
Coling 2008: Kernel Engineering for Fast and Easy Design of Natural Language Applications–Tutorial notes, pages 1–91,
Beijing, August 2010

Kernel Engineering for Fast and Easy
Design of Natural Language Applications

 Alessandro Moschitti
Department of Information Engineering and Computer Science

University of Trento
Email: moschitti@disi.unitn.it

The 23rd International Conference on Computational Linguistics
August 22, 2010

Beijing, China

Schedule

   14:00 - 15:30 First part

   15:30 - 16:00 Coffee break

   16:00 - 17:30 Second part

1

Outline (1)

   Motivation

   Kernel-Based Machines

   Perceptron

   Support Vector Machines

   Kernel Definition

   Kernel Trick

   Mercer’s conditions

   Kernel operators

   Basic Kernels

   Linear Kernel

   Polynomial Kernel

   Lexical Kernel

Outline (2)

   Structural Kernels

   String and Word Sequence Kernels

   Tree Kernels

   Subtree, Syntactic, Partial Tree Kernels

   Applied Examples of Structural Kernels

   Semantic Role Labeling (SRL)

   Question Classification (QC)

   SVM-Light-TK

   Experiments in classroom with SRL and QC

   Inspection of the input, output, and model files

2

Outline (3)

   Kernel Engineering

   Structure Transformation

   Syntactic Semantic Tree kernels

   Kernel Combinations

   Kernels on Object Pairs

   Kernels for re-ranking

   Practical Question and Answer Classifier based on
SVM-Light-TK

   Combining Kernels

   Conclusion and Future Work

Motivation (1)

   Feature design most difficult aspect in designing a
learning system

   complex and difficult phase, e.g., structural feature

representation:

   deep knowledge and intuitions are required

   design problems when the phenomenon is
described by many features

3

Motivation (2)

   Kernel methods alleviate such problems

   Structures represented in terms of substructures

   High dimensional feature spaces

   Implicit and abstract feature spaces

   Generate high number of features

   Support Vector Machines “select” the relevant

features

   Automatic Feature engineering side-effect

Part I: Kernel Methods Theory

4

A simple classification problem:
Text Categorization

Sport
 Cn

Politic
 C1

Economic
 C2

.

Bush
declares

war

Wonderful
Totti

Yesterday
match

Berlusconi
acquires
Inzaghi
before

elections

Berlusconi
acquires
Inzaghi
before

elections

Berlusconi
acquires
Inzaghi
before

elections

Text Classification Problem

   Given:

   a set of target categories:

   the set T of documents,

 define

 f : T → 2C

   VSM (Salton89’)

   Features are dimensions of a Vector Space.

   Documents and Categories are vectors of feature weights.

   d is assigned to if

€


d ⋅

C i > th

€

C = C1,..,Cn{ }

iC

5

More in detail

   In Text Categorization documents are word
vectors

   The dot product counts the number of
features in common

   This provides a sort of similarity

€

Φ(dx) =
 x = (0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,1)

 buy acquisition stocks sell market

zx  ⋅

€

Φ(dz) =
 z = (0,..,1,..,0,..,1,..,0,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0)

 buy company stocks sell

Linear Classifier

€

f ( x) =

x ⋅

w + b = 0,  x ,  w ∈ ℜn ,b∈ ℜ

   The equation of a hyperplane is

   is the vector representing the classifying example

   is the gradient of the hyperplane

   The classification function is

x

w

() sign(())h x f x=

6

   Mapping vectors in a space where they are linearly
separable

x

x

x

x

o

o

o
o

The main idea of Kernel Functions

)(xx 
φ→

)x(φ

)x(φ
)x(φ

)x(φ
)(oφ

)(oφ

)(oφ
)(oφ

φ

A mapping example

   Given two masses m1 and m2 , one is constrained

   Apply a force fa to the mass m1

   Experiments

   Features m1 , m2 and fa

   We want to learn a classifier that tells when a mass m1 will get far

away from m2

2
21

21),,(
r
mmCrmmf =

   If we consider the Gravitational Newton Law

   we need to find when f(m1 , m2 , r) < fa

7

A mapping example (2)

))(),...,(()(),...,(11 xxxxxx nn


φφφ =→=

   The gravitational law is not linear so we need to change space

)ln,ln,ln,(ln),,,(),,,(2121 rmmfzyxkrmmf aa =→

zyxcrmmCrmmf 2ln2lnlnln),,(ln 2121 −++=−++=

(ln m1,ln m2,-2ln r)⋅ (x,y,z)- ln fa + ln C = 0, we can decide
without error if the mass will get far away or not

   As

0lnln2lnlnln 21 =−+−− Crmmfa

   We need the hyperplane

A kernel-based Machine
Perceptron training

€

 w 0 ←

0 ;b0 ← 0;k ← 0;R← max1≤ i≤ l ||  x i ||

do
 for i = 1 to 
 if yi(

 w k ⋅
 x i + bk) ≤ 0 then

  w k +1 =
 w k +ηyi

 x i
 bk +1 = bk +ηyiR

2

 k = k +1
 endif
 endfor
while an error is found
return k,( w k,bk)

8

9

Novikoff’s Theorem

Let S be a non-trivial training-set and let

Let us suppose there is a vector and

with γ > 0. Then the maximum number of errors of the perceptron
is:

* *, || || 1 =w w
* *(,) , 1,..., ,i iy b i lγ+ ≥ =w x

2
* 2 ,Rt

γ
 

=  
 

1
max || || .ii l

R x
≤ ≤

=

10

   In each step of perceptron only training data is added with
a certain weight

   So the classification function

   Note that data only appears in the scalar product

Dual Representation for Classification

€

 w = α j
j=1..
∑ y j

 x j

€

sgn( w ⋅  x + b) = sgn α j
j=1..
∑ y j

 x j ⋅
 x + b




 




 

Dual Representation for Learning

   as well as the updating function

   The learning rate only affects the re-scaling of the
hyperplane, it does not affect the algorithm, so we can
fix 1.η =

η

€

if yi(α j
j=1..
∑ y j


x j ⋅

x i + b) ≤ 0 then α i =α i +η

11

   We can rewrite the classification function as

   As well as the updating function

Dual Perceptron algorithm and Kernel
functions

€

h(x) = sgn( w φ ⋅ φ(
 x) + bφ) = sgn(α j

j=1..
∑ y jφ(

 x j) ⋅ φ(
 x) + bφ) =

= sgn(α j
i=1..
∑ y jk(

 x j ,
 x) + bφ)

€

if yi α j
j=1..
∑ y jk( x j ,

 x i) + bφ



 




  ≤ 0 allora α i =α i +η

Support Vector Machines

   Hard-margin SVMs

   Soft-margin SVMs

12

Which hyperplane do we choose?

