation, namely the actual size of the input to the learner. The longer children are exposed
to language, the more data they are exposed to and the better at their language they become,
something one would expect from adequate models of language acquisition as well.

We run our experiments on a novel dataset that contains longitudinal data for six children from
the Providence Corpus (Demuth et al., 2006). It has two advantages over the current defacto
standard for word segmentation studies for English, the Bernstein-Ratner-Brent corpus (Brent,
1999, in the following, BRB Corpus). First of all, it cleanly separates the CDS that is directed
at different children whereas the BRB Corpus contains data from 9 different children with no
clear indication of the different portions. In addition, recording for some of the children in the
BRB corpus began as late as month 21 and for others as early as month 13, making the data
available for some of the children hard to compare. In contrast, the Providence Corpus provides
data for all of the children starting from month 16 at the latest and starting from month 11
at the earliest and thus constitutes a much more homogeneous data set. Finally, the overall
size of the BRB Corpus with a little less than 10,000 utterances altogether is relatively small,
in particular if one considers the individual sub-parts which, on average, have only around
1,100 utterances; in contrast, our dataset contains more than 90,000 CDS utterances in total
and spans a period of several months for all of the children. This makes it possible to both
compare inter-child variability in word segmentation across comparable situations and to study
developmental changes in individual children over a period of several months. As such, the
resource will allow researchers to ask a wider range of questions than is currently the norm, in
particular with respect to the study of incremental models that have recently received a lot of
interest (Pearl et al., 2011; Börschinger and Johnson, 2012; Phillips and Pearl, 2012). While for
our own experiments on the effects of input size we focus on one of the six sub-corpora of the
dataset, we describe and make available the full data so as to enable other researchers to take
advantage of this new resource as well.

The contribution of this paper is two-fold. We present a new CDS corpus for computational word
segmentation that is derived from the Providence Corpus (Demuth et al., 2006), comprising data
from six different children that have been collected in comparable situations over several months.
The second and major contribution of our paper is the identification of a so far unreported
“overlearning” effect of certain word segmentation models that runs counter to the plausible
intuition that more data should lead to better learning outcomes. We also discuss these findings
and propose an explanation for the behaviour exhibited by different models, highlighting the

326



importance of linguistic structure for computational models of language acquisition. The outline
of the paper is as follows. First, we provide background about the original Providence Corpus,
our way of phonemically transcribing it and the properties of the new data-set we created. In
section 3, we introduce the models of word segmentation which we examine with respect to the
effect of input size in section 4. Section 5 discusses our findings and the final section concludes.

2 The Providence Corpus

The Providence Corpus was collected during 2002-2005 from participants in southern New
England. It contains longitudinal audio/video recordings of 6 monolingual English-speaking
mothers and their children from approximately 1-3 years during spontaneous interactions at
home. The children included 3 boys (Alex, Ethan, William) and 3 girls (Lily, Naima, Violet).
Each was recorded for approximately 1 hour every 2 weeks beginning at the onset of first
words. Two of the girls have denser corpora, with weekly recordings from 1;3-2;10 (Naima)
and 2;0-3;0 (Lily), and Naima’s recordings tended to be 1.5 hours long. There is therefore more
data for this mother and child. Lily’s mother also talked quickly; there is therefore much data
from Lily’s mother as well. Recording began around one year or once the parent reported that
the child was producing approximately four words.

Digital audio/video recordings took place in each child’s home. Although parent and child
could move freely about, the video information was useful in determining the context of what
was being discussed, including possible target words. The availability of video would allow
future work along the lines of Frank et al. (2009) and Jones et al. (2010) although so far, we
haven’t made direct use of the video recordings.

The digital audio/video recordings were downloaded onto a computer, and both adult and
child speech were orthographically transcribed using CHAT conventions (cf. MacWhinney
(2000)). The child data — but unfortunately not the caregivers’ — were then also transcribed
in phonemic transcription. All mother and child transcriptions, as well as audio/video files,
can be found on the CHILDES database http://childes.psy.cmu.edu/. We used the XML
version of the data for our transcription process.

2.1 Producing a phonemically transcribed version

To find CDS utterances, for all six children we extract the orthographic transcriptions for all
utterances made by caregivers from the XML transcripts of the Providence corpus, starting from
11 months up to and including 22 months.2 This makes our data qualitatively comparable to
the BRB Corpus that includes CDS from between 13 and 21 months of the children’s age. In
total, we extract 101,451 utterances with a 9395 distinct (orthographic) types but the number
of utterances we use is smaller than this because we do not keep all of the utterances in the
process of transcription (see below).

