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ABSTRACT
Online content analysis employs algorithmic methods to identify entities in unstructured text.
Both machine learning and knowledge-base approaches lie at the foundation of contemporary
named entities extraction systems. However, the progress in deploying these approaches on
web-scale has been been hampered by the computational cost of NLP over massive text corpora.
We present SpeedRead (SR), a named entity recognition pipeline that runs at least 10 times
faster than Stanford NLP pipeline. This pipeline consists of a high performance Penn Treebank-
compliant tokenizer, close to state-of-art part-of-speech (POS) tagger and knowledge-based
named entity recognizer.
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1 Introduction

Information retrieval (IR) systems rely on text as a main source of data, which is processed
using natural language processing (NLP) techniques to extract information and relations.
Named entity recognition is essential in information and event-extraction tasks. Since NLP
algorithms require computationally expensive operations, the NLP stages of an IR system
become the bottleneck with regards to scalability (Pauls and Klein, 2011). Most of the relevant
work, conducted by researchers, was limited to small corpora of news and blogs because of
the limitation of the available algorithms in terms of speed. Most of the NLP pipelines use
previously computed features that are generated by other NLP tasks, which adds computational
cost to the overall NLP pipeline. For example, named entity recognition and parsing need POS
tags; co-reference resolution requires named entities. In effect, we anticipate lower speed for
future tasks.

A conservative estimate of a sample of the web news and articles can add up to terabytes of text.
On such scale, speed makes a huge difference. For example, considering the task of annotating
10 TiBs of text with POS tags and named entities using a 20 CPU cores computer cluster would
take at least 4 months using the fastest NLP pipeline available for researchers, our calculations
show. Using our proposed NLP pipeline the time is reduced to a week.

Several projects have tried to improve the speed by using code optimization. Figure 1a shows
that Stanford POS tagger has improved throughout the years, increasing its speed by more than
10 times between 2006 and 2012. However, the current speed is twice slower than the SENNA
POS tagger.

(a) POS taggers performance. (b) NER taggers performance.

Figure 1: Performance of NLP pipelines through the years over POS and NER tagging. Stanford
POS tagger uses L3W model, its speed in 2006 is slow to be apparent in the graph. Stanford
tagger uses CONLL 4 classes model. SENNA pipeline was first released in 2008

In this paper, we present a new NLP pipeline, SpeedRead, where we integrate global knowledge
extracted from large corpora with machine learning algorithms to achieve high performance.
Figures 1a and 1b show that our pipeline is 10 times faster than Stanford pipeline in both tasks:
POS tagging and NER tagging. Our design is built on two principles: (1) majority of the words
have unique annotations and tagging them is an easy task; (2) the features extracted for the
frequent words should be cached for later use by the classifier. Both principles are simple and
they show how to bridge the large gap in performance between current systems and what can
be achieved.

Our work makes the following contributions:
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Phase SpeedRead
Relative Speed

Tokenization 11.8
POS 11.1
NER 13.9
TOK+POS+NER 18.0

Table 1: SpeedRead relative speed to Stanford pipeline.

• Exposing the performance limitations of the current NLP systems: We show that there is an
algorithmic room for improving performance, rather than relying solely on optimizing
the code.

• High performance NLP pipeline that supports English tokenization, POS tagging and named
entity recognition: Novel design decisions that are not taken by most of the available tools
to explore new area of the accuracy-performance space. SpeedRead is available under an
open-source license. The code’s organization is simple and it is written in Python for its
readability benefits. This makes it easier for others to contribute and hack.

• Techniques to reduce computation needed for sequence tagging tasks: We distinguish between
ambiguous and non-ambiguous words. We use the larger copora to calculate the frequent
words and their frequent tags. We cache the extracted features of the most frequent
words to avoid unnecessary calculations and boost performance.

Figure 2 shows the design of the SpeedRead pipeline. The first stage is tokenization followed by
POS tagging that is used as an essential feature to decide the boundaries of the named entities’
phrases. Once the phrases are detected, a classifier decides to which category these named
entities belong to.

