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Outline (1) 


   Motivation 


   Kernel-Based Machines 

   Perceptron 

   Support Vector Machines 


   Kernel Definition 

   Kernel Trick 

   Mercer’s conditions 

   Kernel operators 


   Basic Kernels 

   Linear Kernel 

   Polynomial Kernel 

   Lexical Kernel 

Outline (2) 


   Structural Kernels 

   String and Word Sequence Kernels  

    Tree Kernels 


   Subtree, Syntactic, Partial Tree Kernels 

   Applied Examples of Structural Kernels 


   Semantic Role Labeling (SRL) 

   Question Classification (QC)  

   SVM-Light-TK 

   Experiments in classroom with SRL and QC 

   Inspection of the input, output, and model files 
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Outline (3) 


   Kernel Engineering 

   Structure Transformation 

   Syntactic Semantic Tree kernels 

   Kernel Combinations 

   Kernels on Object Pairs 

   Kernels for re-ranking 


   Practical Question and Answer Classifier based on     
SVM-Light-TK 

   Combining Kernels 


   Conclusion and Future Work 

Motivation (1) 


   Feature design most difficult aspect in designing a 
learning system 

   complex and difficult phase, e.g., structural feature 

representation: 


   deep knowledge and intuitions are required 


   design problems when the phenomenon is 
described by many features 
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Motivation (2) 


   Kernel methods alleviate such problems 

   Structures represented in terms of substructures 

   High dimensional feature spaces 

   Implicit and abstract feature spaces 


   Generate high number of features 

   Support Vector Machines “select” the relevant 

features 

   Automatic Feature engineering side-effect 

Part I: Kernel Methods Theory 
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A simple classification problem: 
Text Categorization 

Sport 
  Cn 

Politic 
    C1 

Economic 
            C2 

. . . . . . . . . . . 

Bush 
declares 

war 

Wonderful 
Totti 

Yesterday 
match 

Berlusconi 
acquires 
Inzaghi 
before 

elections 

Berlusconi 
acquires 
Inzaghi 
before 

elections 

Berlusconi 
acquires 
Inzaghi 
before 

elections 

Text Classification Problem 


   Given: 

   a set of target categories: 

   the set T of documents,  

     define 

       f : T  →   2C 


   VSM (Salton89’) 

   Features are dimensions of a Vector Space. 

   Documents and Categories are vectors of feature weights. 

   d is assigned to        if    

€ 

 
d ⋅
 
C i > th

€ 

C = C1,..,Cn{ }

iC
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More in detail 


   In Text Categorization documents are word 
vectors 


   The dot product            counts the number of 
features in common 


   This provides a sort of similarity 

  

€ 

Φ(dx ) =
 x = (0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,1)

                         buy       acquisition     stocks          sell     market

zx  ⋅
  

€ 

Φ(dz ) =
 z = (0,..,1,..,0,..,1,..,0,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0)

                         buy   company            stocks          sell     

Linear Classifier 

  

€ 

f (  x ) =
 
x ⋅
 
w + b = 0,    x ,  w ∈ ℜn ,b∈ ℜ


   The equation of a hyperplane is 


      is the vector representing the classifying example 

      is the gradient of the hyperplane 

   The classification function is 

x

w

( ) sign( ( ))h x f x=
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   Mapping vectors in a space where they are linearly 
separable 

x

x

x

x

o

o

o
o

The main idea of Kernel Functions 

)(xx 
φ→

)x(φ

)x(φ
)x(φ

)x(φ
)(oφ

)(oφ

)(oφ
)(oφ

φ

A mapping example 


   Given two masses m1 and m2 , one is constrained 

   Apply a force fa to the mass m1   

   Experiments 


   Features m1 , m2 and  fa 

   We want to learn a classifier that tells when a mass m1 will get far 

away from m2  

2
21

21 ),,(
r
mmCrmmf =


   If we consider the Gravitational Newton Law 


   we need to find when f(m1 , m2 , r) < fa 
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A mapping example (2) 

))(),...,(()(),...,( 11 xxxxxx nn


φφφ =→=


   The gravitational law is not linear so we need to change space 

)ln,ln,ln,(ln),,,(),,,( 2121 rmmfzyxkrmmf aa =→

zyxcrmmCrmmf 2ln2lnlnln),,(ln 2121 −++=−++=

(ln m1,ln m2,-2ln r)⋅ (x,y,z)- ln fa + ln C = 0, we can decide 
without error if the mass will get far away or not 


   As 

0lnln2lnlnln 21 =−+−− Crmmfa


   We need the hyperplane 

A kernel-based Machine 
Perceptron training 

  