Classifier with a Maximum Margin

Var1

Var2

Margin

Margin

IDEA 1: Select the
hyperplane with
maximum margin

13

Support Vectors

Var1

Var2

Margin

Support Vectors

Support Vector Machines

Var1

Var2 kbxw −=+⋅


kbxw =+⋅


0=+⋅ bxw 
kk

w

The margin is equal to
2 k
w

14

Support Vector Machines

Var1

Var2 kbxw −=+⋅


kbxw =+⋅


0=+⋅ bxw 
kk

w

The margin is equal to
2 k
w

We need to solve

€

max
2 k

||  w ||

w ⋅

x + b ≥ +k, if  x is positive


w ⋅

x + b ≤ −k, if  x is negative

Support Vector Machines

Var1

Var2 1w x b⋅ + = −
 

1w x b⋅ + =
 

0=+⋅ bxw 
11

w

There is a scale for
which k=1.

The problem transforms
in:

€

max
2

||  w ||

w ⋅

x + b ≥ +1, if  x is positive


w ⋅

x + b ≤ −1, if  x is negative

15

Final Formulation

€

⇒

€

max
2

||  w ||

w ⋅

x i + b ≥ +1, yi =1


w ⋅

x i + b ≤ −1, yi = -1

€

max
2

||  w ||
yi(

w ⋅

x i + b) ≥1

€

min
||  w ||
2

yi(

w ⋅

x i + b) ≥1

€

min
||  w ||2

2
yi(

w ⋅

x i + b) ≥1

€

⇒

€

⇒

€

⇒

Optimization Problem

   Optimal Hyperplane:

   Minimize

   Subject to

   The dual problem is simpler

libxwy

ww

ii ,...,1,1))((
2
1)(2

=≥+⋅

=




τ

16

Lagrangian Definition

Dual Optimization Problem

17

Dual Transformation

   To solve the dual problem we need to evaluate:

   Given the Lagrangian associated with our problem

   Let us impose the derivatives to 0, with respect to w

Dual Transformation (cont’d)

   and wrt b

   Then we substituted them in the objective function

18

The Final Dual Optimization Problem

Khun-Tucker Theorem

   Necessary and sufficient conditions to optimality

19

Properties coming from constraints

   Lagrange constraints:

   Karush-Kuhn-Tucker constraints

   Support Vectors have not null

   To evaluate b, we can apply the following equation

€

ai
i=1

l

∑ yi = 0,  w = α i
i=1

l

∑ yi
 x i

libwxy iii ,...,1,0]1)([==−+⋅⋅


α

iα

Soft Margin SVMs

Var1

Var2 1w x b⋅ + = −
 

1w x b⋅ + =
 

0=+⋅ bxw 
11

w

iξ
 slack variables are
added

Some errors are allowed
but they should penalize
the objective function

iξ

20

Soft Margin SVMs

Var1

Var2 1w x b⋅ + = −
 

1w x b⋅ + =
 

0=+⋅ bxw 
11

w

iξ

The new constraints are

The objective function
penalizes the incorrect
classified examples

C is the trade-off
between margin and the
error

€

yi(

w ⋅

x i + b) ≥1−ξ i

∀

x i where ξ i ≥ 0

€

min
1
2
||  w ||2 +C ξ ii∑

Dual formulation

   By deriving wrt

€

 w ,

ξ and b

21

Partial Derivatives

Substitution in the objective function

   of Kronecker ijδ

22

Final dual optimization problem

Soft Margin Support Vector Machines

   The algorithm tries to keep ξi low and maximize the margin

   NB: The number of error is not directly minimized (NP-complete
problem); the distances from the hyperplane are minimized

   If C→∞, the solution tends to the one of the hard-margin algorithm

   Attention !!!: if C = 0 we get = 0, since

   If C increases the number of error decreases. When C tends to
infinite the number of errors must be 0, i.e. the hard-margin
formulation

|||| w

€

min
1
2
||  w ||2 +C ξ ii∑

€

yi(

w ⋅

x i + b) ≥1−ξ i ∀


x i

ξ i ≥ 0

€

yi b ≥1−ξ i ∀
 x i

23

Robusteness of Soft vs. Hard Margin SVMs

iξ

Var1

Var2
0=+⋅ bxw 

ξi

Var1

Var2
0=+⋅ bxw 

Soft Margin SVM Hard Margin SVM

Kernels in Support Vector Machines

   In Soft Margin SVMs we maximize:

   By using kernel functions we rewrite the problem as:

24

Kernel Function Definition

   Kernels are the product of mapping functions
such as

€

 x ∈ ℜn,

φ ( x) = (φ1(

 x),φ2( x),...,φm ( x))∈ ℜm

The Kernel Gram Matrix

   With KM-based learning, the sole information used
from the training data set is the Kernel Gram Matrix

   If the kernel is valid, K is symmetric definite-positive .

25

Valid Kernels

Valid Kernels cont’d

   If the matrix is positive semi-definite then we can
find a mapping φ implementing the kernel function

26

Mercer’s Theorem (finite space)

   Let us consider

€

K = K( x i,
 x j)()i, j=1

n

   K symmetric ⇒ ∃ V: for Takagi factorization of a
complex-symmetric matrix, where:

   Λ is the diagonal matrix of the eigenvalues λt of K

   are the eigenvectors, i.e. the columns of V

   Let us assume lambda values non-negative

€

K = VΛ ′ V

€

 v t = vti()i=1
n

€

φ :  x i → λt vti()t =1

n
∈ ℜn , i =1,..,n

Mercer’s Theorem
(sufficient conditions)

€

Φ( x i) ⋅ Φ( x j) = λtvti
t=1

n

∑ vtj = VΛ ′ V ()ij = K ij = K( x i,
 x j)

   Therefore

 ,

   which implies that K is a kernel function

27

Mercer’s Theorem
(necessary conditions)

€

 z 2
=
 z ⋅  z = Λ ′ V  v s Λ ′ V  v s =

 v s' V Λ Λ ′ V  v s =

  v s' K  v s =  v s' λs
 v s = λs

 v s
2

< 0

   Suppose we have negative eigenvalues λs and
eigenvectors the following point

   has the following norm:

this contradicts the geometry of the space.

€

 v s

€

 z = vsiΦ( x i)
i=1

n

∑ = vsi λt vti()t
=

i=1

n

∑ Λ ′ V  v s

Is it a valid kernel?