This paper is structured as follows. In Section 2, we discuss the current NLP pipelines, available
to researchers. Section 3 discusses SpeedRead tokenizer’s architecture, speed and accuracy. In
Section 4, we discuss the status of the current state-of-art POS taggers and describe SpeedRead
new POS tagger. Section 5 describes the architecture SpeedRead’s named entity recognition
phase. Finally, in Section 5.2, we discuss the status of the pipeline and the future improvements.

1.1 Experimental Setup

All the experiments presented in this paper were conducted on a single machine that has i7
intel 920 processor running on 2.67GHz, the operating system used is Ubuntu 11.10. The time
of execution is the sum of {sys, user} periods calculated by the Linux command time. The
speeds that are reported are calculated by averaging the execution time of five runs without
considering any initialization times.

2 Related Work

There are many available natural language processing packages available for researchers under
open source licenses or non-commercial ones. However, this section is not meant to review
the literature of named entity recognition research as this is already available in (Nadeau and
Sekine, 2007). We are trying to discuss the most popular solutions and the ones we think are
interesting to present.

Stanford NLP pipeline (Toutanova and Manning, 2000; Toutanova et al., 2003; Klein et al.,
2003; Finkel et al., 2005; Lee et al., 2011) is one of the most popular and used NLP packages.
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Figure 2: SpeadRead named entity recognition pipeline. First, tokenization split the words
into basic units to be processed in the later phases. POS tagging identifies to which speech
categories words belong to. There are 45 part of speech category, we are mainly interested
in nouns. Chunking identifies the borders of phrases that make up the named entities. In the
above sentence, the named entity, Rami, is one word phrase. The last stage classifies each
phrase to one of four categories; Person, Location, Organization or Miscellaneous.

The pipeline is rich in features, flexible for tweaking and supports many natural languages.
Despite being written in Java, there are many other programming language bindings that are
maintained by the community. The pipeline offers a tokenization, POS tagging, named entity
recognition, parsing and co-referencing resolution. The pipeline requirements of memory and
computation are non-trivial. To accommodate the various computational resources, the pipeline
offers several models for each task that vary in speed, memory consumption and accuracy. In
general, to achieve good performance in terms of speed, the user has to increase the memory
available to the pipeline to 1-3 GiBs and choose the faster but less accurate models.

More recent efforts include SENNA pipeline. Even though it lacks a proper tokenizer, it offers
POS tagging, named entity recognition, chunking, semantic role labeling(Collobert and Weston,
2008) and parsing (Collobert, 2011). The pipeline has simple interface, high speed and small
memory footprint (less than 190MiB).

SENNA builds on the idea of deep learning of extracting useful features from unlabeled text.
This unsupervised learning phase is done using auto-encoders and neural networks language
models. It allows the pipeline to map words into another space of representation that has
lower dimensionality. SENNA maps every word available in its 130 thousand word dictionary
to a vector of 50 floating numbers. These vectors are then merged into a sentence structure
using convolutional networks. The same architecture is then trained on different tasks using
annotated text to generate different classifiers. The big advantage of taking this approach is the
lesser amount of engineering that it requires to solve multiple problems.

NLTK (Bird et al., 2009) is a set of tools and interfaces to other NLP packages. Its simple APIs
and good documentation makes it a favorable option for students and researchers. Written in
Python, NLTK does not offer great speed or close to state-of-art accuracy with its tools. On the
other hand, it is well maintained and has great community support.

WikipediaMiner (Milne and Witten, 2008) detects conceptual words and named entities; it also
disambiguates the word senses. This approach can be modified to detect only the words that
represent entities, then using the disambiguated sense, it can decide which class the entity
belongs to. Its use of the Wikipedia interlinking information is a good example of the power
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of using knowledge-based systems. Our basic investigation shows that the current system
needs large chunks of memory to load all the interlinking graph of Wikipedia and it would be
hard to optimize for speed. TAGME (Ferragina and Scaiella, 2010) is extending the work of
WikipediaMiner to annotate short snippets of text. They are presenting a new disambiguation
system that is faster and more accurate. Their system is much simpler and takes into account
the sparseness of the senses and the possible lack of unambiguous senses in short texts.