€ 

 w 0 ←
 
0 ;b0 ← 0;k ← 0;R← max1≤ i≤ l ||  x i ||

do
       for i =  1 to 
         if yi(

 w k ⋅
 x i + bk ) ≤ 0 then

                   w k +1 =
 w k +ηyi

 x i
                  bk +1 = bk +ηyiR

2

                 k = k +1
        endif
      endfor
while an error is found
return k,(  w k,bk ) 
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Novikoff’s Theorem 

Let S be a non-trivial training-set and let 

Let us suppose there is a vector           and 

with γ > 0. Then the maximum number of errors of the perceptron 
is: 

* *, || || 1 =w w
* *( , ) , 1,..., ,i iy b i lγ+ ≥      =w x

2
* 2 ,Rt

γ
 

=  
 

1
max || || .ii l

R x
≤ ≤

=
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   In each step of perceptron only training data is added with 
a certain weight 


   So the classification function 


   Note that data only appears in the scalar product 

Dual Representation for Classification 

  

€ 

 w = α j
j=1..
∑ y j

 x j

  

€ 

sgn(  w ⋅  x + b) = sgn α j
j=1..
∑ y j

 x j ⋅
 x + b

 

 
  

 

 
  

Dual Representation for Learning 


   as well as the updating function  


   The learning rate      only affects the re-scaling of the 
hyperplane, it does not affect the algorithm, so we can 
fix 1.η =

η

  

€ 

if yi( α j
j=1..
∑ y j

 
x j ⋅
 
x i + b) ≤ 0 then α i =α i +η
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   We can rewrite the classification function as 


   As well as the updating function 

Dual Perceptron algorithm and Kernel 
functions 

  

€ 

h(x) = sgn(  w φ ⋅ φ(
 x ) + bφ ) = sgn( α j

j=1..
∑ y jφ(

 x j ) ⋅ φ(
 x ) + bφ ) =

= sgn( α j
i=1..
∑ y jk(

 x j ,
 x ) + bφ )

  

€ 

if yi α j
j=1..
∑ y jk(  x j ,

 x i) + bφ
 

 
  

 

 
  ≤ 0 allora α i =α i +η

Support Vector Machines 


   Hard-margin SVMs 


   Soft-margin SVMs 
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Which hyperplane do we choose? 

Classifier with a Maximum Margin 

Var1 

Var2 

Margin 

Margin 

IDEA 1: Select the 
hyperplane with 
maximum margin 
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Support Vectors 

Var1 

Var2 

Margin 

Support Vectors 

Support Vector Machines 

Var1 

Var2 kbxw −=+⋅


kbxw =+⋅


0=+⋅ bxw 
kk

w

The margin is equal to 
2 k
w
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Support Vector Machines 

Var1 

Var2 kbxw −=+⋅


kbxw =+⋅


0=+⋅ bxw 
kk

w

The margin is equal to 
2 k
w

We need to solve 

  

€ 

max
2 k

||  w ||
 
w ⋅
 
x + b ≥ +k,   if  x  is positive  

 
w ⋅
 
x + b ≤ −k,   if  x  is negative 

Support Vector Machines 

Var1 

Var2 1w x b⋅ + = −
 

1w x b⋅ + =
 

0=+⋅ bxw 
11

w

There is a scale for 
which k=1.  

The problem transforms 
in: 

  

€ 

max
2

||  w ||
 
w ⋅
 
x + b ≥ +1,  if  x  is positive  

 
w ⋅
 
x + b ≤ −1,  if  x  is negative 

15



Final Formulation 

€ 

⇒

  

€ 

max
2

||  w ||
 
w ⋅
 
x i + b ≥ +1,  yi =1

 
w ⋅
 
x i + b ≤ −1,  yi = -1   

€ 

max
2

||  w ||
yi(
 
w ⋅
 
x i + b) ≥1

  

€ 

min
||  w ||
2

yi(
 
w ⋅
 
x i + b) ≥1   

€ 

min
||  w ||2

2
yi(
 
w ⋅
 
x i + b) ≥1

€ 

⇒

€ 

⇒

€ 

⇒

Optimization Problem 


   Optimal Hyperplane: 

   Minimize 


   Subject to 


   The dual problem is simpler 

   

libxwy

ww

ii ,...,1,1))((
2
1)( 2

=≥+⋅

=




τ
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Lagrangian Definition 

Dual Optimization Problem 

17



Dual Transformation 


   To solve the dual problem we need to evaluate: 


   Given the Lagrangian associated with our problem 


   Let us impose the derivatives to 0, with respect to   w

Dual Transformation (cont’d) 


   and wrt b 


   Then we substituted them in the objective function 
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The Final Dual Optimization Problem 