   It may not be a kernel so we can use M´·M

28

Valid Kernel operations

   k(x,z) = k1(x,z)+k2(x,z)

   k(x,z) = k1(x,z)*k2(x,z)

   k(x,z) = α k1(x,z)

   k(x,z) = f(x)f(z)

   k(x,z) = k1(φ(x),φ(z))

   k(x,z) = x'Bz

Basic Kernels for unstructured data

   Linear Kernel

   Polynomial Kernel

   Lexical kernel

   String Kernel

29

Linear Kernel

   In Text Categorization documents are word
vectors

   The dot product counts the number of
features in common

   This provides a sort of similarity

€

Φ(dx) =
 x = (0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,1)

 buy acquisition stocks sell market

zx  ⋅

€

Φ(dz) =
 z = (0,..,1,..,0,..,1,..,0,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0)

 buy company stocks sell

Feature Conjunction (polynomial Kernel)

   The initial vectors are mapped in a higher space

   More expressive, as encodes
 Stock+Market vs. Downtown+Market features

   We can smartly compute the scalar product as

)1,2,2,2,,(),(2121
2
2

2
121 xxxxxxxx →><Φ

),()1()1(
1222

)1,2,2,2,,()1,2,2,2,,(
)()(

22
2211

22112121
2
2

2
2

2
1

2
1

2121
2
2

2
12121

2
2

2
1

zxKzxzxzx
zxzxzzxxzxzx

zzzzzzxxxxxx
zx

Poly




=+⋅=++=
=+++++=

=⋅=
=Φ⋅Φ

)(21xx

30

Document Similarity

industry

telephone

 market

company

product

Doc 1 Doc 2

Lexical Semantic Kernel [CoNLL 2005]

   The document similarity is the SK function:

   where s is any similarity function between words,
e.g. WordNet [Basili et al.,2005] similarity or LSA
[Cristianini et al., 2002]

   Good results when training data is small €

SK(d1,d2) = s(w1,w2)
w1 ∈d1 ,w2 ∈d2

∑

31

Using character sequences

zx  ⋅

€

φ("bank") =
 x = (0,..,1,..,0,..,1,..,0,......1,..,0,..,1,..,0,..,1,..,0)

   counts the number of common substrings

 bank ank bnk bk b

€

φ("rank") =
 z = (1,..,0,..,0,..,1,..,0,......0,..,1,..,0,..,1,..,0,..,1)

 rank ank rnk rk r

€

 x ⋅  z = φ("bank") ⋅ φ("rank") = k("bank","rank")

String Kernel

   Given two strings, the number of matches
between their substrings is evaluated

   E.g. Bank and Rank

   B, a, n, k, Ba, Ban, Bank, Bk, an, ank, nk,..

   R, a , n , k, Ra, Ran, Rank, Rk, an, ank, nk,..

   String kernel over sentences and texts

   Huge space but there are efficient algorithms

32

Formal Definition

, where

, where

i1 +1

Kernel between Bank and Rank

33

An example of string kernel
computation

Efficient Evaluation

   Dynamic Programming technique

   Evaluate the spectrum string kernels

   Substrings of size p

   Sum the contribution of the different spectra

34

Efficient Evaluation

An example: SK(“Gatta”,”Cata”)

   First, evaluate the SK with size p=1, i.e. “a”,
“a”,”t”,”t”,”a”,”a”

   Store this in the table

€

 SKp=1

35

Evaluating DP2

   Evaluate the weight of the string of size p in case
a character will be matched

   This is done by multiplying the double summation
by the number of substrings of size p-1

Evaluating the Predictive DP on
strings of size 2 (second row)

   Let’s consider substrings of size 2 and suppose that:

   we have matched the first “a”

   we will match the next character that we will add to the two strings

   We compute the weights of matches above at different string
positions with some not-yet known character “?”

   If the match occurs immediately after “a” the weight will be λ1+1

x λ1+1 = λ4 and we store just λ2 in the DP entry in [“a”,”a”]

36

Evaluating the DP wrt different
positions (second row)

   If the match for “gatta” occurs after “t” the weight will be λ1+2

(x λ2 = λ5) since the substring for it will be with “a☐?”

   We write such prediction in the entry [“a”,”t”]

   Same rationale for a match after the second “t”: we have
the substring “a☐☐?” (matching with “a?” from “catta”) for
a weight of λ3+1 (x λ2)

Evaluating the DP wrt different
positions (third row)

   If the match occurs after “t” of “cata”, the weight will be λ2+1
(x λ2 = λ5) since it will be with the string “a☐?”, with a weight
of λ3

   If the match occurs after “t” of both “gatta” and “cata”, there
are two ways to compose substring of size two: “a☐?” with

weight λ4 or “t?” with weight λ2 ⇒ the total is λ2+λ4

37

Evaluating the DP wrt different
positions (third row)

   The final case is a match after the last “t” of both “cat” and
“gatta”

   There are three possible substrings of “gatta”:

   “a☐☐?”, “t☐?”, “t?” for “gatta” with weight λ3 , λ2 or λ, respectively.

   There are two possible substrings of “cata”

   “a☐?”, “t?” with weight λ2 and λ

   Their match gives weights: λ5 , λ3, λ2 ⇒ by summing: λ5 + λ3 + λ2

Evaluating SK of size 2 using DP2

   The number (weight) of
substrings of size 2 between
“gat” and “cat” is λ4 = λ2
([“a”,”a”] entry of DP) x λ2(cost
of one character), where a =
“t” and b = “t”.

   Between “gatta” and “cata” is
λ7 + λ5 + λ4, i.e the matches of
“a☐☐a”, “t☐a”, “ta” with
“a☐a” and “ta”.

€

 SKp= 2

38

Tree kernels

   Subtree, Subset Tree, Partial Tree kernels

   Efficient computation

Example of a parse tree

   “John delivers a talk in Rome”

S → N VP

VP → V NP PP

PP → IN N

N → Rome

N

Rome

S

N

NP

D N

VP

V John

in

 delivers

a talk

PP

IN

39

The Syntactic Tree Kernel (STK)
[Collins and Duffy, 2002]

NP

D N

VP

V

delivers

a talk

NP

D N

VP

V

delivers

a

NP

D N

VP

V

delivers

NP

D N

VP

V NP

VP

V

The overall fragment set

40

The overall fragment set

NP

D

VP

a

Children are not divided

Explicit kernel space

zx  ⋅

€

φ(Tx) =
 x = (0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0)

   counts the number of common substructures

€

φ(Tz) =
 z = (1,..,0,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,0,..,1,..,0,..,0)

41

Efficient evaluation of the scalar product

€

 x ⋅  z = φ(Tx) ⋅ φ(Tz) = K(Tx,Tz) =

 =
nx ∈Tx

∑ Δ(nx,nz)
nz ∈Tz

∑

Efficient evaluation of the scalar product

   [Collins and Duffy, ACL 2002] evaluate Δ in O(n2):