Stanford and SENNA performed the best in terms of speed and quality in our early investigation.
Therefore, we will focus on both of them from now on as good representatives of a wide range
of NLP packages.

3 Tokenizer

The first task that an NLP pipeline has to deal with is tokenization and sentence segmentation
(Webster and Kit, 1992). Tokenization target is to identify tokens in the text. Tokens are the
basic units which need not to be processed in the subsequent stages. Part of the complexity
of tokenization comes from the fact that the definition of what a token is, depends on the
application that is being developed. Punctuation brings another level of ambiguity; commas
and periods can play different roles in the text. For example, we do not need to split a number
like 1,000.54 into more units whereas we need to split a comma-separated list of words. On
the other hand, tokenization is important as it reduces the size of the vocabulary and improves
the accuracy of the taggers by producing similar vocabulary to the one used for training.

As many NLP tasks’ gold standards are dependent on Penn Treebank(PTB), a corpus of annotated
text and parsed sentences taken from Wall Street Journal (WSJ), we opted for their tokenization
scheme.

Searching for good tokenizers, we limited our options to the ones that support Unicode. We
believe that Unicode support is essential to any applications that depends on the pipeline. Stan-
ford tokenizer and Ucto (Gompel, 2012) projects offer almost Penn Treebank (PTB) compliant
tokenizers plus other variations that are richer in terms of features.

Table 2 shows that there is a substantial gap in performance between basic white space tokenizer
(words are delimited by spaces or tabs and sentences are split by new line characters) and
more sophisticated tokenizers as Stanford tokenizer and Ucto. We observed that the Stanford
tokenizer is 50 times slower than the baseline (WhiteSpace tokenizer), which motivated us to
look at the problem again.

The Stanford tokenizer is implemented using JFlex, a Java alternative to Flex. The tokenizer
matured over the years by adding more features and modes of operation which makes it harder
for us to modify. Ucto uses C++ to compile a list of regular expressions that passes over the
text multiple times.

SpeedRead, like the Stanford tokenizer, uses a lexical analyzer to construct the tokenizer.
However, we use different generating engine than the (F)lex family. SpeedRead depends on
Quex (Schafer, 2012), a lexical analyzer generator, to generate our tokenizer. Quex makes
different trade-off decisions than the usual lex tools when it comes to the tokenizer’s generation
time. Quex spends more time optimizing its internal NFA to produce a faster engine. While
generating a tokenizer from a normal lex file can take few minutes, Quex takes hours for the
same task. However, Quex supports Unicode in multiple ways and has similar description
language to lex, but is cleaner and more powerful. The extensive multiple mode support makes
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Tokenizer Word/Second Relative Speed
Ucto 185,500 0.8
PTB Sed Script 214220 0.96
Stanford 222,176 1.0
SpeedRead 2,626,183 11.8
WhiteSpace 11,130,048 50.0

Table 2: Speed of different tokenizers measured as word/second; Every tokenizer generates
different number of tokens. For consistency, the original words count before tokenization
used to calculate the speed. Words count is calculated using linux command wc. Execution
time includes both tokenization and sentence segmentation times with the exception that the
original PTB Sed Script does not do sentence segmentation. Ucto’s default configuration is used.
Stanford tokenizer runs with strict PTB flag turned on.

it easy to write the lexical rules in understandable and organized way. All of that results in a
fast C implementation of a Penn Treebank compliant tokenizer as Table 2 shows.

As a design decision, we did not support some features which we believe will not affect the
accuracy of the tokenizer. Table 3 shows the features which are not implemented. While some
of the features are easy to add as supporting contractions, others, involving abbreviations
especially U.S., prove to be complex (Gillick, 2009).