Khun-Tucker Theorem 


   Necessary and sufficient conditions to optimality 
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Properties coming from constraints 


   Lagrange constraints: 


   Karush-Kuhn-Tucker constraints 


   Support Vectors have     not null 


   To evaluate b, we can apply the following equation 

  

€ 

ai
i=1

l

∑ yi = 0,  w = α i
i=1

l

∑ yi
 x i

libwxy iii ,...,1,0]1)([ ==−+⋅⋅


α

iα

Soft Margin SVMs 

Var1 

Var2 1w x b⋅ + = −
 

1w x b⋅ + =
 

0=+⋅ bxw 
11

w

iξ
   slack variables are 
added 

Some errors are allowed 
but they should penalize 
the objective function 

iξ
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Soft Margin SVMs 

Var1 

Var2 1w x b⋅ + = −
 

1w x b⋅ + =
 

0=+⋅ bxw 
11

w

iξ

The new constraints are 

The objective function 
penalizes the incorrect 
classified examples 

C is the trade-off 
between margin and the 
error 

  

€ 

yi(
 
w ⋅
 
x i + b) ≥1−ξ i   

∀
 
x i  where  ξ i ≥ 0

  

€ 

min
1
2
||  w ||2 +C ξ ii∑

Dual formulation 


   By deriving wrt   

€ 

 w ,
 
ξ  and b
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Partial Derivatives 

Substitution in the objective function 


        of Kronecker  ijδ
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Final dual optimization problem 

Soft Margin Support Vector Machines 


   The algorithm tries to keep ξi low and maximize the margin 


   NB: The number of error is not directly minimized (NP-complete 
problem); the distances from the hyperplane are minimized 


   If C→∞, the solution tends to the one of the hard-margin algorithm 


   Attention !!!: if C = 0 we get          = 0, since  


   If C increases the number of error decreases. When C tends to 
infinite the number of errors must be 0, i.e. the hard-margin 
formulation 

|||| w

  

€ 

min
1
2
||  w ||2 +C ξ ii∑

  

€ 

yi(
 
w ⋅
 
x i + b) ≥1−ξ i   ∀

 
x i

ξ i ≥ 0

  

€ 

yi b ≥1−ξ i   ∀
 x i
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Robusteness of Soft vs. Hard Margin SVMs 

iξ

Var1 

Var2 
0=+⋅ bxw 

ξi 

Var1 

Var2 
0=+⋅ bxw 

Soft Margin SVM Hard Margin SVM 

Kernels in Support Vector Machines  


   In Soft Margin SVMs we maximize: 


   By using kernel functions we rewrite the problem as: 
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Kernel Function Definition 


   Kernels are the product of mapping functions 
such as 

  

€ 

 x ∈ ℜn,     
 
φ ( x ) = (φ1(

 x ),φ2( x ),...,φm (  x ))∈ ℜm

The Kernel Gram Matrix 


   With KM-based learning, the sole information used 
from the training data set is the Kernel Gram Matrix 


   If the kernel is valid, K is symmetric definite-positive . 
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Valid Kernels 

Valid Kernels cont’d 


   If the matrix is positive semi-definite then we can 
find a mapping φ implementing the kernel function 
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Mercer’s Theorem (finite space) 


   Let us consider 
  

€ 

K =  K(  x i,
 x j )( )i, j=1

n


   K symmetric ⇒ ∃ V:                      for Takagi factorization of a 
complex-symmetric matrix, where:  


   Λ is the diagonal matrix of the eigenvalues λt of K  


                          are the eigenvectors, i.e. the columns of V 


   Let us assume lambda values non-negative 

€ 

K = VΛ ′ V 

  

€ 

 v t  =  vti( )i=1
n

  

€ 

φ :  x i →  λt vti( )t =1

n
∈ ℜn , i =1,..,n

Mercer’s Theorem 
(sufficient conditions) 

  

€ 

Φ(  x i) ⋅ Φ( x j ) = λtvti
t=1

n

∑ vtj = VΛ ′ V ( )ij = K ij = K( x i,
 x j )

     


   Therefore 

                                                                    ,  


   which implies that K is a kernel function       
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Mercer’s Theorem 
(necessary conditions) 

  

€ 

 z 2
=
 z ⋅  z = Λ ′ V  v s Λ ′ V  v s =

 v s' V Λ Λ ′ V  v s =

  v s' K  v s =   v s' λs
 v s = λs

 v s
2

< 0


   Suppose we have negative eigenvalues λs and 
eigenvectors       the following point 


   has the following norm: 

this contradicts the geometry of the space. 

  

€ 

 v s

  

€ 

 z = vsiΦ( x i)
i=1

n

∑ = vsi λt vti( )t
=

i=1

n

∑ Λ ′ V  v s   

Is it a valid kernel? 