€

Δ(nx,nz) = 0, if the productions are different else
Δ(nx,nz) =1, if pre - terminals else

Δ(nx,nz) = (1+ Δ(ch(nx, j),ch(nz, j)))
j=1

nc(nx)

∏

€

 x ⋅  z = φ(Tx) ⋅ φ(Tz) = K(Tx,Tz) =

 =
nx ∈Tx

∑ Δ(nx,nz)
nz ∈Tz

∑

42

Other Adjustments

   Normalization

€

Δ(nx,nz) = λ, if pre - terminals else

Δ(nx,nz) = λ (1+ Δ(ch(nx, j),ch(nz, j)))
j=1

nc(nx)

∏

€

′ K (Tx,Tz) =
K(Tx,Tz)

K(Tx,Tx) ×K(Tz,Tz)

   Decay factor

SubTree (ST) Kernel [Vishwanathan and Smola, 2002]

NP

D N

a talk

D N

a talk

NP

D N

VP

V

delivers

a talk

V

delivers

43

Evaluation

€

Δ(nx,nz) = 0, if the productions are different else
Δ(nx,nz) =1, if pre - terminals else

Δ(nx,nz) = (1+ Δ(ch(nx, j),ch(nz, j)))
j=1

nc(nx)

∏

   Given the equation for the SST kernel

Evaluation

€

Δ(nx,nz) = 0, if the productions are different else
Δ(nx,nz) =1, if pre - terminals else

Δ(nx,nz) = Δ(ch(nx, j),ch(nz, j))
j=1

nc(nx)

∏

   Given the equation for the SST kernel

44

Fast Evaluation of STK [Moschitti, EACL 2006]

where P(nx) and P(nz) are the production rules used
at nodes nx and nz

€

K(Tx,Tz) = Δ(nx,nz)
nx ,nz ∈NP
∑

NP = nx,nz ∈ Tx ×Tz :Δ(nx,nz) ≠ 0{ } =

 = nx,nz ∈ Tx ×Tz :P(nx) = P(nz){ },

Algorithm

45

Observations

   We order the production rules used in Tx and Tz,
at loading time

   At learning time we may evaluate NP in

 |Tx|+|Tz | running time

   If Tx and Tz are generated by only one production
rule ⇒ O(|Tx|×|Tz |)…

Observations

   We order the production rules used in Tx and Tz,
at loading time

   At learning time we may evaluate NP in

 |Tx|+|Tz | running time

   If Tx and Tz are generated by only one production
rule ⇒ O(|Tx|×|Tz |)…Very Unlikely!!!!

46

Labeled Ordered Tree Kernel

NP

D N

VP

V

 gives

a talk

NP

D N

VP

V

a talk

NP

D N

VP

a talk

NP

D N

VP

a

NP

D

VP

a

NP

D

VP

NP

N

VP

NP

N

NP NP

D N
D

NP

…

VP

   SST satisfies the constraint “remove 0 or all
children at a time”.

   If we relax such constraint we get more general
substructures [Kashima and Koyanagi, 2002]

Weighting Problems

   Both matched pairs give the
same contribution.

   Gap based weighting is
needed.

   A novel efficient evaluation
has to be defined

NP

D N

VP

V

 gives

a talk

NP

D N

VP

V

a talk

NP

D N

VP

V

 gives

a talk

 gives

JJ

 good

NP

D N

VP

V

 gives

a talk

JJ

 bad

47

Partial Trees, [Moschitti, ECML 2006]

NP

D N

VP

V

brought

a cat

NP

D N

VP

V

a cat

NP

D N

VP

a cat

NP

D N

VP

a

NP

D

VP

a

NP

D

VP

NP

N

VP

NP

N

NP NP

D N
D

NP

…

VP

   SST + String Kernel with weighted gaps on
Nodes’ children

Partial Tree Kernel

   By adding two decay factors we obtain:

48

Efficient Evaluation (1)

   In [Taylor and Cristianini, 2004 book], sequence kernels with
weighted gaps are factorized with respect to different
subsequence sizes.

   We treat children as sequences and apply the same theory

Dp

Efficient Evaluation (2)

   The complexity of finding the subsequences is

   Therefore the overall complexity is
 where ρ is the maximum branching factor (p = ρ)

49

Running Time of Tree Kernel Functions

SVM-light-TK Software

   Encodes ST, SST and combination kernels

 in SVM-light [Joachims, 1999]

   Available at http://dit.unitn.it/~moschitt/

   Tree forests, vector sets

   The new SVM-Light-TK toolkit will be released
asap

50

Data Format

   “What does Html stand for?”

   1 |BT| (SBARQ (WHNP (WP What))(SQ (AUX does)(NP (NNP

S.O.S.))(VP (VB stand)(PP (IN for))))(. ?))

|BT| (BOW (What *)(does *)(S.O.S. *)(stand *)(for *)(? *))

|BT| (BOP (WP *)(AUX *)(NNP *)(VB *)(IN *)(. *))
|BT| (PAS (ARG0 (R-A1 (What *)))(ARG1 (A1 (S.O.S. NNP)))(ARG2

(rel stand)))

|ET| 1:1 21:2.742439465642236E-4 23:1 30:1 36:1 39:1 41:1 46:1 49:1
66:1 152:1 274:1 333:1

|BV| 2:1 21:1.4421347148614654E-4 23:1 31:1 36:1 39:1 41:1 46:1 49:1
52:1 66:1 152:1 246:1 333:1 392:1 |EV|

Basic Commands

   Training and classification

   ./svm_learn -t 5 -C T train.dat model

   ./svm_classify test.dat model

   Learning with a vector sequence

   ./svm_learn -t 5 -C V train.dat model

   Learning with the sum of vector and kernel
sequences

   ./svm_learn -t 5 -C + train.dat model

51

Part II: Kernel Methods for
Practical Applications

Kernel Engineering approaches

   Basic Combinations

   Canonical Mappings, e.g. object transformations

   Merging of Kernels

52

Kernel Combinations an example

   Kernel Combinations:

3

3

3

3

33

 ,

 ,

pTree

pTree
PTree

p

p

Tree

Tree
PTree

pTreePTreepTreePTree

KK
KK

K
K
K

K
KK

KKKKKK

×

×
=+×=

×=+×=

×+

×+

γ

γ

kernel Tree

featuresflat of kernel polynomial 3

Tree

p

K

K

Object Transformation [Moschitti et al, CLJ 2008]

   Canonical Mapping, φM()

   object transformation,

   e. g. a syntactic parse tree into a verb

subcategorization frame tree.