To turn the orthographic representations into a phonemic format that is suitable for studying
language acquisition, we perform a four step process of filtering, dictionary look-up, heuristic
construction of pronunciations for unknown types and manual transcription of unknown types
not covered by our heuristic as well as correction of mistakes made during earlier steps.

2Available at http://childes.psy.cmu.edu/data-xml/Eng-USA/Providence.zip
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2.1.1 Filtering words

We manually remove types that we consider to be obvious non-words, in particular interjections
such as hmmmhmmm or mmmmhmmm, obvious onomatopoeic wordplay such as nananana
and unintelligible words which are transcribed in the Providence Corpus as xxx and yyy. This
is consistent with the procedure followed by Brent (1999) and, more recently, Boruta and
Jastrzebska (2012), making our corpus comparable in this respect to theirs. We do not, however,
remove these items in cases where the resulting utterance would have been rendered fully
unintelligible or where a word that should have been excluded according to the above criteria
was used as an actual word in a large number of cases.3

In total, we identify 785 such non-words and we remove all occurrences of these types from
the transcript, leaving the remaining words in the utterance:4 utterances including any of the
stop-words are still transcribed as long as there is at least one word left after removing all
stop words. A total of 7,362 utterances are thus completely ignored, with 6,123 utterances
consisting of exactly one of these filtered elements, in particular xxx (unintelligible, 2215), oh
(525) and hmmm (521).

2.1.2 Dictionary lookup

After filtering, we perform a simple dictionary-lookup transcription using a phonemic dictionary.
We use the current version of the VoxForge dictionary which uses a standard phone set for
American English, corresponding to the current DARPABET coding.5 We also provide a script
that maps this representational scheme into one-character-per-phoneme representations that
are required by some of the currently common word segmentation tools.6If there are multiple
pronunciations available for a type, we always pick the first one. While this constitutes an
idealization we believe that a well-understood and explicit idealization is to be preferred over
an overly simplistic method of artificially introducing variability such as randomly choosing a
pronunciation.

In total, the VoxForgeDictionary covers 7035 of the 8610 remaining types in the data, leaving
1575 of the types untranscribed. We transcribe these words manually, using a simple pre-
processing heuristic to aid the process.

2.1.3 Heuristically constructing pronunciations for unknown words

Many of the unknown words are either forms of types that already are in the lexicon, e.g.
possessives (Elmo’s) or plurals (Legos), or compounds of two types that are both in the lexicon
individually (frenchtoast, teddybear). We handle the former case by simple rules operating
on the orthographic forms directly, looking for possible plural or possessive endings and then
checking whether the orthographic form can be decomposed into a known base-form with the

3The former applies mostly to cases where an item is mentioned rather than used, e.g. ”Does the baby say ‘Wah
wah’?”; the latter, for example, applies to ‘bonk’ which, in addition to its onomatopoeic use, also occurs as a verb in the
corpus, including its preterite and participle. Our data includes the full list of filtered items as well as the scripts that
perform the automatic steps of transcription from the original xml-data so that researchers can easily make their own
decisions about which items to exclude.

4While this may seem like a lot of items to exclude, most of these are hapaxes like bumpoopadoompadadooboom or
doodleuhdoo.

5The dictionary is available at http://www.repository.voxforge1.org/downloads/SpeechCorpus/
Trunk/Lexicon/VoxForge.tgz

6E.g. dpseg (Goldwater et al. 2009).
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Name #Utt #Tok #Type Avg. Utt. Len. Avg. Tok. Len Avg. Type Len.
Alex 8330 29423 1877 11.00 3.12 4.58

Violet 9024 39135 2343 13.43 3.10 4.68
William 10697 45689 2061 13.01 3.05 4.59
Ethan 18020 75564 2999 13.11 3.13 4.69
Lily 20641 94696 3946 14.77 3.22 4.96

Naima 27377 141990 4579 16.51 3.18 5.05

Table 1: Statistics about the different sub-corpora.

suffix added. In this case, we add the corresponding morph according to the rules of English
phonology. To identify potential compounds, we try to decompose words into a prefix p and a
maximal suffix s such that both p and s are known forms.

Taken together, our heuristic detects 924 cases which we then manually correct for mistakes.
An alternative way of constructing pronunciations is to use letter-to-sound rules, something we
plan to experiment with in future work.