Feature Text PTB SpeedRead
Reordering Japan. ... Japan ... . Japan . ...
Punctuation U.S." U.S. . " U.S. "
addition
Contractions gimme gim me gimme

Table 3: Some features that are not implemented in SpeedRead Tokenizer. Contractions that
involves apstrophes are implemented in SpeedRead. For instance, can’t will be tokenized to ca
n’t.

Table 4 shows that the accuracy of our tokenizer is Penn Treebank compliant, despite the
missing features. Moreover, running SpeedRead and Stanford tokenizers over Reuters RCV1
corpus results in approximately 214, 215 million tokens consecutively.

3.1 Sentence Segmentation

While PTB offers a set of rules for tokenization, their tokenizer assumes that the sentences are
already segmented, which is done manually. SpeedRead’s sentence segmentation uses the same
rules that Stanford tokenizer uses. For instance, a period is an end of a sentence unless it is part
of an acronym or abbreviation. The list of rules to detect those acronyms and abbreviations
are taken from the Stanford tokenizer. Any quotations or brackets, that follow the end of
the sentence, will be part of that sentence. Running SpeedRead’s sentence segmentation on
Reuters RCV1 generated 7.8 million sentences, while Stanford tokenizer generated 8.2 million
sentences.
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Tokenizer Accuracy
PTB Sed Script 100.0%
Stanford tokenizer 99.7%
SpeedRead 99.0%
White Space 0.0%

Table 4: Accuracy of the tokenizers over the first 1000 sentence in the Penn Treebank. The gold
standard was created by getting the tokenized text from the parse trees and manually segment
the original text into sentences according to the parse trees. Errors in differentiating between
starting and ending quotations are not considered. Not supporting MXPOST convention,
replacing brackets with special tokens, is not considered necessary.

4 Part of Speech Tagger (POS)

Earlier work to solve the POS tagging problem relied on lexical and local features using
maximum entropy models (Toutanova and Manning, 2000). Later, more advanced models took
advantage of the context words and their predicted tags (Toutanova et al., 2003) to achieve
higher accuracy. As POS tagging is a sequence tagging problem, modeling the sequence into a
Maximum Entropy Markov Model (MEMM) or Conditional Random Fields (CRF) model (to
infer the probability of the tags’ sequences) seems to be the preferred option. The probability of
each tag is computed using log-linear model with features that include large enough context
words and their already-computed tags. This transforms every instance of the problem into a
large vector of features that is expensive to compute. Then the sequence of vectors are fed to
graphical model to compute the probability of each class, using the inference rules. The size of
features’ vector and the inference computation are the same regardless of the complexity of the
problem.

Although the previous algorithms are sufficient to achieve satisfying accuracy, their computation
requirements are overkill for most of the cases faced by the algorithm. For example, the has a
unique POS tag that never changes depending on its position in the sentence. Moreover, more
and that are frequent enough in the English text that there is a need to cache their extracted
features.

4.1 Algorithm

SpeedRead takes advantage of the previous observations and tries to distinguish between
ambiguous and certain words. To understand such influences, we ran a Stanford POS tagger
(left 3 words Model (L3W); trained on Wall Street Journal(WSJ), Sections 1-18) over a 1 GiB
of news text to calculate the following dictionaries:

• The most frequent POS tag of each token (Uni).
• The most frequent POS tag of each token, given the previous POS tag (Bi).
• The most frequent POS tag of each token, given the previous and next POS tags (Tri).

Using the above dictionaries to calculate the POS tag of a word, leads to various preci-
sion/recall scores. (Lee et al., 2011) shows that using sieves is the solution to combine
several rules/dictionaries. In a sieve algorithm, there is a set of rules that are cascaded after
each other. The algorithm runs the rules from the highest in precision to the lowest. The
first rule, matching the problem instance, returns its computed tag immediately. SpeedRead
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implements few sieves in the following order:

1. Certain tokens: Given a sentence, if the percentage frequency of the most frequent tag
of a token is more than a threshold (in our work, 95%) then return that tag.