   Feature Extraction, φE()

   maps the canonical structure in all its fragments

   different fragment spaces, e. g. ST, SST and PT.

),()()(

))(())(()()(),(
2121

212121

SSKSS
OOOOOOK

EEE

MEME
=⋅=

⋅=⋅=
φφ

φφφφφφ

53

Predicate Argument Classification

   In an event:

   target words describe relation among different entities

   the participants are often seen as predicate's

arguments.

   Example:
Paul gives a talk in Rome

Predicate Argument Classification

   In an event:

   target words describe relation among different entities

   the participants are often seen as predicate's

arguments.

   Example:
[Arg0 Paul] [predicate gives] [Arg1 a talk] [ArgM in Rome]

54

Predicate-Argument Feature
Representation

Given a sentence, a predicate p:
1.  Derive the sentence parse tree
2.  For each node pair <Np,Nx>

a.  Extract a feature representation set
F

b.  If Nx exactly covers the Arg-i, F is
one of its positive examples

c.  F is a negative example otherwise

Vector Representation for the linear kernel

Phrase Type

Predicate
Word

Head Word

Parse Tree
Path

Voice Active

Position Right

55

Kernel Engineering: Tree Tailoring

PAT Kernel [Moschitti, ACL 2004]

S

N

NP

D N

VP

V Paul

in

delivers

a talk

PP

IN NP

jj

Fv,arg.0

 formal

 N

 style

Arg. 0

a) S

N

NP

D N

VP

V Paul

in

delivers

a talk

PP

IN NP

jj

 formal

 N

 style

Fv,arg.1
b) S

N

NP

D N

VP

V Paul

in

delivers

a talk

PP

IN NP

jj

 formal

 N

 style
Arg. 1

Fv,arg.M

c)

Arg.M

   These are Semantic Structures

   Given the sentence:

 [Arg0 Paul] [predicate delivers] [Arg1 a talk] [ArgM in formal Style]

56

In other words we consider…

NP

D N

VP

V

delivers

a talk

S

N

Paul

in

PP

IN NP

jj

 formal

 N

 style
Arg. 1

Sub-Categorization Kernel (SCF)
[Moschitti, ACL 2004]

S

N

NP

D N

VP

V Paul

in

delivers

a talk

PP

IN NP

jj

 formal

 N

 style

Arg. 1

Arg. M

Arg. 0

Predicate

57

Experiments on Gold Standard Trees

   PropBank and PennTree bank

   about 53,700 sentences

   Sections from 2 to 21 train., 23 test., 1 and 22 dev.

   Arguments from Arg0 to Arg5, ArgA and ArgM for
 a total of 122,774 and 7,359

   FrameNet and Collins’ automatic trees

   24,558 sentences from the 40 frames of Senseval 3

   18 roles (same names are mapped together)

   Only verbs

   70% for training and 30% for testing

Argument Classification with Poly Kernel

58

PropBank Results

Argument Classification on PAT using
different Tree Fragment Extractor

0.75

0.78

0.80

0.83

0.85

0.88

0 10 20 30 40 50 60 70 80 90 100
% Training Data

Ac
cur

acy
 --

-

ST SST
Linear PT

59

FrameNet Results

   ProbBank arguments vs. Semantic Roles

Kernel Engineering: Node marking

60

Marking Boundary nodes

Node Marking Effect

61

Different tailoring and marking

CMST

MMST

Experiments

   PropBank and PennTree bank

   about 53,700 sentences

   Charniak trees from CoNLL 2005

   Boundary detection:

   Section 2 training

   Section 24 testing

   PAF and MPAF

62

Number of examples/nodes of Section 2

Predicate Argument Feature (PAF) vs.
Marked PAF (MPAF) [Moschitti et al, ACL-ws-2005]

63

Merging of Kernels [ECIR 2007]:
Question/Answer Classification

   Syntactic/Semantic Tree Kernel

   Kernel Combinations

   Experiments

Merging of Kernels [Bloehdorn & Moschitti, ECIR
2007 & CIKM 2007]

64

Merging of Kernels

NP

D N

VP

V

 gives

a talk

N

 good

NP

D N

VP

V

 gives

a talk

N

 solid

Delta Evaluation is very simple

65

Question Classification

   Definition: What does HTML stand for?

   Description: What's the final line in the Edgar Allan Poe
poem "The Raven"?

   Entity: What foods can cause allergic reaction in people?

   Human: Who won the Nobel Peace Prize in 1992?

   Location: Where is the Statue of Liberty?

   Manner: How did Bob Marley die?

   Numeric: When was Martin Luther King Jr. born?

   Organization: What company makes Bentley cars?

Question Classifier based on Tree Kernels

   Question dataset (http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/)
[Lin and Roth, 2005])

   Distributed on 6 categories: Abbreviations, Descriptions, Entity,

Human, Location, and Numeric.

   Fixed split 5500 training and 500 test questions

   Cross-validation (10-folds)

   Using the whole question parse trees

   Constituent parsing

   Example

 “What is an offer of direct stock purchase plan ?”

66

Kernels

   BOW, POS are obtained with a simple tree, e.g.

   PT (parse tree)

   PAS (predicate argument structure)

…

BOX

is What an offer an

* * * * *

67

Question classification

Similarity based on WordNet

68

Question Classification with S/STK

Multiple Kernel Combinations

69

TASK: Question/Answer
Classification [Moschitti, CIKM 2008]

   The classifier detects if a pair (question and
answer) is correct or not

   A representation for the pair is needed

   The classifier can be used to re-rank the output of
a basic QA system

Dataset 2: TREC data

   138 TREC 2001 test questions labeled as
“description”

   2,256 sentences, extracted from the best ranked
paragraphs (using a basic QA system based on
Lucene search engine on TREC dataset)

   216 of which labeled as correct by one annotator

70

Dataset 2: TREC data

   138 TREC 2001 test questions labeled as
“description”

   2,256 sentences, extracted from the best ranked
paragraphs (using a basic QA system based on
Lucene search engine on TREC dataset)

   216 of which labeled as correct by one annotator

A question is linked to many answers: all its derived
pairs cannot be shared by training and test sets

Bags of words (BOW) and POS-tags (POS)

   To save time, apply STK to these trees:

…

BOX

is What an offer of

* * * * *

…

BOX

VBZ WHNP DT NN IN

* * * * *

71

Word and POS Sequences

   What is an offer of…? (word sequence, WSK)

  What_is_offer

  What_is

   WHNP VBZ DT NN IN…(POS sequence, POSSK)

  WHNP_VBZ_NN

  WHNP_NN_IN

Syntactic Parse Trees (PT)

72

Predicate Argument Structure for Partial
Tree Kernel (PASPTK)

   [ARG1 Antigens] were [AM−TMP originally] [rel defined] [ARG2 as non-
self molecules].

