
Coling 2010: Poster Volume, pages 1471–1479,
Beijing, August 2010

Chart Pruning for Fast Lexicalised-Grammar Parsing

Yue Zhanga∗ Byung-Gyu Ahn b∗ Stephen Clarka∗ Curt Van Wyk c

James R. Currand Laura Rimella
Computer Laboratorya Computer Scienceb Computer Sciencec School of ITd

Cambridge Johns Hopkins Northwestern College Sydney
{yue.zhang,stephen.clark}@cl.cam.ac.uka∗ bahn@jhu.edu b∗

Abstract

Given the increasing need to process mas-
sive amounts of textual data, efficiency of
NLP tools is becoming a pressing concern.
Parsers based on lexicalised grammar for-
malisms, such as TAG and CCG, can be
made more efficient using supertagging,
which for CCG is so effective that every
derivation consistent with the supertagger
output can be stored in a packed chart.
However, wide-coverage CCG parsers still
produce a very large number of deriva-
tions for typical newspaper or Wikipedia
sentences. In this paper we investigate
two forms of chart pruning, and develop a
novel method for pruning complete cells
in a parse chart. The result is a wide-
coverage CCG parser that can process al-
most 100 sentences per second, with lit-
tle or no loss in accuracy over the baseline
with no pruning.

1 Introduction

Many NLP tasks and applications require the pro-
cessing of massive amounts of textual data. For
example, knowledge acquisition efforts can in-
volve processing billions of words of text (Cur-
ran, 2004). Also, the increasing need to process
large amounts of web data places an efficiency
demand on existing NLP tools. TextRunner, for
example, is a system that performs open infor-
mation extraction on the web (Lin et al., 2009).
However, the text processing that is performed by
TextRunner, in particular the parsing, is rudimen-
tary: finite-state shallow parsing technology that

is now decades old. TextRunner uses this technol-
ogy largely for efficiency reasons.

Many of the popular wide-coverage parsers
available today operate at around one newspa-
per sentence per second (Collins, 1999; Charniak,
2000; Petrov and Klein, 2007). There are de-
pendency parsers that operate orders of magni-
tude faster, by exploiting the fact that accurate
dependency parsing can be achieved by using a
shift-reduce linear-time process which makes a
single decision at each point in the parsing pro-
cess (Nivre and Scholz, 2004).

In this paper we focus on the Combinatory Cat-
egorial Grammar (CCG) parser of Clark and Cur-
ran (2007). One advantage of the CCG parser is
that it is able to assign rich structural descriptions
to sentences, from a variety of representations,
e.g. CCG derivations, CCG dependency structures,
grammatical relations (Carroll et al., 1998), and
first-order logical forms (Bos et al., 2004). One
of the properties of the grammar formalism is
that it is lexicalised, associating CCG lexical cate-
gories, or CCG supertags, with the words in a sen-
tence (Steedman, 2000). Clark and Curran (2004)
adapt the technique of supertagging (Bangalore
and Joshi, 1999) to CCG, using a standard max-
imum entropy tagger to assign small sets of su-
pertags to each word. The reduction in ambiguity
resulting from the supertagging stage results in a
surprisingly efficient parser, given the rich struc-
tural output, operating at tens of newspaper sen-
tences per second.

In this paper we demonstrate that the CCG

parser can be made more than twice as fast, with
little or no loss in accuracy. A noteworthy feature
of the CCG parser is that, after the supertagging

1471



stage, the parser builds a complete packed chart,
storing all sentences consistent with the assigned
supertags and the parser’s CCG combinatory rules,
with no chart pruning whatsoever. The use of
chart pruning techniques, typically some form of
beam search, is essential for practical parsing us-
ing Penn Treebank parsers (Collins, 1999; Petrov
and Klein, 2007; Charniak and Johnson, 2005), as
well as practical parsers based on linguistic for-
malisms, such as HPSG (Ninomiya et al., 2005)
and LFG (Kaplan et al., 2004). However, in the
CCG case, the use of the supertagger means that
enough ambiguity has already been resolved to al-
low the complete chart to be represented.