2.1.4 Manual transcription

The remaining 651 word types are labelled manually, using where available the form-annotation
in the XML files as guide-line.7 Finally, we also manually inspect the forms generated by the
automatic steps and correct mistakes.

2.2 Statistics

The final corpus comprises a total of 94,089 phonemically transcribed utterances and consists
of six distinct sub-corpora, each corresponding to the CDS directed at one of the six children.
Each sub-corpus is, in turn, subdivided into individual files corresponding to the age of the child
at which recording took place, ranging from 11 up to 22 months. Both within these individual
files and within the overall corpus, the order of the CDS utterances corresponds to the order
in which these utterances were actually made, making them suitable for studies that look at
changes over time.

Table 1 gives summary statistics over the full amount of data for each individual child. Looking
at total number of utterances, we can broadly identify two groups: for Alex, Violet and William
there are considerably less CDS utterances than for Ethan, Lily and Naima. This is presumably
mostly due to the factors mentioned above. Yet, there also seem to be noticeable differences in
terms of utterance-, token- and type-length. Although we will not do so in this paper, performing
comparative evaluation of models across the children may lead to the discovery of interesting
predictors of model performance and perhaps even actual language ability on behalf of the
children.

For the rest of the paper, we will focus on the Naima part of the corpus and take a closer look at
how the segmentation performance of different segmentation models changes as a function of
the size of the input.

7While not always provided for caregiver utterances, some of them include phonetic markup for individual words,
in particular if the words were names.
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3 Bayesian Word Segmentation

The word segmentation models we study in this paper are Goldwater’s Unigram and Bigram
model (Goldwater, 2007; Goldwater et al., 2009) and Johnson (2008b)’s collocation-syllable
Adaptor Grammar models. For the mathematical details of these models, we refer the reader to
these original works.

All the models are Bayesian probabilistic models that define a generative process for the target
of learning, in this case segmented utterances or sequences of words. This generative process is
defined with the help of the Dirichlet Process (DP):8 at an intuitive level, the DP can be used
for word segmentation because it can bias models to identify compact ways to represent the
observed unsegmented utterances, trading off the number of both tokens and types used in an
analysis of the data. This trade-off is a consequence of the way that probabilities are assigned
to tokens under a DP model: the probability of hypothesizing a word token9 depends on the
number of times that its type has previously been hypothesized, and the probability of a full
hypothesis or segmentation of the data is the product of the probabilities for all the tokens used
in the segmentation. This tends to make solutions in which a small number of words is used
relatively frequently yet not over-excessively (as would be the case if every individual segment
were a type) the most probable which, in most cases, also leads to linguistically reasonable
results. What differentiates the different models from one-another are the specific assumptions
about the nature of possible word types and the relationships between word tokens. We will quickly
elaborate on these points, thus introducing all models used in our experiments.

3.1 Assumptions about possible words

A naive assumption about possible words is that they can be any arbitrary sequence of segments.
Thus, both dog and qfx would be equally good candidates for possible words a priori. While
obviously not true of human languages (bnik isn’t a possible English word), such a unigram
phoneme model is embodied in the original Unigram and Bigram models (Goldwater et al.,
2009) and has been shown to work reasonably well on the BRB Corpus.

An alternative and linguistically more adequate assumption is that a word must conform to (ar-
guably universal) constraints of syllable structure: words aren’t just sequences of segments but
consist of one or more syllables, themselves structured entities that consist of an optional initial
consonantal onset, an obligatory vocalic nucleus and an optional consonantal coda (Smolensky
and Legendre, 2005). In fact, Norris et al. (1997) provided evidence for a constraint on possible
words along these lines in human segmentation of unsegmented speech and Johnson (2008b)
showed previously how incorporating this kind of ‘prior knowledge’ into word-segmentation
models can lead to a considerable improvement in segmentation accuracy.

From a language acquisition point of view, there are also reasons to assume that syllables and
sub-syllabic units are learned by infants in addition to entire words: there is strong evidence
that even very young infants track probabilities defined over entire syllables (Saffran et al.,
1996) and that infants are sensitive to the phonotactics of their language from early on (Jusczyk
et al., 1993), leading us to look at models that learn both entire syllables and sub-syllabic units.
In addition, many languages including English are more or less restrictive about the material
allowed to occur word-initially and word-finally than word-internally, having led previous work

8Adaptor Grammars actually use the Pitman-Yor Process, a strict generalization of the DP. Here, we gloss over this
detail.