   [ARG0 Researchers] [rel describe] [ARG1 antigens][ARG2 as foreign
molecules] [ARGM−LOC in the body]

Kernels and Combinations

   Exploiting the property: k(x,z) = k1(x,z)+k2(x,z)

   BOW, POS, WSK, POSSK, PT, PASPTK

⇒ BOW+POS, BOW+PT, PT+POS, …

73

Results on TREC Data
(5 folds cross validation)

20
22
24
26
28
30
32
34
36
38
40

BOW
POS

POS_SK
WSK PT

PAS_SSTK

PAS_PTK

BOW+POS

BOW+PT

POS_SK+PT

WSK+PT

POS_SK+PT+PAS_SSTK

POS_SK+PT+PAS_PTK

F1
-m

ea
su

re

Kernel Type

Results on TREC Data
(5 folds cross validation)

20
22
24
26
28
30
32
34
36
38
40

BOW
POS

POS_SK
WSK PT

PAS_SSTK

PAS_PTK

BOW+POS

BOW+PT

POS_SK+PT

WSK+PT

POS_SK+PT+PAS_SSTK

POS_SK+PT+PAS_PTK

F1
-m

ea
su

re

Kernel Type

74

Results on TREC Data
(5 folds cross validation)

20
22
24
26
28
30
32
34
36
38
40

BOW
POS

POS_SK
WSK PT

PAS_SSTK

PAS_PTK

BOW+POS

BOW+PT

POS_SK+PT

WSK+PT

POS_SK+PT+PAS_SSTK

POS_SK+PT+PAS_PTK

F1
-m

ea
su

re

Kernel Type

Results on TREC Data
(5 folds cross validation)

20
22
24
26
28
30
32
34
36
38
40

BOW
POS

POS_SK
WSK PT

PAS_SSTK

PAS_PTK

BOW+POS

BOW+PT

POS_SK+PT

WSK+PT

POS_SK+PT+PAS_SSTK

POS_SK+PT+PAS_PTK

F1
-m

ea
su

re

Kernel Type

75

Results on TREC Data
(5 folds cross validation)

20
22
24
26
28
30
32
34
36
38
40

BOW
POS

POS_SK
WSK PT

PAS_SSTK

PAS_PTK

BOW+POS

BOW+PT

POS_SK+PT

WSK+PT

POS_SK+PT+PAS_SSTK

POS_SK+PT+PAS_PTK

F1
-m

ea
su

re

Kernel Type

Results on TREC Data
(5 folds cross validation)

20
22
24
26
28
30
32
34
36
38
40

BOW
POS

POS_SK
WSK PT

PAS_SSTK

PAS_PTK

BOW+POS

BOW+PT

POS_SK+PT

WSK+PT

POS_SK+PT+PAS_SSTK

POS_SK+PT+PAS_PTK

F1
-m

ea
su

re

Kernel Type

76

Results on TREC Data
(5 folds cross validation)

20
22
24
26
28
30
32
34
36
38
40

BOW
POS

POS_SK
WSK PT

PAS_SSTK

PAS_PTK

BOW+POS

BOW+PT

POS_SK+PT

WSK+PT

POS_SK+PT+PAS_SSTK

POS_SK+PT+PAS_PTK

F1
-m

ea
su

re

Kernel Type

BOW ≈ 24
POSSK+STK+PAS_PTK≈ 39
⇒62 % of improvement

Kernels for Re-ranking

77

Re-ranking Framework

   Local classifier generates the most likely set of
hypotheses.

   These are used to build annotation pairs, .

   positive instances if hi more correct than hj,

   A binary classifier decides if hi is more accurate
than hj.

   Each candidate annotation hi is described by a
structural representation

€

hi, h j

Re-ranking framework

Local Model

78

Syntactic Parsing Re-ranking

   Pairs of parse trees (Collins and Duffy, 2002)

Re-ranking concept labeling
[Dinarelli et al, 2009]

   I have a problem with my monitor

hi: I NULL have NULL a NULL problem PROBLEM-
B with NULL my NULL monitor HW-B

hj: I NULL have NULL a NULL problem HW-B
with NULL my NULL monitor

79

Flat tree representation
(cross-language structure)

Multilevel Tree

80

Enriched Multilevel Tree

   FST CER from 23.2 to 16.01

Re-ranking for Named-Entity
Recognition [Vien et al, 2010]

   CRF F1 from 84.86 to 88.16

81

Re-ranking Predicate Argument Structures
[Moschitti et al, CoNLL 2006]

   SVMs F1 from 75.89 to 77.25

Conclusions

   Kernel methods and SVMs are useful tools to design
language applications

   Kernel design still requires some level of expertise

   Engineering approaches to tree kernels

   Basic Combinations

   Canonical Mappings, e.g.

   Node Marking

   Merging of kernels in more complex kernels

   Easy modeling produces state-of-the-art accuracy in many
tasks, RTE, SRL, QC, NER, RE

   SVM-Light-TK efficient tool to use them

82

Future (on going work)

   Once we have found the right kernel, are we satisfied?

   What about knowing the most relevant features?

   Can we speed up learning/classification at real-application
scenario level?

   The answer is reverse kernel engineering:

   [Pighin&Moschitti, CoNLL2009, EMNLP2009, CoNLL2010]

   Mine the most relevant fragments according to SVMs gradient

   Use the linear space

   Software for reverse kernel engineering available in the
next months

Thank you

83

References

   Alessandro Moschitti and Silvia Quarteroni, Linguistic Kernels for Answer Re-ranking in
Question Answering Systems, Information and Processing Management, ELSEVIER,
2010.

   Yashar Mehdad, Alessandro Moschitti and Fabio Massimo Zanzotto. Syntactic/
Semantic Structures for Textual Entailment Recognition. Human Language Technology
- North American chapter of the Association for Computational Linguistics (HLT-
NAACL), 2010, Los Angeles, Calfornia.

   Daniele Pighin and Alessandro Moschitti. On Reverse Feature Engineering of Syntactic
Tree Kernels. In Proceedings of the 2010 Conference on Natural Language Learning,
Upsala, Sweden, July 2010. Association for Computational Linguistics.

   Thi Truc Vien Nguyen, Alessandro Moschitti and Giuseppe Riccardi. Kernel-based
Reranking for Entity Extraction. In proceedings of the 23rd International Conference on
Computational Linguistics (COLING), August 2010, Beijing, China.

References

   Alessandro Moschitti. Syntactic and semantic kernels for short text pair categorization.