Despite the effectiveness of the supertagging
stage, the number of derivations stored in a packed
chart can still be enormous for typical newspa-
per sentences. Hence it is an obvious question
whether chart pruning techniques can be prof-
itably applied to the CCG parser. Some previous
work (Djordjevic et al., 2007) has investigated this
question but with little success.

In this paper we investigate two types of chart
pruning: a standard beam search, similar to that
used in the Collins parser (Collins, 1999), and a
more aggressive strategy in which complete cells
are pruned, following Roark and Hollingshead
(2009). Roark and Hollingshead use a finite-state
tagger to decide which words in a sentence can
end or begin constituents, from which whole cells
in the chart can be removed. We develop a novel
extension to this approach, in which a tagger is
trained to infer the maximum length constituent
that can begin or end at a particular word. These
lengths can then be used in a more agressive prun-
ing strategy which we show to be significantly
more effective than the basic approach.

Both beam search and cell pruning are highly
effective, with the resulting CCG parser able to
process almost 100 sentences per second using
a single CPU, for both newspaper and Wikipedia
data, with little or no loss in accuracy.

2 The CCG Parser

The parser is described in detail in Clark and Cur-
ran (2007). It is based on CCGbank, a CCG ver-
sion of the Penn Treebank developed by Hocken-
maier and Steedman (2007).

The stages in the parsing pipeline are as fol-
lows. First, a POS tagger assigns a single POS tag
to each word in a sentence. Second, a CCG su-
pertagger assigns lexical categories to the words
in the sentence. Third, the parsing stage combines
the categories, using CCG’s combinatory rules,
and builds a packed chart representation contain-
ing all the derivations which can be built from
the lexical categories. Finally, the Viterbi algo-
rithm finds the highest scoring derivation from
the packed chart, using the normal-form log-linear
model described in Clark and Curran (2007).

Sometimes the parser is unable to build an anal-
ysis which spans the whole sentence. When this
happens the parser and supertagger interact us-
ing the adaptive supertagging strategy described
in Clark and Curran (2004): the parser effectively
asks the supertagger to provide more lexical cate-
gories for each word. This potentially continues
for a number of iterations until the parser does
create a spanning analysis, or else it gives up and
moves to the next sentence.

The parser uses the CKY algorithm (Kasami,
1965; Younger, 1967) described in Steedman
(2000) to create a packed chart. The CKY al-
gorithm applies naturally to CCG since the gram-
mar is binary. It builds the chart bottom-up, start-
ing with two-word constituents (assuming the su-
pertagging phase has been completed), incremen-
tally increasing the span until the whole sentence
is covered. The chart is packed in the standard
sense that any two equivalent constituents created
during the parsing process are placed in the same
equivalence class, with pointers to the children
used in the creation. Equivalence is defined in
terms of the category and head of the constituent,
to enable the Viterbi algorithm to efficiently find
the highest scoring derivation.1 A textbook treat-
ment of CKY applied to statistical parsing is given
in Jurafsky and Martin (2000).

3 Data and Evaluation Metrics

We performed efficiency and accuracy tests on
newspaper and Wikipedia data. For the newspa-
per data, we used the standard test sections from

1Use of the Viterbi algorithm in this way requires the fea-
tures in the parser model to be local to a single rule applica-
tion; Clark and Curran (2007) has more discussion.

1472



(ncmod num hundred 1 Seven 0)
(conj and 2 sixty-one 3)
(conj and 2 hundred 1)
(dobj in 6 total 7)
(ncmod made 5 in 6)
(aux made 5 were 4)
(ncsubj made 5 and 2 obj)
(passive made 5)

Seven hundred and sixty-one were made in
total.