9Or a token of another entity, e.g. a syllable or a multi-word expression, if the model incorporates these notions.
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such as Johnson (2008b) to distinguish between word-internal and word-peripheral onsets
and codas.10 The models we discuss, then, incorporate all of these ideas, that is they learn
sub-syllabic units that are distinguished as to whether they occur word-peripherally or internally
as well as entire syllables. The Adaptor Grammar framework makes it very easy to implement
these different models, and we refer the reader to Johnson (2008b) for a discussion of how this
is done.11

3.2 Assumptions about relations between word tokens

The simplest assumption about the relation between words within an utterance is probably
that there is none. For a probabilistic model, this leads to a Unigram assumption about words,
i.e. that the probability of a sequence of words is simply the product of the probability of
each individual word, irrespective of its specific context. This is the assumption embodied by
Goldwater’s original Unigram model and a lot of previous work on word segmentation (Brent,
1999; Venkataraman, 2001).

A more plausible assumption is that words in a sequence are predictive of each other, a simple
version of which can be spelt out as a Bigram assumption about words that is employed by
Goldwater’s Bigram model.

Yet another way of modelling the relation between words has been proposed by Johnson
(2008b), employing a hierarchical instead of a sequential notion of context. The collocation
models assume that sentences are sequences of phrases that, themselves, are made up of
individual words. Consequently, the model not only learns words but an additional kind of
entity, entire chunks of words. Importantly and in contrast to the Unigram and Bigram models,
these chunks are stored in addition to and not at the expense of the words that make them up
— a collocation model can infer that thedoggie is a high-frequent unit that is made up of the
distinct words the and doggie. Johnson’s Adaptor Grammar framework makes it easy to assume
multiple levels of such collocations: a collocation2-grammar, for example, learns, in addition
to words and collocations composed of words, collocations that are themselves composed of
collocations of words. In this paper, following Johnson and Goldwater (2009) we examine
models that use up to three levels of collocations.

3.3 The different models

As the different kinds of assumptions about the internal structure of words and about the
relationship between words are independent, we can freely combine them, yielding a total of
9 models.12 We refer to the different models by names that indicate which assumptions they
embody. Models that do not incorporate the syllable structure assumption are simply referred
to by the relationship assumed between word tokens, i.e. unigram, bigram, colloc, colloc2 and
colloc3, the last two names referring to models assuming a total of 2 and 3 levels of collocations,
respectively.

Except for the bigram model, each of these models can either use a ‘naive’ word-assumption

10For example, in English str is only valid as an onset word-initially, as in string or strong, and the consonant cluster
dths in widths is restricted to the end of words.

11In fact, the sole difference between Johnson’s models and our own is that his do not learn entire syllables.
12With the exception of the bigram model for which we know of no existing implementation that makes it possible to

incorporate syllable structure. In principle, however, this model is a possibility and we hope to be able to study it in the
future.
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allowing arbitrary sequences of segments or the syllable-structure word-assumption which,
in addition to constraining the space of possible words, enables the model to explicitly learn
properties of the language’s phonology. To distinguish these two cases, we suffix models that
embody the latter assumption with Syll.

4 Experiments

5000
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15000

20000

25000

12 14 16 18 20

Figure 1: The months on the x-axis
correspond to the different inputs, the
y-axis gives the number of utterances
in an input. The smallest input is
month 11 with 973, the largest input
month 21 with 24,327 utterances, ap-
prox 2.5 times the size of the BRB cor-
pus.

We are interested in how the segmentation perfor-
mance of the different models varies with the amount
of input available to the models during learning. As
human language learners tend to get better at their na-
tive language with longer exposure, one would expect
adequate computational models to exhibit something
similar, initially improving as more data is observed
and, at some point (probably beyond the size of sam-
ples we usually can look at in practice), asymptotically
approaching some upper bound.

The longitudinal data available in the Providence Cor-
pus suggests a natural setup for studying this question
by constructing inputs that consist of all CDS utterances
directed at an individual child up to a certain point of
time. For our experiments, we use the Naima section
of the Providence Corpus and collect CDS utterances
from when Naima was 11 months old through to when
she was 21 months old to construct 11 differently sized
inputs, each input consisting of all CDS utterances in
the corpus up to and including a given month. We will
refer to the different input sets by the last month from
which it includes data and will use “language exposure”
and “input size” exchangeably, a simplifying yet justified choice as is evident from figure 1 that
shows how the size of the input grows over time and thus with language exposure.