In Proceedings of the 12th Conference of the European Chapter of the ACL (EACL
2009), pages 576–584, Athens, Greece, March 2009. Association for Computational
Linguistics.

   Truc-Vien Nguyen, Alessandro Moschitti, and Giuseppe Riccardi. Convolution kernels
on constituent, dependency and sequential structures for relation extraction. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing,
pages 1378–1387, Singapore, August 2009. Association for Computational Linguistics.

   Marco Dinarelli, Alessandro Moschitti, and Giuseppe Riccardi. Re-ranking models
based-on small training data for spoken language understanding. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, pages 1076–1085,
Singapore, August 2009. Association for Computational Linguistics.

   Alessandra Giordani and Alessandro Moschitti. Syntactic Structural Kernels for Natural
Language Interfaces to Databases. In ECML/PKDD, pages 391–406, Bled, Slovenia,
2009.

84

References

   Alessandro Moschitti, Daniele Pighin and Roberto Basili. Tree Kernels for Semantic
Role Labeling, Special Issue on Semantic Role Labeling, Computational Linguistics
Journal. March 2008.

   Fabio Massimo Zanzotto, Marco Pennacchiotti and Alessandro Moschitti, A Machine
Learning Approach to Textual Entailment Recognition, Special Issue on Textual
Entailment Recognition, Natural Language Engineering, Cambridge University Press.,
2008

   Mona Diab, Alessandro Moschitti, Daniele Pighin, Semantic Role Labeling Systems for
Arabic Language using Kernel Methods. In proceedings of the 46th Conference of the
Association for Computational Linguistics (ACL'08). Main Paper Section. Columbus,
OH, USA, June 2008.

   Alessandro Moschitti, Silvia Quarteroni, Kernels on Linguistic Structures for Answer
Extraction. In proceedings of the 46th Conference of the Association for Computational
Linguistics (ACL'08). Short Paper Section. Columbus, OH, USA, June 2008.

References

   Yannick Versley, Simone Ponzetto, Massimo Poesio, Vladimir Eidelman, Alan Jern,
Jason Smith, Xiaofeng Yang and Alessandro Moschitti, BART: A Modular Toolkit for
Coreference Resolution, In Proceedings of the Conference on Language Resources
and Evaluation, Marrakech, Marocco, 2008.

   Alessandro Moschitti, Kernel Methods, Syntax and Semantics for Relational Text
Categorization. In proceeding of ACM 17th Conference on Information and Knowledge
Management (CIKM). Napa Valley, California, 2008.

   Bonaventura Coppola, Alessandro Moschitti, and Giuseppe Riccardi. Shallow semantic
parsing for spoken language understanding. In Proceedings of HLT-NAACL Short
Papers, pages 85–88, Boulder, Colorado, June 2009. Association for Computational
Linguistics.

   Alessandro Moschitti and Fabio Massimo Zanzotto, Fast and Effective Kernels for
Relational Learning from Texts, Proceedings of The 24th Annual International
Conference on Machine Learning (ICML 2007).

85

References

   Alessandro Moschitti, Silvia Quarteroni, Roberto Basili and Suresh Manandhar,
Exploiting Syntactic and Shallow Semantic Kernels for Question/Answer Classification,
Proceedings of the 45th Conference of the Association for Computational Linguistics
(ACL), Prague, June 2007.

   Alessandro Moschitti and Fabio Massimo Zanzotto, Fast and Effective Kernels for
Relational Learning from Texts, Proceedings of The 24th Annual International
Conference on Machine Learning (ICML 2007), Corvallis, OR, USA.

   Daniele Pighin, Alessandro Moschitti and Roberto Basili, RTV: Tree Kernels for
Thematic Role Classification, Proceedings of the 4th International Workshop on
Semantic Evaluation (SemEval-4), English Semantic Labeling, Prague, June 2007.

   Stephan Bloehdorn and Alessandro Moschitti, Combined Syntactic and Semanitc
Kernels for Text Classification, to appear in the 29th European Conference on
Information Retrieval (ECIR), April 2007, Rome, Italy.

   Fabio Aiolli, Giovanni Da San Martino, Alessandro Sperduti, and Alessandro Moschitti,
Efficient Kernel-based Learning for Trees, to appear in the IEEE Symposium on
Computational Intelligence and Data Mining (CIDM), Honolulu, Hawaii, 2007

References

   Alessandro Moschitti, Silvia Quarteroni, Roberto Basili and Suresh Manandhar,
Exploiting Syntactic and Shallow Semantic Kernels for Question/Answer Classification,
Proceedings of the 45th Conference of the Association for Computational Linguistics
(ACL), Prague, June 2007.

   Alessandro Moschitti, Giuseppe Riccardi, Christian Raymond, Spoken Language
Understanding with Kernels for Syntactic/Semantic Structures, Proceedings of IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU2007), Kyoto,
Japan, December 2007

   Stephan Bloehdorn and Alessandro Moschitti, Combined Syntactic and Semantic
Kernels for Text Classification, to appear in the 29th European Conference on
Information Retrieval (ECIR), April 2007, Rome, Italy.

   Stephan Bloehdorn, Alessandro Moschitti: Structure and semantics for expressive text
kernels. In proceeding of ACM 16th Conference on Information and Knowledge
Management (CIKM-short paper) 2007: 861-864, Portugal.

86

References

   Fabio Aiolli, Giovanni Da San Martino, Alessandro Sperduti, and Alessandro Moschitti,
Efficient Kernel-based Learning for Trees, to appear in the IEEE Symposium on
Computational Intelligence and Data Mining (CIDM), Honolulu, Hawaii, 2007.

   Alessandro Moschitti, Efficient Convolution Kernels for Dependency and Constituent
Syntactic Trees. In Proceedings of the 17th European Conference on Machine
Learning, Berlin, Germany, 2006.

   Fabio Aiolli, Giovanni Da San Martino, Alessandro Sperduti, and Alessandro Moschitti,
Fast On-line Kernel Learning for Trees, International Conference on Data Mining
(ICDM) 2006 (short paper).

   Stephan Bloehdorn, Roberto Basili, Marco Cammisa, Alessandro Moschitti, Semantic
Kernels for Text Classification based on Topological Measures of Feature Similarity. In
Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 06), Hong
Kong, 18-22 December 2006. (short paper).

References

   Roberto Basili, Marco Cammisa and Alessandro Moschitti, A Semantic Kernel to
classify texts with very few training examples, in Informatica, an international journal of
Computing and Informatics, 2006.

   Fabio Massimo Zanzotto and Alessandro Moschitti, Automatic learning of textual
entailments with cross-pair similarities. In Proceedings of COLING-ACL, Sydney,
Australia, 2006.