   It may not be a kernel so we can use M´·M 
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Valid Kernel operations 


   k(x,z) = k1(x,z)+k2(x,z) 


   k(x,z) = k1(x,z)*k2(x,z) 


   k(x,z) = α k1(x,z) 


   k(x,z) = f(x)f(z) 


   k(x,z) = k1(φ(x),φ(z)) 


   k(x,z) = x'Bz 

Basic Kernels for unstructured data 


   Linear Kernel 


   Polynomial Kernel 


   Lexical kernel 


   String Kernel 

29



Linear Kernel 


   In Text Categorization documents are word 
vectors 


   The dot product            counts the number of 
features in common 


   This provides a sort of similarity 

  

€ 

Φ(dx ) =
 x = (0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,1)

                         buy       acquisition     stocks          sell     market

zx  ⋅
  

€ 

Φ(dz ) =
 z = (0,..,1,..,0,..,1,..,0,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0)

                         buy   company            stocks          sell     

Feature Conjunction (polynomial Kernel) 


   The initial vectors are mapped in a higher space 


   More expressive, as            encodes  
      Stock+Market vs. Downtown+Market features 


   We can smartly compute the scalar product as 

)1,2,2,2,,(),( 2121
2
2

2
121 xxxxxxxx →><Φ

),()1()1(        
1222        

)1,2,2,2,,()1,2,2,2,,(         
)()(

22
2211

22112121
2
2

2
2

2
1

2
1

2121
2
2

2
12121

2
2

2
1

zxKzxzxzx
zxzxzzxxzxzx

zzzzzzxxxxxx
zx

Poly




=+⋅=++=
=+++++=

=⋅=
=Φ⋅Φ

)( 21xx
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Document Similarity 

industry 

telephone 

 market 

company 

product 

Doc 1 Doc 2 

Lexical Semantic Kernel [CoNLL 2005] 


   The document similarity is the SK function: 


   where s is any similarity function between words, 
e.g. WordNet [Basili et al.,2005] similarity or LSA 
[Cristianini et al., 2002] 


   Good results when training data is small € 

SK(d1,d2) = s(w1,w2)
w1 ∈d1 ,w2 ∈d2

∑
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Using character sequences 

zx  ⋅

  

€ 

φ("bank") =
 x = (0,..,1,..,0,..,1,..,0,......1,..,0,..,1,..,0,..,1,..,0)


            counts the number of common substrings 

 bank       ank           bnk          bk          b 

  

€ 

φ("rank") =
 z = (1,..,0,..,0,..,1,..,0,......0,..,1,..,0,..,1,..,0,..,1)

 rank               ank                  rnk          rk            r 

  

€ 

 x ⋅  z = φ("bank") ⋅ φ("rank") = k("bank","rank")

String Kernel 


   Given two strings, the number of matches 
between their substrings is evaluated 


   E.g. Bank and Rank 

   B, a, n, k, Ba, Ban, Bank, Bk, an, ank, nk,.. 

   R, a , n , k, Ra, Ran, Rank, Rk, an, ank, nk,.. 


   String kernel over sentences and texts 


   Huge space but there are efficient algorithms 
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Formal Definition 

,  where 

,  where 

i1 +1 

Kernel between Bank and Rank 
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An example of string kernel 
computation 

Efficient Evaluation 


   Dynamic Programming technique 

   Evaluate the spectrum string kernels 

   Substrings of size p 

   Sum the contribution of the different spectra 
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Efficient Evaluation 

An example: SK(“Gatta”,”Cata”) 


   First, evaluate the SK with size p=1, i.e. “a”, 
“a”,”t”,”t”,”a”,”a” 


   Store this in the table 

€ 

  SKp=1  
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Evaluating DP2 


   Evaluate the weight of the string of size p in case 
a character will be matched  


   This is done by multiplying the double summation 
by the number of substrings of size p-1 

Evaluating the Predictive DP on 
strings of size 2 (second row) 


   Let’s consider substrings of size 2 and suppose that: 

   we have matched the first “a” 

   we will match the next character that we will add to the two strings 


   We compute the weights of matches above at different string 
positions with some not-yet known character “?” 


   If the match occurs immediately after “a” the weight will be λ1+1 

x λ1+1 = λ4 and we store just λ2 in the DP entry in [“a”,”a”] 
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Evaluating the DP wrt different 
positions (second row) 

   If the match for “gatta” occurs after “t” the weight will be λ1+2  

(x λ2 = λ5) since the substring for it will be with “a☐?”  