We choose to evaluate on held-out data and construct the test-set by sampling 200 CDS
utterances from the 22nd month of each of the six children’s sub-corpus in the Providence
Corpus. We propose this as a standard test corpus that can be used as a standard for any or
all of the 6 children’s data in the Providence Corpus. Our evaluation metric is token f-score,
the harmonic mean between token precision (number of correct tokens identified by the model
over the number of total tokens predicted by the model) and token recall (number of correct
tokens identified by the model over the true number of tokens in the input) as a measure of
segmentation accuracy. The segmentation on the held-out data is calculated after probabilistic
inference has been performed on the input, thus implicitly defining a (probabilistic) lexicon
according to which we sample a segmentation for each utterance in the test-set. Note that
during this process, no novel words are added to the model’s lexicon; in this sense, we evaluate
the knowledge the learner has acquired after having had access to the input.

Our experimental procedure follows closely the one outlined in Johnson and Goldwater (2009).
We use the current version of Mark Johnson’s Adaptor Grammar implementation13 to run

13Available at http://web.science.mq.edu.au/~mjohnson/code/py-cfg-2012-08-16.tgz.
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Figure 2: Word segmentation performance on the held-out test-set for the difference models,
as a function of language exposure and consequently, size of the training set (see figure 1).
The models incorporating syllable structure all exhibit some degree of performance decrease
for larger inputs although the colloc3Syll consistently remains well above 80%. In contrast,
the models without syllable structure exhibit an increase in performance over time although
their segmentation accuracy is considerably worse than that of the best performing models with
syllable-structures.

two Markov Chain Monte Carlo chains for each of the models for 1000 iterations, collecting
sample analyses for the held-out test-set with a lag of 5 after a burn-in of 800 iterations and
performing Minimum Bayes Risk decoding to get a single score for each condition at the end.
For the Bigram model, the only model not expressible as an Adaptor Grammar, we use Sharon
Goldwater’s implementation and the experimental paradigm outlined in Goldwater (2007) and
Goldwater et al. (2009), using simulated annealing for 20,000 iterations and evaluating on a
single sample taken at the end. Figure 2 plots segmentation accuracy as measured by token
f-score for different amounts of input size, with the size of the input growing from left to right.

Overall, we can see two broad patterns of behaviour across the different models. One group of
models exhibits a degradation in performance for larger amounts of inputs, in particular the
Unigram, the collocSyll and the colloc2Syll model. Neither the UnigramSyll nor the colloc3Syll
model show a lot of variation although a small drop in performance for the last month as
compared to their peak performance is noticeable for them as well. Another group consisting of
the colloc, colloc2, colloc3 and Bigram models exhibits an increase in performance with amount
of training data.

The colloc3Syll model clearly emerges as the most accurate with an accuracy of 87% at peak
performance at around 14 months (4794 utterances) that drops to around 83% at month 21
(24,327 utterances). The second best model, the colloc2Syll model, peaks at around 85% at
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month 13 and drops by 10% to about 75% at month 21, showing a clear decrease in accuracy.
A third place is harder to assign. The collocSyll model shows the most dramatic drop in
performance, from around 75% at month 11 (973 utterances) to just above 60% for month
21. In contrast, both the colloc and the Bigram model start around 60% at month 11 but,
for month 21, reach around 70% so that there is no single model that comes in third for all
amounts of input size. Incidentally, note how the behaviour of the Bigram and the colloc model
is very similar, supporting Johnson (2008b)’s hypothesis that “the collocation word adaptor
grammar can capture inter-word dependencies similar to those that improve the performance
of Goldwater’s bigram segmentation model.”14 The most dramatic performance improvement
is seen for the colloc3 model which jumps from around 18% for month 11 to about 53% for
month 21. Despite this, it is the second-worst model, loosing only to the UnigramSyll model
which stays consistently below 50% accuracy with little variation.

To sum up, we observe two types of behaviour. The Unigram model and the models incorporating
syllable structure and the notion of a multi-word phrase exhibit what we call “overlearning”:
they reach their peak performance for relatively small amounts of input and gradually get worse
as the size of the input grows larger. This is much more pronounced for the collocSyll and the
colloc2Syll than for the colloc3Syll model, with the latter remaining well above 80% accuracy
even for the largest amount of input. Despite overlearning, the colloc3Syll and the colloc2Syll
perform word segmentation the most accurate for all sizes of input. On the other hand, the
models lacking the assumption of syllable structure do not exhibit overlearning, at least not on
the amount of data we were able to test them.