Figure 1: Example Wikipedia test sentence anno-
tated with grammatical relations.

CCGbank. Following Clark and Curran (2007) we
used the CCG dependencies for accuracy evalua-
tion, comparing those output by the parser with
the gold-standard dependencies in CCGbank. Un-
like Clark and Curran, we calculated recall scores
over all sentences, including those for which the
parser did not find an analysis. For the WSJ data
the parser fails on a small number of sentences
(less than 1%), but the chart pruning has the effect
of reducing this failure rate further, and we felt
that this should be factored into the calculation of
recall and hence F-score.

In order to test the parser on Wikipedia text,
we created two test sets. The first, Wiki 300, for
testing accuracy, consists of 300 sentences man-
ually annotated with grammatical relations (GRs)
in the style of Briscoe and Carroll (2006). An
example sentence is given in Figure 1. The data
was created by manually correcting the output of
the parser on these sentences, with the annotation
being performed by Clark and Rimell, including
checks on a subset of these cases to ensure con-
sistency across the two annotators. For the ac-
curacy evaluation, we calculated precision, recall
and balanced F-measure over the GRs in the stan-
dard way.

For testing speed on Wikipedia, we used a cor-
pus of 2500 randomly chosen sentences, Wiki
2500. For all speed tests we measured the num-
ber of sentences per second, using a single CPU

and standard hardware.

4 Beam Search

The beam search approach used in our exper-
iments prunes all constituents in a cell having
scores below a multiple (β) of the score of the

β Speed Gain F-score Gain
Baseline 43.0 85.55

0.001 48.6 13% 85.82 0.27
0.002 54.2 26% 85.88 0.33
0.005 59.0 37% 85.73 0.18
0.01 66.7 55% 85.53 -0.02

Table 1: Accuracy and speed results using differ-
ent beam values β.

δ Speed Gain F-score Gain
Baseline 43.0 85.55

10 60.1 39% 85.55 0.00
20 70.6 64% 85.66 0.11
30 72.3 68% 85.65 0.10
40 76.4 77% 85.63 0.08
50 76.7 78% 85.62 0.07
60 74.5 73% 85.71 0.16
80 68.4 59% 85.71 0.16

100 62.0 44% 85.73 0.18
None 59.0 37% 85.73 0.18

Table 2: Accuracy and speed results for different
values of δ where β = 0.005.

highest scoring constituent for that cell.2 The
scores for a constituent are calculated using the
same model used to find the highest scoring
derivation. We consider two scores: the Viterbi
score, which is the score of the highest scoring
sub-derivation for that constituent; and the inside
score, which is the sum over all sub-derviations
for that constituent. We investigated the follow-
ing: the trade-off between the aggressiveness of
the beam search and accuracy; the comparison be-
tween the Viterbi and inside scores; and whether
applying the beam to only certain cells in the chart
can improve performance.

Table 1 shows results on Section 00 of CCG-
bank, using the Viterbi score to prune. As ex-
pected, the parsing speed increases as the value
of β increases, since more constituents are pruned
with a higher β value. The pruning is effective,
with a β value of 0.01 giving a 55% speed increase
with neglible loss in accuracy.3

2One restriction we apply in practice is that only con-
stituents resulting from the application of a CCG binary rule,
rather than a unary rule, are pruned.

3The small accuracy increase for some β values could be
attributable to two factors: one, the parser may select a lower

1473



Speed F-score
Dataset Baseline Beam Gain Baseline Beam Gain
WSJ 00 43.0 76.4 77% 85.55 85.63 0.08

WSJ 02-21 53.4 99.4 86% 93.61 93.27 -0.34
WSJ 23 55.0 107.0 94% 87.12 86.90 -0.22

Wiki 300 35.5 80.3 126% 84.23 85.06 0.83
Wiki 2500 47.6 90.3 89%

Table 4: Beam search results on WSJ 00, 02-21, 23 and Wikipedia texts with β = 0.005 and δ = 40.