    We write such prediction in the entry [“a”,”t”] 


   Same rationale for a match after the second “t”: we have 
the substring “a☐☐?”  (matching with “a?” from “catta”) for 
a weight of λ3+1  (x λ2) 

Evaluating the DP wrt different 
positions (third row) 


   If the match occurs after “t” of “cata”, the weight will be λ2+1  
(x λ2 = λ5 ) since it will be with the string “a☐?”, with a weight 
of λ3  


   If the match occurs after “t” of both “gatta” and “cata”, there 
are two ways to compose substring of size two: “a☐?” with 

weight λ4 or “t?” with weight λ2 ⇒ the total is λ2+λ4  
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Evaluating the DP wrt different 
positions (third row) 


   The final case is a match after the last “t” of both “cat” and 
“gatta” 


    There are three possible substrings of “gatta”: 

   “a☐☐?”, “t☐?”, “t?” for “gatta” with weight λ3 , λ2 or λ, respectively. 


   There are two possible substrings of “cata” 


    “a☐?”, “t?” with weight λ2 and λ 

   Their match gives weights: λ5 , λ3, λ2  ⇒ by summing: λ5 + λ3 + λ2 

Evaluating SK of size 2 using DP2 


   The number (weight) of 
substrings of size 2 between 
“gat” and “cat” is λ4 = λ2 
([“a”,”a”] entry of DP) x λ2(cost 
of one character), where a = 
“t” and   b = “t”. 


   Between “gatta” and “cata” is 
λ7 + λ5 + λ4, i.e the matches of 
“a☐☐a”, “t☐a”, “ta” with 
“a☐a” and “ta”. 

€ 

  SKp= 2  
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Tree kernels 


   Subtree, Subset Tree, Partial Tree kernels 


   Efficient computation 

Example of a parse tree 


   “John delivers a talk in Rome” 

S → N VP 

VP → V NP PP 

PP → IN N 

N → Rome 

N 

Rome 

S 

N 

NP 

D N 

VP 

V John 

in 

 delivers  

a talk 

PP 

IN 
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The Syntactic Tree Kernel (STK)  
[Collins and Duffy, 2002] 

NP 

D N 

VP 

V 

delivers 

a    talk 

NP 

D N 

VP 

V 

delivers 

a 

NP 

D N 

VP 

V 

delivers 

NP 

D N 

VP 

V NP 

VP 

V 

The overall fragment set 
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The overall fragment set 

NP 

D 

VP 

a 

Children are not divided 

Explicit kernel space 

zx  ⋅

  

€ 

φ(Tx ) =
 x = (0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0)


            counts the number of common substructures 

  

€ 

φ(Tz) =
 z = (1,..,0,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,0,..,1,..,0,..,0)
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Efficient evaluation of the scalar product 

  

€ 

 x ⋅  z = φ(Tx ) ⋅ φ(Tz ) = K(Tx,Tz ) =

                    =
nx ∈Tx

∑ Δ(nx,nz)
nz ∈Tz

∑

Efficient evaluation of the scalar product 


   [Collins and Duffy, ACL 2002] evaluate Δ in O(n2): 

€ 

Δ(nx,nz ) = 0,  if the productions are different else
Δ(nx,nz ) =1,   if pre - terminals else

Δ(nx,nz ) = (1+ Δ(ch(nx, j),ch(nz, j)))
j=1

nc(nx )

∏

  

€ 

 x ⋅  z = φ(Tx ) ⋅ φ(Tz ) = K(Tx,Tz ) =

                    =
nx ∈Tx

∑ Δ(nx,nz)
nz ∈Tz

∑
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Other Adjustments 


   Normalization 

€ 

Δ(nx,nz ) = λ,    if pre - terminals else

Δ(nx,nz ) = λ (1+ Δ(ch(nx, j),ch(nz, j)))
j=1

nc(nx )

∏

€ 

′ K (Tx,Tz ) =
K(Tx,Tz )

K(Tx,Tx ) ×K(Tz,Tz)
 


   Decay factor 

SubTree (ST) Kernel [Vishwanathan and Smola, 2002] 

 

NP 

D N 

a   talk  

D N 

a   talk  

NP 

D N 

VP 

V 

delivers  

a    talk  

V 

delivers  
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Evaluation 

€ 

Δ(nx,nz ) = 0,  if the productions are different else
Δ(nx,nz ) =1,   if pre - terminals else

Δ(nx,nz ) = (1+ Δ(ch(nx, j),ch(nz, j)))
j=1

nc(nx )

∏


   Given the equation for the SST kernel 

Evaluation 

€ 

Δ(nx,nz ) = 0,  if the productions are different else
Δ(nx,nz ) =1,   if pre - terminals else