5 Discussion
in the the baby

0

200

400

600

12 14 16 18 20 12 14 16 18 20

Figure 3: Frequency of a preposi-
tion+determiner pattern and deter-
miner+noun pattern on the y-axis as
a function of input size on the x-axis.
Note the steep increase of frequency
of in the and the much less dramatic
increase for the baby.

Why do the models we examine exhibit these two kinds
of behaviour? We begin with a detailed explanation of
the “overlearning”, starting from an original observa-
tion going back to Goldwater (2007) who noticed that
the Unigram model tends to identify undersegmented
solutions where the predicted (incorrect) words of-
ten consist of several of the (correct) words. Her ex-
planation for this is that “groups of words that fre-
quently co-occur violate the unigram assumption in
the model since they exhibit strong word-to-word de-
pendencies”, and that “[t]he only way the model can
capture these dependencies is by assuming that these
collocations are in fact words themselves.” (Goldwater,
2007, p.72) Why is it, however, that these “misleading”
co-occurrences occur in the data in the first place, and
can this explanation be extended to account for the
input-size effect we detected?

We suspect that many of the “collocations” a model such as the Unigram model is susceptible to
arise from principled regularities governing language: English syntax, for example, requires
(most) prepositional phrases to begin with a preposition-determiner sequence and both preposi-

14Unlike Johnson (2008b) and Goldwater (2007), we did not hand-tune any of the parameters of the models which
may partly explain why our scores for the Bigram model are slightly lower for the earlier months, in addition to the fact
that we didn’t use Minimum Bayes Risk decoding for the Bigram model.
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Figure 4: Token f-scores for word types of different frequencies in the test-set as a function
of the size of the input. Note that the Unigram and the collocSyll model already show clear
decreases in accuracy over time for types of frequency larger than 10 whereas the colloc3Syll
model shows a relatively robust performance up to the highest-frequency bin of types with
frequency larger than 200. The presence of the drop in performance shows that even the
colloc3Syll model suffers from “overlearning” although this behaviour is much less pronounced
than for the other models and only occurs dramatically for the highest-frequency types in the
data.

tions and determiners are small closed classes, leading to a huge number of sequences such
as in the in virtually any English text. Crucially, the occurrence of a sequence such as in the is
largely independent of what is actually being talked about and the number of such occurrences
can therefore be expected to grow with the amount of data considered. This is supported by
figure 3 which plots the change in frequency of the preposition-determiner sequence in the,
showing that the number of “misleading” co-occurrences of that kind does indeed increase
for larger amounts of data. This leads to the prediction that the Unigram model will perform
worse when trained on larger amounts of data, simply because the evidence for these kinds
of spurious words that lead to undersegmentation errors grows with the input size. To our
knowledge, we are the first to formulate this hypothesis and our experimental results strongly
suggest that it is true. The drop in performance for the Unigram model is clear from figure 1: it
reaches peak performance of around 65% when its input consists of a mere 973 utterances, and
its segmentation accuracy steadily drops as it processes larger inputs down to around 58% for
an input of 24,327 utterances.

More direct support for explaining the drop by the negative impact of the increasing frequency
of patterns like the one in figure 3 comes from figure 4 that plots how well the model is able to
identify word types of different frequencies in the test set as a function of input size. Note how
for higher-frequency types, the Unigram model’s performance decreases more dramatically than
for low frequency types for larger amounts of input. To investigate whether this difference in
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pattern #test
month 11 (973 utterances) month 21 (24,327 utterances)

#input
Unigram colloc3Syll

#input
Unigram colloc3Syll

% cor % col % cor % col % cor % col % cor % col

in the 18 14 50% 50% 94% 0% 671 0% 89% 0% 100%
are you 19 14 100% 0% 100% 0% 536 0% 71% 0% 100%
on the 21 11 100% 0% 81% 0% 347 0% 86% 14% 86%
this is 9 5 100% 0% 100% 0% 196 0% 67% 56% 44%

with the 4 2 100% 0% 100% 0% 153 0% 75% 75% 0%
the baby 4 0 100% 0% 100% 0% 80 0% 100% 100% 0%

Table 2: A qualitative look at how bigram-patterns of different frequency are handled by the
Unigram and the colloc3Syll model at month 11 and month 21, respectively. The %cor and
%col columns give the percentage of occurrences of a pattern in the test-set that were handled
correctly or were misanalysed as constituting a two-word collocation. Note that %cor and %col
need not add up to 100% as the models can also make other errors than simply undersegmeting.
It is clear that at month 11, both the Unigram and the colloc3Syll model handle all the cases
nearly perfectly; but unlike the Unigram model, the colloc3Syll model handles lower-frequency
patterns at month 21 with increasing ease, making no mistake for a unit that occurs 80 times in
its input such as the baby but still mis-analysing a pattern such as in the.