β δ Speed F-score
Baseline 24.7 85.55

inside scores

0.01 37.7 85.52
0.001 25.3 85.79
0.005 10 33.4 85.54
0.005 20 39.5 85.64
0.005 50 42.9 85.58

Viterbi scores

0.01 38.1 85.53
0.001 28.2 85.82
0.005 10 33.6 85.55
0.005 20 39.4 85.66
0.005 50 43.1 85.62

Table 3: Comparison between using Viterbi scores
and inside scores as beam scores.

We also studied the effect of the beam search
at different levels of the chart. We applied a selec-
tive beam in which pruning is only applied to con-
stituents of length less than or equal to a threshold
δ. For example, if δ = 20, pruning is applied only
to constituents spanning 20 words or less. The re-
sults are shown in Table 2. The selective beam
is also highly effective, showing speed gains over
the baseline (which does not use a beam) with no
loss in F-score. For a δ value of 50 the speed in-
crease is 78% with no loss in accuracy.

Note that for δ greater than 50, the speed re-
duces. We believe that this is due to the cost
of calculating the beam scores and the reduced
effectiveness of pruning for cells with longer
spans (since pruning shorter constituents early in
the chart-parsing process prevents the creation of
many larger, low-scoring constituents later).

Table 3 shows the comparison between the in-

scoring but more accurate derivation; and two, a possible in-
crease in recall, discussed in Section 3, can lead to a higher
F-score.

side and Viterbi scores. The results are similar,
with Viterbi marginally outperforming the inside
score in most cases. The interesting result from
these experiments is that the summing used in cal-
culating the inside score does not improve perfor-
mance over the max operator used by Viterbi.

Table 4 gives results on Wikipedia text, com-
pared with a number of sections from CCGbank.
(Sections 02-21 provide the training data for the
parser which explains the high accuracy results
on these sections.) Despite the fact that the prun-
ing model is derived from CCGbank and based on
WSJ text, the speed improvements for Wikipedia
were even greater than for WSJ text, with param-
eters β = 0.005 and δ = 40 leading to almost a
doubling of speed on the Wiki 2500 set, with the
parser operating at 90 sentences per second.

5 Cell Pruning

Whole cells can be pruned from the chart by tag-
ging words in a sentence. Roark and Hollingshead
(2009) used a binary tagging approach to prune a
CFG CKY chart, where tags are assigned to input
words to indicate whether they can be the start or
end of multiple-word constituents. We adapt their
method to CCG chart pruning. We also show the
limitation of binary tagging, and propose a novel
tagging method which leads to increased speeds
and accuracies over the binary taggers.

5.1 Binary tagging

Following Roark and Hollingshead (2009), we as-
sign the binary begin and end tags separately us-
ing two independent taggers. Given the input
“We like playing cards together”, the pruning ef-
fects of each type of tag on the CKY chart are
shown in Figure 2. In this chart, rows repre-

1474



X

We like playing cards together

1 2 3 4 5

1

2

4

5

3

1 1 1 0 0

X X

X

We like playing cards together

1 2 3 4 5

1

2

4

5

3

0 0 0 1 1

Figure 2: The pruning effect of begin (top) and
end (bottom) tags; X indicates a removed cell.

sent consituent sizes and columns represent initial
words of constituents. No cell in the first row of
the chart is pruned, since these cells correspond
to single words, and are necessary for finding a
parse. The begin tag for the input word “cards” is
0, which means that it cannot begin a multi-word
constituent. Therefore, no cell in column 4 can
contain any constituent. The pruning effect of a
binary begin tag is to cross out a column of chart
cells (ignoring the first row) when the tag value
is zero. Similarly, the end tag of the word “play-
ing” is 0, which means that it cannot be the end
of a multi-word constituent. Consequently cell (2,
2), which contains constituents for “like playing”,
and cell (1, 3), which contains constituents for
“We like playing”, must be empty. The pruning
effect of a binary end tag is to cross out a diagonal
of cells (ignoring the first row) when the tag value
is zero.