2. Left and Right tags (Tri): For each token with unknown tag, return the most frequent
tag, given the left and right POS tags if they are known.

3. Left tags (Bi): For each token with unknown tag, return the most frequent tag, given the
left POS tag if it is known from the previous stages.

4. Token tag (Uni) : For each token with unknown tag up to this stage, return the most
frequent tag.

5. Backoff tag: If the token is unknown, use regular expression tagger to deduce the tag;
the regular expression tagger relies heavily on matching suffixes.

4.2 Results

Table 5 shows the performance of different algorithms running on different sections of PTB.
Stanford and SENNA models use sections 1-18, 19-21, 22-24 for training, development and
testing datasets, respectively. Despite the simplicity of our algorithm, it achieves relatively high
accuracy on the various datasets available.

Applying more context-aware rules, SpeedRead with sieves 1-5 (SR[Tri/Bi/Uni]) implemented,
shows improvement in accuracy by around 2.85% compared to just using unigrams, SpeedRead
with sieves 1,4-5 (SR[Uni]). To be sure that our algorithm is robust enough and not overfitting
the dataset, we calculated the dictionaries again by running SENNA POS tagger(Collobert et al.,
2011) over Reuters RCV1 corpus and the results were similar.

````````````POS Tagger
Sections

19-21 22-24 1-24

Stanford Bidirectional 97.27 97.32 98.16
Stanford L3W 96.97 96.89 97.90
SENNA 97.81 96.99 97.68
SR[Tri/Bi/Uni] 96.73 96.39 96.66
SR[Bi/Uni] 96.06 95.82 96.03
SR[Uni] 93.73 93.56 93.70

Table 5: Accuracy of different taggers on different sections of Penn Treebank. The first column
corresponds to the development set and the second to the testing set.

Tables 5 and 6 show the tradeoff between accuracy and speed. Stanford pipeline offers two
models with different speeds and accuracies. Since Left 3 Words model (L3W) is the preferred
tagger to use in practice, we chose it to be our reference in terms of speed. L3W model runs 18
times faster than the state-of-art Bidirectional model and is only 0.4% less accurate. SpeedRead
pushes the speed by another factor of 11 with only 0.5% drop in accuracy. Since the speed of
some algorithms vary with the memory used, every algorithm was given enough memory that
adding more memory will not affect its speed. The memory footprint is reported in the fourth
column of Table 6.
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POS Tagger Speed Relative Memory
Token/Sec Speed in MiB

Stanford Bi 1389 0.04 900
Stanford L3W 28,646 1.00 450
SENNA 34,385 1.20 150
SR [Tri/Bi/Uni] 318,368 11.11 600
SR [Bi/Uni] 397,501 13.87 250
SR [Uni] 564,977 19.72 120

Table 6: Speed of different POS taggers. The first two taggers are Stanford taggers. The first
tagger runs the Bidirectional(Bi) model and the second runs the Left 3 Words (L3w) model.
SpeedRead has three variations

Figure 3: Accumulative percentage of errors made by the most frequent mistagged words. The
total number of words is around 2000, the graph lists only the most frequent 1000.

4.3 Error Analysis

The most common errors are functional words, such as that, more, .. which have multiple roles
in speech. This confirms some of the conclusions reported by (Manning, 2011). Figure 3 shows
that less than 10% of mistagged words are responsible for slightly more than 50% of the errors.
Regarding unknown words, the only part of the tagger that generalizes over unseen tokens is
the regular expression tagger. Regular expressions are not extensive enough to achieve high
accuracy. Therefore, we are planning to implement another backoff phase for the frequent
unseen words where we accumulate the sentences, containing these words, after sufficient
amount of text is processed and then run Stanford/SENNA tagger over those sentences to
calculate the most common tag.

Table 7 shows the confusion matrix of the most ambiguous tags; the less ambiguous tags are
clustered into one category, O. One of the biggest sources of confusion in tagging is between
adjectives (JJ) and nouns (NN). Proper nouns are the second source of errors as most of the
capitalized words will be mistakenly tagged as proper nouns while they are either adjectives
or nouns. Such errors are the result of the weak logic implemented in the backoff tagger in
SpeedRead, where regular expressions are applied in sequence returning the first match. Other
types of errors are adverbs (RB) and propositions (IN). These errors are mainly because of the
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PPPPPPPPRef
Test

DT IN JJ NN NNP NNPS NNS RB VBD VBG O

DT 11094 62 3 7 3 0 0 1 0 0 13
IN 15 13329 9 1 0 0 0 88 0 0 50
JJ 1 11 7461 257 130 2 10 65 38 81 159
NN 1 5 288 17196 111 0 18 11 2 109 93
NNP 8 13 118 109 12585 264 31 8 0 2 39
NNPS 0 0 0 0 70 81 16 0 0 0 0