performance could actually be due to high-frequency items getting “absorbed” into larger units
as we suggest following Goldwater (2007), in table 2 we perform a qualitative evaluation of a
number of actual examples of patterns involving high-frequency that are themselves of different
frequencies. As is clear, cases that are analysed correctly at month 11 are almost consistently
misanalysed as a single word at month 21, showing that the “loss” of high-frequency items is a
major reason for the overlearning.

Surprisingly, perhaps, the same kind of explanation seems to apply to the collocation-syllable
models. While originally proposed by Johnson (2008b) to specifically address the problem
of undersegmentation, looking at figure 4 indicates that collocation models do not solve the
problem of high-frequency words completely, although it seems to get less problematic with
the number of collocational levels the model has at its disposal. Looking at the kind of units
learned by the collocation-models helps understand why that is: among the high-frequency
collocations learned by both the collocSyll and the colloc2Syll model from the largest input
is, for example, the two ‘word’ sequence doyou remember; this is a better solution than the
Unigram model’s doyouremember but it still involves the undersegmented collocation do you.
While the colloc3Syll model analyses this specific case correctly as a three-word collocation
do you remember, it fails to acquire the collocation do you on its own and prefers to use the
“word” doyou in most other cases, showing that collocations do not solve the undersegmentation
problem but only push it back a level, in line with figure 4: note that while the colloc3Syll
model behaves relatively stable for word-types with frequencies smaller than 200, it also shows
a marked drop for the high-frequency word types from around 95% at month 11 to just below
80% for month 21. Some concrete examples of patterns which the colloc3Syll model is and isn’t
able to handle correctly are given in table 2, alongside the performance of the Unigram model
for these cases, showing how its ability to handle word-dependencies breaks for high-frequency
patterns but handles patterns the Unigram model is unable to analyse correctly. After this
discussion, the fact that even for collocation-models the undersegmentation problem gets worse
for larger inputs shouldn’t be too surprising. As pointed out above, many of the patterns
leading to undersegmentation errors are due to syntactic regularities that, for example, require
prepositions to be followed (in almost all cases) by articles. Figure 3 indicates that these kinds
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of patterns grow continuously with the size of the input, suggesting that models that “merely”
model co-occurrence statistics are bound to fail at some point. This may almost seem like a
general problem for Bayesian probabilistic models of the kind discussed here that, in a sense,
simply try to identify high-frequency patterns in the input. Yet this is not so. For one thing,
the lack of detailed linguistic structure is not inherent to the Bayesian framework that is fully
unrestricted as to what kind of structures a model is defined over. This much is clear from the
ease with which syllable structure can be incorporated into the models. Secondly, even without
additional linguistic structure the relative robustness of the colloc3Syll model shows that while
not fully solving the problem of misleading co-occurrences, a sufficiently rich collocational
structure goes a long way in alleviating the problem for input sizes that go well beyond 20,000
utterances. It suffices to handle most cases involving content words such as nouns, correctly
learning for example that despite its (relatively) high frequency, the baby consists of two
individual words. Figure 3 shows that for patterns like this, frequency grows much slower over
time (although still too fast for a model lacking any ability to model larger-than-word-units
such as the Unigram model), not too surprising considering that the occurrence of content
words — unlike function words — is mainly dependent on what is actually being talked about
and that conversation topics tend to change over time. This then suggests that a model like
colloc3Syll will handle correctly these important cases for even considerably larger amounts of
data, a clear desideratum for models of early language acquisition phenomena.