We use a maximum entropy trigram tagger
(Ratnaparkhi, 1996; Curran and Clark, 2003) to

Model Speed F-score
baseline 25.10 84.89
begin only 27.49 84.71
end only 30.33 84.56
both 33.90 84.60
oracle 33.60 85.67

Table 5: Accuracy and speed results for the binary
taggers on Section 00 of CCGbank.

assign the begin and end tags. Features based on
the words and POS in a 5-word window, plus the
two previously assigned tags, are extracted from
the trigram ending with the current tag and the
five-word window with the current word in the
middle. In our development experiments, both the
begin and the end taggers gave a per-word accu-
racy of around 96%, similar to the accuracy re-
ported in Roark and Hollingshead (2009).

Table 5 shows accuracy and speed results for
the binary taggers.4 Using begin or end tags alone,
the parser achieved speed increases with a small
loss in accuracy. When both begin and end tags
are applied, the parser achieved further speed in-
creases, with no loss in accuracy compared to the
end tag alone. Row “oracle” shows what happens
using the perfect begin and end taggers, by using
gold-standard constituent information from CCG-
bank. The F-score is higher, since the parser is
being guided away from incorrect derivations, al-
though the speed is no higher than when using au-
tomatically assigned tags.

5.2 Level tagging

A binary tag cannot take effect when there is any
chart cell in the corresponding column or diagonal
that contains constituents. For example, the begin
tag for the word “card” in Figure 3 cannot be 0 be-
cause “card” begins a two-word constituent “card
games”. Hence none of the cells in the column can
be pruned using the binary begin tag, even though
all the cells from the third row above are empty.
We propose what we call a level tagging approach
to address this problem.

Instead of taking a binary value that indicates
4The baseline differs slightly to the previous section be-

cause gold-standard POS tags were used for the beam-search
experiments.

1475



1 2 3 4 5

1

2

4

5

3

Playing card games is fun

Figure 3: The limitation of binary begin tags.

whether a whole column or diagonal of cells can
be pruned, a level tag (begin or end) takes an in-
teger value which indicates the row from which
a column or diagonal can be pruned in the up-
ward direction. For example, a level begin tag
with value 2 allows the column of chart cells for
the word “card” in Figure 3 to be pruned from the
third row upwards. A level tag (begin or end) with
value 1 prunes the corresponding row or diago-
nal from the second row upwards; it has the same
pruning effect as a binary tag with value 0. For
convenience, value 0 for a level tag means that the
corresponding word can be the beginning or end
of any constituent, which is the same as a binary
tag value 1.

A comparison of the pruning effect of binary
and level tags for the sentence “Playing card
games is fun” is shown in Figure 4. With a level
begin tag, more cells can be pruned from the col-
umn for “card”. Therefore, level tags are poten-
tially more powerful for pruning.

We now need a method for assigning level tags
to words in a sentence. However, we cannot
achieve this with a straighforward classifier since
level tags are related; for example, a level tag (be-
gin or end) with value 2 implies level tags with
values 3 and above. We develop a novel method
for calculating the probability of a level tag for
a particular word. Our mechanism for calculat-
ing these probabilities uses what we call maxspan
tags, which can be assigned using a maximum en-
tropy tagger.

Maxspan tags take the same values as level tags.
However, the meanings of maxspan tags and level

X

XX

X

1 2 3 4 5

1

2

4

5

3

Playing card games is fun

X

XX

X

Playing card games is fun

1 2 3 4 5

1

2

4

5

3

Figure 4: The pruning effect of binary (top) and
level (bottom) tags.

tags are different. While a level tag indicates the
row from which a column or diagonal of cells is
pruned, a maxspan tag represents the size of the
largest constituent a word begins or ends. For ex-
ample, in Figure 3, the level end tag for the word
“games” has value 3, since the largest constituent
this words ends spans “playing card games”.