Δ(nx,nz ) = Δ(ch(nx, j),ch(nz, j))
j=1

nc(nx )

∏


   Given the equation for the SST kernel 
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Fast Evaluation of STK [Moschitti, EACL 2006] 

where P(nx) and P(nz) are the production rules used 
at nodes nx and nz 

€ 

K(Tx,Tz ) =  Δ(nx,nz )
nx ,nz ∈NP
∑

NP = nx,nz ∈ Tx ×Tz :Δ(nx,nz ) ≠ 0{ } =

      = nx,nz ∈ Tx ×Tz :P(nx ) = P(nz ){ },

Algorithm 
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Observations 


   We order the production rules used in Tx and Tz,  
at loading time 


   At learning time we may evaluate NP in  

    |Tx|+|Tz | running time 


   If Tx and Tz are generated by only one production 
rule ⇒ O(|Tx|×|Tz | )… 

Observations 


   We order the production rules used in Tx and Tz,  
at loading time 


   At learning time we may evaluate NP in  

    |Tx|+|Tz | running time 


   If Tx and Tz are generated by only one production 
rule ⇒ O(|Tx|×|Tz | )…Very Unlikely!!!! 
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Labeled Ordered Tree Kernel 
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NP 

… 

VP 


   SST satisfies the constraint “remove 0 or all 
children at a time”. 


   If we relax such constraint we get more general 
substructures [Kashima and Koyanagi, 2002] 

Weighting Problems 


   Both matched pairs give the 
same contribution. 


   Gap based weighting is 
needed. 


   A novel efficient evaluation 
has to be defined 
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JJ 

  bad 
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Partial Trees, [Moschitti, ECML 2006] 

NP 
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a    cat 
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NP 
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VP 

NP 

N 

VP 

NP 

N 
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D N 
D

NP 

… 

VP 


   SST + String Kernel with weighted gaps on 
Nodes’ children 

Partial Tree Kernel 


   By adding two decay factors we obtain: 
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Efficient Evaluation (1) 


   In [Taylor and Cristianini, 2004 book], sequence kernels with 
weighted gaps are factorized with respect to different 
subsequence sizes. 


   We treat children as sequences and apply the same theory 

Dp 

Efficient Evaluation (2) 


   The complexity of finding the subsequences is                         


   Therefore the overall complexity is 
    where ρ  is the maximum branching factor (p = ρ) 
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Running Time of Tree Kernel Functions 

SVM-light-TK Software 


   Encodes ST, SST and combination kernels  

    in SVM-light [Joachims, 1999] 


   Available at http://dit.unitn.it/~moschitt/ 


   Tree forests, vector sets 


   The new SVM-Light-TK toolkit will be released 
asap 
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Data Format 


   “What does Html stand for?” 

   1  |BT| (SBARQ (WHNP (WP What))(SQ (AUX does)(NP (NNP 

S.O.S.))(VP (VB stand)(PP (IN for))))(. ?))  

|BT|    (BOW (What *)(does *)(S.O.S. *)(stand *)(for *)(? *))  

|BT|    (BOP (WP *)(AUX *)(NNP *)(VB *)(IN *)(. *))  
|BT|   (PAS (ARG0 (R-A1 (What *)))(ARG1 (A1 (S.O.S. NNP)))(ARG2 

(rel stand)))  

|ET| 1:1 21:2.742439465642236E-4 23:1 30:1 36:1 39:1 41:1 46:1 49:1 
66:1 152:1 274:1 333:1  

|BV| 2:1 21:1.4421347148614654E-4 23:1 31:1 36:1 39:1 41:1 46:1 49:1 
52:1 66:1 152:1 246:1 333:1 392:1 |EV|  

Basic Commands 


   Training and classification 

   ./svm_learn -t 5 -C T train.dat model 

   ./svm_classify test.dat model 


   Learning with a vector sequence 

   ./svm_learn -t 5 -C V train.dat model 


   Learning with the sum of vector and kernel 
sequences 

   ./svm_learn -t 5 -C + train.dat model 
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Part II: Kernel Methods for 
Practical Applications 

Kernel Engineering approaches 


   Basic Combinations 


   Canonical Mappings, e.g. object transformations  


   Merging of Kernels 
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Kernel Combinations an example 


   Kernel Combinations: 

3

3

3

3

33

          , 

              , 

pTree

pTree
PTree

p

p

Tree

Tree
PTree

pTreePTreepTreePTree

KK
KK

K
K
K

K
KK

KKKKKK

×

×
=+×=

×=+×=

×+

×+

γ

γ

kernel Tree 

featuresflat    of  kernel  polynomial  3

Tree

p

K

K

Object Transformation [Moschitti et al, CLJ 2008] 


   Canonical Mapping, φM()  

   object transformation, 

   e. g. a syntactic parse tree into a verb 

subcategorization frame tree. 