This leaves us to explain why the collocation models without syllable structure lead to an
overall worse performance but seem to exhibit a positive relation between amount of input
and segmentation accuracy. The key to this, we believe, lies again in considering the kinds of
regularities the model is sensitive to. With no restriction on what an actual word may look
like, high-frequency patterns of any kind — including individual segments and short n-gram
like sequences of segments — can be employed by the models to explain the input they get.
In particular for little input with overall few word tokens and, consequently, relatively few
repetitions for each of the actual word types, the evidence for high-frequency non-words is
extremely high, leading to over- rather than undersegmentation. To understand why this
isn’t happening for the Unigram model, recall that under the Unigram model, all tokens in
a hypothesis are fully independent whereas the collocation and the Bigram model assume
dependencies between tokens. Consequently, under the Unigram model a solution involving
a large number of items is automatically discouraged because it can only work with marginal
probabilities, whereas the other models without syllable structure can “abuse” their respective
notions of context to capture dependencies not only between words but also between sub-
word units. Ironically then, the oversegmentation behaviour is worst for models with a lot of
additional structure such as the colloc3-model that, when combined with a syllable structure
constraint, leads to the best performance. A quick glance at the kinds of units identified by
it suggests why that is — at month 11, the most frequent “word” that is learned is t which
is used in “collocations” like t o, ge t or, illustrating the problem very nicely, j us t. Crucially,
the more input it has access to the stronger the evidence for larger (more word-like) units
gets, leading to less undersegmentation at month 21 with a top-5 word list of ing, you, z, the
and to. Yet, even for well over 20,000 utterances the colloc3 model prefers extremely short
‘words’ as it has another three levels of collocations that it can use to capture words; and it
actually does learn collocations such as ma mi. The colloc2, colloc and the Bigram model are
less extreme in their oversegmentation behaviour as they have fewer “levels” at their disposal,
discouraging the excessive use of one-segment ‘words’ as in the colloc3 model more severely. In
fact, as is suggested from both figure 2 and from inspecting their highest-frequency words at
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month 21 that include “overlearned” units like areyou and doyou, the Bigram and the colloc
model are starting to overlearn just like the syllable-structure models, as we would expect from
basically every model ignorant of the linguistic regularities that can explain high-frequency
patterns for sufficiently large amounts of data. In conclusion, we think this shows that the
intuitively attractive behaviour of these models is an artefact of their strong preference for short
units that, for small amounts of data, masks the overlearning at the expense of segmentation
accuracy; in particular, the fact that models lacking syllable structure do not exhibit overlearning
in our experiments should not be taken as evidence that they are more adequate than their
overlearning relatives.

It is possible that the overlearning behavior we describe in this paper can be addressed by
manually choosing appropriate values for the models’ hyper-parameters, which control the
models’ Pitman-Yor Processes (PYPs). Goldwater (2007) observed that the segmentations
proposed by the unigram and bigram models depend on the choice of hyper-parameters, and
Johnson (2008b) observed a similar sensitivity to hyper-parameters in Adaptor Grammar
models. However, the number of hyper-parameters is twice the number of PYPs in a model,
and searching for hyper-parameter values that result in the most accurate segmentation is
computationally very challenging. For this reason Johnson and Goldwater (2009) placed Beta
and Gamma priors on the PYP a and b hyper-parameters respectively in their Adaptor Grammar
models, and reported that sampling the hyper-parameters actually improved segmentation
f-score as compared to the manually-specified settings they investigated. It is reasonable to
expect that more realistic models of human language will be more complex, and therefore will
have even more hyper-parameters, than the models investigated here. It is certainly conceivable
that the hyper-parameters are innately fixed by universal grammar to values that result in
good segmentations across different languages. But all else being equal, models which do not
require hyper-parameters to be fixed to specific values should be preferred on general simplicity
grounds over models that do require such prespecification. For this reason we chose to use
Johnson and Goldwater’s hyper-parameter sampler in the Adaptor Grammar models we studied
here.

Conclusion and perspectives
We have presented a novel corpus of English CDS derived from the Providence Corpus for
studying models of word segmentation. This corpus makes it possible to address a wider range
of questions than is currently common, for example with respect to the study of developmental
effects in incremental algorithms. We identified an interesting “overlearning” effect for state-
of-the-art word segmentation models on large amounts of data that has so far gone unnoticed
and proposed an explanation of this behaviour that highlights the importance of linguistic
structure for Bayesian models; we have argued that the apparent lack of overlearning for
linguistically less-sophisticated models is due to an undesirable preference for oversegmentation
and shouldn’t be mistaken for an advantage.
In future work, we want to further explore the impact of linguistic knowledge for Bayesian
models of the kind discussed here; we suspect that giving the model the ability to model more of
the regularities languages exhibit more appropriately, the overlearning behaviour we observed
will become less severe. Also, we want to test the cross-linguistic usefulness of different kinds
of constraints such as assuming (a certain kind of) syllable-structure. This is complicated by the
fact that most current data-sets do not separate CDS directed at different children and children
of different ages. We hope that our presentation of a data-set that fulfills these desiderata will
lead to the creation of corpora like this for other languages as well.
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