We use the standard maximum entropy trigram
tagger for maxspan tagging, where features are
extracted from tag trigrams and surrounding five-
word windows, as for the binary taggers. Parse
trees can be turned directly into training data for
a maxspan tagger. Since the level tag set is fi-
nite, we a require a maximum value N that a level
tag can take. We experimented with N = 2 and
N = 4, which reflects the limited range of the
features used by the taggers.5

During decoding, the maxspan tagger uses the
forward-backward algorithm to compute the prob-
ability of maxspan tag values for each word in the

5Higher values of N did not lead to improvements during
development experiments.

1476



Model Speed F-score
baseline 25.10 84.89
binary 33.90 84.60
binary oracle 33.60 85.67
level N = 2 32.79 84.92
level N = 4 34.91 84.95
level N = 4 oracle 47.45 86.49

Table 6: Accuracy and speed results for the level
taggers on Section 00 of CCGbank.

input. Then for each word, the probability of its
level tag tl having value x is the sum of the prob-
abilities of its maxspan tm tag having values 1..x:

P (tl = x) =
x∑

i=1

P (tm = i)

Maxspan tag values i from 1 to x represent dis-
joint events in which the largest constituent that
the corresponding word begins or ends has size i.
Summing the probabilities of these disjoint events
gives the probability that the largest constituent
the word begins or ends has a size between 1 and
x, inclusive. That is also the probability that all
the constituents the word begins or ends are in the
range of cells from rows 1 to row x in the corre-
sponding column or diagonal. And therefore that
is also the probability that the chart cells above
row x in the corresponding column or diagonal
do not contain any constituents, which means that
the column and diagonal can be pruned from row
x upward. Therefore, it is also the probability of a
level tag with value x.

The probability of a level tag having value x
increases as x increases from 1 to N . We set a
probability threshold Q and choose the smallest
level tag value x with probability P (tl = x) ≥ Q
as the level tag for a word. If P (tl = N) < Q, we
set the level tag to 0 and do not prune the column
or diagonal. The threshold value determines a bal-
ance between pruning power and accuracy, with a
higher value pruning more cells but increasing the
risk of incorrectly pruning a cell. During devel-
opment we arrived at a threshold value of 0.8 as
providing a suitable compromise between pruning
power and accuracy.

Table 6 shows accuracy and speed results for
the level tagger, using a threshold value of 0.8.

Model Speed F-score
baseline 36.64 84.23
binary gold 49.59 84.36
binary self 40K 48.79 83.64
binary self 200K 51.51 83.71
binary self 1M 47.78 83.75
level gold 58.23 84.12
level self 40K 54.76 83.83
level self 200K 48.57 83.39
level self 1M 52.54 83.71

Table 7: Accuracy tests on Wiki 300 comparing
gold training (gold) with self training (self) for
different sizes of parser output for self-training.

We compare the effect of the binary tagger and
level taggers with N = 2 and N = 4. The accu-
racies with the level taggers are higher than those
with the binary tagger; they are also higher than
the baseline parsing accuracy. The parser achieves
the highest speed and accuracy when pruned with
the N = 4 level tagger. Comparing the oracle
scores, the level taggers lead to higher speeds than
the binary tagger, reflecting the increased pruning
power of the level taggers compared with the bi-
nary taggers.

5.2.1 Final experiments using gold training
and self training

In this section we report our final tests using
Wikipedia data. We used two methods to derive
training data for the taggers. The first is the stan-
dard method, which is to transform gold-standard
parse trees into begin and end tag sequences. This
method is the method that we used for all previ-
ous experiments, and we call it “gold training”.
In addition to gold training, we also investigate
an alternative method, which is to obtain training
data for the taggers from the output of the parser
itself, in a form of self-training (McClosky et al.,
2006). The intuition is that the tagger will learn
what constituents a trained parser will eventually
choose, and as long as the constituents favoured
by the parsing model are not pruned, no reduction
in accuracy can occur. There is the potential for
an increase in speed, however, due to the pruning
effect.