   Feature Extraction, φE() 

   maps the canonical structure in all its fragments 

   different fragment spaces, e. g. ST, SST and PT. 
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Predicate Argument Classification 


   In an event: 

   target words describe relation among different entities 

   the participants are often seen as predicate's 

arguments. 


   Example: 
Paul gives a talk in Rome 

Predicate Argument Classification 


   In an event: 

   target words describe relation among different entities 

   the participants are often seen as predicate's 

arguments. 


   Example: 
[ Arg0 Paul] [ predicate gives ] [ Arg1 a talk] [ ArgM in Rome] 
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Predicate-Argument Feature 
Representation 

Given a sentence, a predicate p: 
1.  Derive the sentence parse tree 
2.  For each node pair <Np,Nx>  

a.  Extract a feature representation set 
F 

b.  If Nx exactly covers the Arg-i, F is 
one of its positive examples 

c.  F is a negative example otherwise 

Vector Representation for the linear kernel 

Phrase Type 

Predicate 
Word 

Head Word 

Parse Tree 
Path 

Voice Active 

Position Right 
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Kernel Engineering: Tree Tailoring 

PAT Kernel [Moschitti, ACL 2004] 

S

N

NP 

D N 

VP 

V Paul 

in 

delivers 

a    talk 

PP 

IN   NP 

jj 

Fv,arg.0 
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 formal 

 N 

      style 
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D N 

VP 

V Paul 

in 

delivers 

a    talk 

PP 

IN   NP 

jj 

 formal 

 N 

      style 
Arg. 1 

Fv,arg.M 

c) 

Arg.M 


   These are Semantic Structures 


   Given the sentence: 

  [ Arg0 Paul] [ predicate delivers] [ Arg1 a talk] [ ArgM in formal Style] 
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In other words we consider… 
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 formal 

 N 

      style 
Arg. 1 

Sub-Categorization Kernel (SCF) 
[Moschitti, ACL 2004] 
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Experiments on Gold Standard Trees 


   PropBank and PennTree bank 

   about 53,700 sentences 

   Sections from 2 to 21 train., 23 test., 1 and 22 dev. 

   Arguments from Arg0 to Arg5, ArgA and ArgM for 
    a total of 122,774 and 7,359 


   FrameNet and Collins’ automatic trees 

   24,558 sentences from the 40 frames of Senseval 3 

   18 roles (same names are mapped together) 

   Only verbs  

   70% for training and 30% for testing 

Argument Classification with Poly Kernel 
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PropBank Results 

Argument Classification on PAT using 
different Tree Fragment Extractor 
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FrameNet Results 


   ProbBank arguments vs. Semantic Roles  

Kernel Engineering: Node marking 
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Marking Boundary nodes 

Node Marking Effect  
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Different tailoring and marking 

CMST 

MMST 

Experiments 


   PropBank and PennTree bank 

   about 53,700 sentences 

   Charniak trees from CoNLL 2005 


   Boundary detection: 

   Section 2 training 

   Section 24 testing 

   PAF and MPAF 
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Number of examples/nodes of Section 2 

Predicate Argument Feature (PAF) vs. 
Marked PAF (MPAF) [Moschitti et al, ACL-ws-2005] 
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Merging of Kernels [ECIR 2007]: 
Question/Answer Classification 


   Syntactic/Semantic Tree Kernel 


   Kernel Combinations 


   Experiments 

Merging of Kernels [Bloehdorn & Moschitti, ECIR 
2007 & CIKM 2007] 
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Merging of Kernels 
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Delta Evaluation is very simple 
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Question Classification 


   Definition: What does HTML stand for?     


   Description: What's the final line in the Edgar Allan Poe 
poem "The Raven"?   


   Entity: What foods can cause allergic reaction in people? 


   Human: Who won the Nobel Peace Prize in 1992?    


   Location: Where is the Statue of Liberty?     


   Manner: How did Bob Marley die?      


   Numeric: When was Martin Luther King Jr. born?    


   Organization: What company makes Bentley cars?   

Question Classifier based on Tree Kernels 


   Question dataset (http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/)   
[Lin and Roth, 2005]) 

   Distributed on 6 categories: Abbreviations, Descriptions, Entity, 

Human, Location, and Numeric. 


   Fixed split 5500 training and 500 test questions  


   Cross-validation (10-folds) 


   Using the whole question parse trees 

   Constituent parsing 

   Example 

        “What is an offer of direct stock purchase plan ?” 
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Kernels 


   BOW, POS are obtained with a simple tree, e.g. 