NNS 0 0 1 23 20 42 7922 0 0 0 53
RB 17 281 103 23 8 0 0 3892 0 1 80
VBD 0 0 8 5 4 0 0 0 4311 1 232
VBG 0 0 25 104 5 0 0 0 0 1799 0
O 26 163 154 172 47 4 107 67 174 2 45707

Table 7: Confusion Matrix of the POS tags assigned by SpeedRead over the words of sections
22-24 of PTB. O represents all the other not mentioned tags.

ambiguity of the functional words. Functional words need deeper understanding of discourse,
semantic and syntactic nature of the text. Taking into consideration the contexts around the
words improves the accuracy of tagging. However, trigrams are still small to be considered
sufficient context for resolving all the ambiguities.

5 Named Entity Recognition (NER)

Named entity recognition is essential to understand and extract information from text. Many
efforts and several shared tasks, aiming to improve named entity recognition and classification,
had been made; CONLL 2000/2003 (Tjong Kim Sang and De Meulder, 2003) are some of the
shared tasks that addressed the named entity recognition task. We use CONLL 2003’s definition
of named entity recognition and classification task. CONLL 2003 defines the chunk borders of
an entity by using IOB tags, where I-TYPE means that the word is inside an entity, B-TYPE
means a beginning of a new entity if the previous token is part of an entity of the same type
and O for anything that is not part of an entity. For classification, the task defines four different
types: Person(PER), Organization(ORG), Location(LOC) and Miscellaneous(MISC) (See Figure
4).

We split the task into two phases. The first is to detect the borders of the entity phrase. After
the entity chunk is detected, the second phase will classify each entity phrase to either a Person,
Location, Organization or Miscellaneous.

Columbia/ORG is an American/Misc university located in New/LOC York/LOC.

Figure 4: Annotated text after NER.

5.1 Chunking

We rely on the POS tags of the phrase words to detect the phrase that constitute an entity. A
word is considered to be a part of an entity: (1) if it is a demonym (our compiled list contains
320 nationalities), (2) if one of the following conjunction words {&, de, of} appearing in
middle of an entity phrase or, (3) if its POS tag is NNP(S) except if it belongs to one of these
sets:
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• Week days and months and their abbreviations.
• Sports (our compiled list contains 182 names).
• Job and profession titles (our compiled list contains 314 title).
• Single Capital letters.

These sets are compiled using freebase.

CONLL dataset shows a strong correlation between POS tags NNP(S) and the words that are
part of entities’ phrases; 86% of the words that appear in entities’ phrases have NNP(S) POS
tags. The remaining words are distributed among different POS tags; 6.3% are demonyms.
Adding the demonyms and proper nouns guarantee 92.3% coverage of the entities’ words that
appear in the dataset.

Using POS tags as main criteria to detect the entity phrases is expected, given the importance
of the POS tags for the NER task. 14 out of 16 submitted paper to CONLL 2003 used POS tags
as part of their feature set.

The behavior of the chunking algorithm is greedy as it tries to concatenate as many consecutive
words as possible into one entity phrase. A technical issue appears in detecting the borders
of phrases when multiple entities appear after each other without non-entity separator. This
situation can be divided into two cases. Firstly, if the two consecutive entities are of the
same type. In this case, the chunking tag should be B-TYPE. Looking at the dataset, such tag
appears less than 0.2% out of all the entities’ tags. For example, in the original Stanford MEMM
implementation, the classifier (Klein et al., 2003) generates IOB chunking tags while in the
later CRF models (Finkel et al., 2005) only IO chunking tags are generated. The second case is
when the phrases are of different types. In the dataset, this case appears 248 times over 34834
entities. Since both cases are not frequent enough to harm the performance of the classifiers,
SpeedRead does not recognize them.

5.1.1 Results

Table 8 shows F1 score of the chunking phase using different taggers to generate the POS tags.
This score is calculated over the chunking tags of the words. I and B tags are considered as
one class while O is left as it is. It is clear from Table 8 that using better POS taggers does
not necessarily produce better results. The quality of SpeedRead POS tagging is sufficient for
the chunking stage. SENNA and SpeedRead POS taggers work better for the detection phase
because they are more aggressive, assigning the NNP tag to any capitalized word. On the other
hand, Stanford tagger prefers to assign the tag of the lowered case shape of the word, if it is a
common word.