   Ana-Maria Giuglea and Alessandro Moschitti, Semantic Role Labeling via FrameNet,
VerbNet and PropBank. In Proceedings of COLING-ACL, Sydney, Australia, 2006.

   Alessandro Moschitti, Making tree kernels practical for natural language learning. In
Proceedings of the Eleventh International Conference on European Association for
Computational Linguistics, Trento, Italy, 2006.

   Alessandro Moschitti, Daniele Pighin and Roberto Basili. Semantic Role Labeling via
Tree Kernel joint inference. In Proceedings of the 10th Conference on Computational
Natural Language Learning, New York, USA, 2006.

87

References

   Roberto Basili, Marco Cammisa and Alessandro Moschitti, Effective use of Wordnet
semantics via kernel-based learning. In Proceedings of the 9th Conference on
Computational Natural Language Learning (CoNLL 2005), Ann Arbor (MI), USA, 2005

   Alessandro Moschitti, A study on Convolution Kernel for Shallow Semantic Parsing. In
proceedings of the 42-th Conference on Association for Computational Linguistic
(ACL-2004), Barcelona, Spain, 2004.

   Alessandro Moschitti and Cosmin Adrian Bejan, A Semantic Kernel for Predicate
Argument Classification. In proceedings of the Eighth Conference on Computational
Natural Language Learning (CoNLL-2004), Boston, MA, USA, 2004.

An introductory book on SVMs, Kernel
methods and Text Categorization

88

Non-exhaustive reference list from other
authors

   V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

   P. Bartlett and J. Shawe-Taylor, 1998. Advances in Kernel Methods -

Support Vector Learning, chapter Generalization Performance of
Support Vector Machines and other Pattern Classifiers. MIT Press.

   David Haussler. 1999. Convolution kernels on discrete structures.
Technical report, Dept. of Computer Science, University of California at
Santa Cruz.

   Lodhi, Huma, Craig Saunders, John Shawe Taylor, Nello Cristianini,
and Chris Watkins. Text classification using string kernels. JMLR,2000

   Schölkopf, Bernhard and Alexander J. Smola. 2001. Learning with
Kernels: Support Vector Machines, Regularization, Optimization, and
Beyond. MIT Press, Cambridge, MA, USA.

Non-exhaustive reference list from other
authors

   N. Cristianini and J. Shawe-Taylor, An introduction to support vector

machines (and other kernel-based learning methods) Cambridge
University Press, 2002

   M. Collins and N. Duffy, New ranking algorithms for parsing and
tagging: Kernels over discrete structures, and the voted perceptron. In
ACL02, 2002.

   Hisashi Kashima and Teruo Koyanagi. 2002. Kernels for semi-
structured data. In Proceedings of ICML’02.

   S.V.N. Vishwanathan and A.J. Smola. Fast kernels on strings and
trees. In Proceedings of NIPS, 2002.

   Nicola Cancedda, Eric Gaussier, Cyril Goutte, and Jean Michel
Renders. 2003. Word sequence kernels. Journal of Machine Learning
Research, 3:1059–1082. D. Zelenko, C. Aone, and A. Richardella.
Kernel methods for relation extraction. JMLR, 3:1083–1106, 2003.

89

Non-exhaustive reference list from other
authors

   Taku Kudo and Yuji Matsumoto. 2003. Fast methods for kernel-based

text analysis. In Proceedings of ACL’03.

   Dell Zhang and Wee Sun Lee. 2003. Question classification using

support vector machines. In Proceedings of SIGIR’03, pages 26–32.

   Libin Shen, Anoop Sarkar, and Aravind k. Joshi. Using LTAG Based

Features in Parse Reranking. In Proceedings of EMNLP’03, 2003

   C. Cumby and D. Roth. Kernel Methods for Relational Learning. In

Proceedings of ICML 2003, pages 107–114, Washington, DC, USA,
2003.

   J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern
Analysis. Cambridge University Press, 2004.

   A. Culotta and J. Sorensen. Dependency tree kernels for relation
extraction. In Proceedings of the 42nd Annual Meeting on ACL,
Barcelona, Spain, 2004.

Non-exhaustive reference list from other
authors

   Kristina Toutanova, Penka Markova, and Christopher Manning. The

Leaf Path Projection View of Parse Trees: Exploring String Kernels for
HPSG Parse Selection. In Proceedings of EMNLP 2004.

   Jun Suzuki and Hideki Isozaki. 2005. Sequence and Tree Kernels with
Statistical Feature Mining. In Proceedings of NIPS’05.

   Taku Kudo, Jun Suzuki, and Hideki Isozaki. 2005. Boosting based
parse reranking with subtree features. In Proceedings of ACL’05.

   R. C. Bunescu and R. J. Mooney. Subsequence kernels for relation
extraction. In Proceedings of NIPS, 2005.

   R. C. Bunescu and R. J. Mooney. A shortest path dependency kernel
for relation extraction. In Proceedings of EMNLP, pages 724–731,
2005.

   S. Zhao and R. Grishman. Extracting relations with integrated
information using kernel methods. In Proceedings of the 43rd Meeting
of the ACL, pages 419–426, Ann Arbor, Michigan, USA, 2005.

90

Non-exhaustive reference list from other
authors

   J. Kazama and K. Torisawa. Speeding up Training with Tree Kernels for

Node Relation Labeling. In Proceedings of EMNLP 2005, pages 137–
144, Toronto, Canada, 2005.

   M. Zhang, J. Zhang, J. Su, , and G. Zhou. A composite kernel to extract
relations between entities with both flat and structured features. In
Proceedings of COLING-ACL 2006, pages 825–832, 2006.

   M. Zhang, G. Zhou, and A. Aw. Exploring syntactic structured features
over parse trees for relation extraction using kernel methods.
Information Processing and Management, 44(2):825–832, 2006.

   G. Zhou, M. Zhang, D. Ji, and Q. Zhu. Tree kernel-based relation
extraction with context-sensitive structured parse tree information. In
Proceedings of EMNLP-CoNLL 2007, pages 728–736, 2007.

Non-exhaustive reference list from other
authors

   Ivan Titov and James Henderson. Porting statistical parsers with data-

defined kernels. In Proceedings of CoNLL-X, 2006

   Min Zhang, Jie Zhang, and Jian Su. 2006. Exploring Syntactic Features

for Relation Extraction using a Convolution tree kernel. In Proceedings
of NAACL.

   M. Wang. A re-examination of dependency path kernels for relation
extraction. In Proceedings of the 3rd International Joint Conference on
Natural Language Processing-IJCNLP, 2008.

91