   PT (parse tree) 


   PAS (predicate argument structure) 

… 

BOX 

is What an offer an 

* * * * * 
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Question classification 

Similarity based on WordNet 
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Question Classification with S/STK 

Multiple Kernel Combinations 
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TASK: Question/Answer 
Classification [Moschitti, CIKM 2008] 


   The classifier detects if a pair (question and 
answer) is correct or not 


   A representation for the pair is needed 


   The classifier can be used to re-rank the output of 
a basic QA system 

Dataset 2: TREC data 


   138 TREC 2001 test questions labeled as 
“description”  


   2,256 sentences, extracted from the best ranked 
paragraphs (using a basic QA system based on 
Lucene search engine on TREC dataset) 


    216 of which labeled as correct by one annotator 

70



Dataset 2: TREC data 


   138 TREC 2001 test questions labeled as 
“description”  


   2,256 sentences, extracted from the best ranked 
paragraphs (using a basic QA system based on 
Lucene search engine on TREC dataset) 


    216 of which labeled as correct by one annotator 

A question is linked to many answers: all its derived 
pairs cannot be shared by training and test sets 

Bags of words (BOW) and POS-tags (POS) 


   To save time, apply STK to these trees: 

… 

BOX 

is What an offer of 

* * * * * 

… 

BOX 

VBZ WHNP DT NN IN 

* * * * * 
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Word and POS Sequences 


   What is an offer of…? (word sequence, WSK) 

  What_is_offer 

  What_is 


   WHNP VBZ DT NN IN…(POS sequence, POSSK) 

  WHNP_VBZ_NN 

  WHNP_NN_IN 

Syntactic Parse Trees (PT) 
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Predicate Argument Structure for Partial 
Tree Kernel (PASPTK) 


   [ARG1 Antigens] were [AM−TMP originally] [rel defined] [ARG2 as non-
self molecules]. 


   [ARG0 Researchers] [rel describe] [ARG1 antigens][ARG2 as foreign 
molecules] [ARGM−LOC in the body] 

Kernels and Combinations 


   Exploiting the property: k(x,z) = k1(x,z)+k2(x,z) 


   BOW, POS, WSK, POSSK, PT, PASPTK 

⇒ BOW+POS, BOW+PT, PT+POS, … 
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Results on TREC Data 
(5 folds cross validation) 
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Results on TREC Data 
(5 folds cross validation) 
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BOW ≈ 24 
POSSK+STK+PAS_PTK≈ 39 
⇒62 % of improvement 

Kernels for Re-ranking 
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Re-ranking Framework 


   Local classifier generates the most likely set of 
hypotheses. 


    These are used to build annotation pairs,           . 

   positive instances if hi more correct than hj, 


   A binary classifier decides if hi is more accurate 
than hj.  


   Each candidate annotation hi is described by a 
structural representation 

€ 

hi, h j

Re-ranking framework 

Local Model 
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Syntactic Parsing Re-ranking 


   Pairs of parse trees (Collins and Duffy, 2002) 

Re-ranking concept labeling 
[Dinarelli et al, 2009] 


   I have a problem with my monitor 

hi: I NULL have NULL a NULL problem PROBLEM-
B with NULL my NULL monitor HW-B 

hj: I NULL have NULL a NULL problem HW-B 
with NULL my NULL monitor 
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Flat tree representation  
(cross-language structure) 

Multilevel Tree 
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Enriched Multilevel Tree 


   FST CER from 23.2 to 16.01 

Re-ranking for Named-Entity 
Recognition [Vien et al, 2010] 


   CRF F1 from 84.86 to 88.16 
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Re-ranking Predicate Argument Structures 
[Moschitti et al, CoNLL 2006] 


   SVMs F1 from 75.89 to 77.25 

Conclusions 


   Kernel methods and SVMs are useful tools to design 
language applications 


   Kernel design still requires some level of expertise 

   Engineering approaches to tree kernels 


   Basic Combinations 

   Canonical Mappings, e.g. 


   Node Marking 

   Merging of kernels in more complex kernels 


   Easy modeling produces state-of-the-art accuracy in many 
tasks, RTE, SRL, QC, NER, RE 


   SVM-Light-TK efficient tool to use them 

82



Future (on going work) 


   Once we have found the right kernel, are we satisfied? 


   What about knowing the most relevant features? 


   Can we speed up learning/classification at real-application 
scenario level? 


   The answer is reverse kernel engineering: 

   [Pighin&Moschitti, CoNLL2009, EMNLP2009, CoNLL2010] 

   Mine the most relevant fragments according to SVMs gradient 

   Use the linear space 


   Software for reverse kernel engineering available in the 
next  months 

Thank you 
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