````````````Phase
Dataset

Train Dev Test

SR+SR POS 94.24 94.49 93.12
SR+Stanford POS L3W 92.98 93.37 92.05
SR+CONLL POS 90.88 90.82 89.43
SR+SENNA POS 94.73 95.07 93.80

Table 8: F1 scores of the chunking phase using different POS tags. F1 score is calculated over
tokens and not entities.
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5.1.2 Error Analysis

Table 9 shows the error cases that appears in the chunking phase. The most common class of
errors in the chunking phase is titles, such as {RESULTS, DIVISION, CONFERENCE, PTS, PCT}.
These words seem to confuse the POS tagger. Another source of confusion for the POS tagger is
the words {Women, Men} ; such words appear in the name of sports so they get assigned NNP
tag. As expected, all numbers that are part of entities are not detected. Conjunction words are
the second important class of errors. (Pawel and Robert, 2007) shows that conjunction words
that appear in middle of entities’ phrases are hard to detect and need special classification task.
As most of of occurrences are part of entities and the converse is true for and, we decided to
include the former and exclude the later.

Word Percentage Type of error
Titles 22.7% Detected
Titles 4.9% Missed
of 2.6% Detected
96, 95, 1000 ... 2.6% Missed
Men 1.3% Detected
Women 1.3% Detected
and 1.1% Missed
central 1.1% Detected

Table 9: Most frequent errors in the chunking stage.

5.2 Classification

Classification is a harder problem than just detecting an entity. For example, “West Bank"
can belong to two classes, location and organization. Disambiguating the sense of an entity
depends on the context. For instance, “Mr. Green" indicates that “Green" is a person, while
“around Green" points to a location. To classify an entity, we used a logistic regression clas-
sifier, sklearn (Scikit, 2011). The features we feed to the classifier are two factors per type:
φi j(T ypei , phrase j) and ψi j(T ypei , contex t j). Context consists of two words that precede and
follow an entity phrase. To calculate these factors:

φi j(T ypei , phrase) =
n∏
k

P(T ypei |wk) (1)

ψi j(T ypei , contex t = {wbe f ore, wa f ter}) = P(T ypei |wbe f ore)× P(T ypei |wa f ter) (2)

The conditional probabilities of the types, given a specific word, are calculated using the
distribution of tags frequencies over words, retrieved from the annotated Reuters RCV1 corpus.
SENNA NER tagger has been used to annotate the corpus.

Table 10 indicates the importance of the classification phase. First row shows that, given
chunked input, the classification phase is able to achieve close scores to the state-of- art
classifiers. However, given the chunks generated by SpeedRead, the scores drop around 9.5%
in F1 scores.
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XXXXXXXXXXPhase
Dataset

Training Dev Test

SR+Gold Chunks 90.80 91.98 87.87
SpeeRead 82.05 83.35 78.28
Stanford 99.28 92.98 89.03
SENNA 96.75 97.24 89.58

Table 10: F1 scores calculated using conlleval.pl script for NER taggers. The table shows that
SpeedRead F1 score is 10% below the sate-of-art achieved by SENNA.

To analyze the scores of the classification phase further, Table 11 shows a confusion matrix over
the tags generated by SpeedRead. The errors that involve O are signs of chunking errors; there
are 1158 chunking errors which exceed the total number of classification errors, 849.

PPPPPPPPRef
Test

LOC MISC ORG PER O

LOC 1737 34 95 36 23
MISC 36 660 57 52 113
ORG 323 73 1954 37 109
PER 26 8 72 2632 35
O 66 248 412 152 37445

Table 11: Confusion matrix of the SpeadRead NER tags over the CONLL test dataset tokens.

The chunking errors contain more false positives than false negatives. The chunking algorithm
is aggressive in considering every NNP(S) as part of an entity. That would be fine if we had a
perfect POS tagger. The reality that the POS tagger has hard time classifying uppercased words
in titles and camel cased words that appear at the beginning of the sentence.

Once non-entity is considered part of an entity phrase, the classifier has higher chance of
classifying it as an ORG than any other tag. The names of the organizations contain a mix of
locations and persons’ names, forcing the classifier to consider any long or mix of words as an
organization entity. That appears more clearly in the second most frequent category of errors.
323 words in organizations entities’ names were classified as locations. This could be explained
by the fact that many companies and banks name themselves after country names and their
locations. For example, “Bank of England" could be classified as a location because of the strong
association between England and the tag location.

Table 12 shows that Stanford pipeline has a high cost for the accuracy achieved by the classifier.
SENNA achieves close accuracy with twice the speed and less memory usage. SpeedRead takes
another approach by focusing on speed. We are able to speed up the pipeline to the factor of
13. SpeedRead’s memory footprint is half the memory consumed by the Stanford pipeline. Even
though SpeedRead’s accuracy is not close to the state-of-art, it still achieves 18% increase over
the CONLL 2003 baseline. Moreover, adapting the pipeline to new domains could be easily done
by integrating other knowledge base sources as freebase or Wikipedia. SENNA and SpeedRead
are able to calculate POS tags at the end of the NER phase without extra computation while that
is not true of Stanford pipeline standalone NER application. Using Stanford corenlp pipeline
does not guarantee better execution time.
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NER Tagger Token/Sec Relative Memory
Speed MiB

Stanford 11,612 1.00 1900
SENNA 18,579 2.13 150
SpeedRead 153,194 13.9 950

Table 12: Speed of different NER taggers. SpeedRead is faster by 13.9 times using half the
memory consumed by Stanford.

Conclusion and Future Work

Our success in implementing a high performance tokenizer and POS tagger shows that it is
possible to use simple algorithms and conditional probabilities, accumulated from a large
corpora, to achieve good classification and chunking accuracies.

This could lead to a general technique of approximating any sequence tagging problem using
sufficiently large dictionaries of conditional probabilities of contexts and inputs. This approx-
imation has the advantage of speeding up the calculations and opens the horizon for new
applications where scalability matters.

Expanding this approach to other languages depends on the availability of other high accurate
taggers in these languages. We are looking to infer these conditional probabilities from a global
knowledge base as freebase or the interlinking graph of Wikipedia.

SpeedRead is available under GPLv3 license and it is available to download from www.textmap.
org/speedread. We anticipate that it will be useful to large spectrum of named entity
recognition applications.
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