For gold training, we used sections 02-21 of

1477



Model Speed
baseline 47.6
binary gold 80.8
binary 40K 75.5
binary 200K 77.4
binary 1M 78.6
level gold 93.7
level 40K 92.8
level 200K 92.5
level 1M 96.6

Table 8: Speed tests with gold and self-training on
Wiki 2500.

CCGBank (which consists of about 40K training
sentences) to derive training data. For self train-
ing, we trained the parser on sections 02-21 of
CCGBank, and used the parser to parse 40 thou-
sand, 200 thousand and 1 million sentences from
Wikipedia, respectively. Then we derive three sets
of self training data from the three sets of parser
outputs. We then used our Wiki 300 set to test the
accuracy, and the Wiki 2500 set to test the speed
of the parser.

The results are shown in Tables 7 and 8, where
each row represents a training data set. Rows “bi-
nary gold” and “level gold” represent binary and
level taggers trained using gold training. Rows
“binary self X” and “level self X” represent bi-
nary and level taggers trained using self training,
with the size of the training data being X sen-
tences.

It can be seen from the Tables that the accuracy
loss with self-trained binary or level taggers was
not large (in the worst case, the accuracy dropped
from 84.23% to 83.39%), while the speed was
significantly improved. Using binary taggers, the
largest speed improvement was from 47.6 sen-
tences per second to 80.8 sentences per second
(a 69.7% relative increase). Using level taggers,
the largest speed improvement was from 47.6 sen-
tences per second to 96.6 sentences per second (a
103% relative increase).

A potential advantage of self-training is the
availability of large amounts of training data.
However, our results are somewhat negative in
this regard, in that we find training the tagger on
more than 40,000 parsed sentences (the size of

CCGbank) did not improve the self-training re-
sults. We did see the usual speed improvements
from using the self-trained taggers, however, over
the baseline parser with no pruning.

6 Conclusion

Using our novel method of level tagging for prun-
ing complete cells in a CKY chart, the CCG parser
was able to process almost 100 Wikipedia sen-
tences per second, using both CCGbank and the
output of the parser to train the taggers, with little
or no loss in accuracy. This was a 103% increase
over the baseline with no pruning.

We also demonstrated that standard beam
search is highly effective in increasing the speed
of the CCG parser, despite the fact that the su-
pertagger has already had a significant pruning
effect. In future work we plan to investigate the
gains that can be achieved from combining the
two pruning methods, as well as other pruning
methods such as the self-training technique de-
scribed in Kummerfeld et al. (2010) which re-
duces the number of lexical categories assigned
by the supertagger (leading to a speed increase).
Since these methods are largely orthogonal, we
expect to achieve further gains, leading to a re-
markably fast wide-coverage parser outputting
complex linguistic representations.

Acknowledgements

This work was largely carried out at the Johns
Hopkins University Summer Workshop and (par-
tially) supported by National Science Founda-
tion Grant Number IIS-0833652. Yue Zhang and
Stephen Clark are supported by the European
Union Seventh Framework Programme (FP7-ICT-
2009-4) under grant agreement no. 247762.

References
Bangalore, Srinivas and Aravind Joshi. 1999. Su-

pertagging: An approach to almost parsing. Com-
putational Linguistics, 25(2):237–265.

Bos, Johan, Stephen Clark, Mark Steedman, James R.
Curran, and Julia Hockenmaier. 2004. Wide-
coverage semantic representations from a CCG
parser. In Proceedings of COLING-04, pages 1240–
1246, Geneva, Switzerland.

1478



Briscoe, Ted and John Carroll. 2006. Evaluating
the accuracy of an unlexicalized statistical parser on
the PARC DepBank. In Proceedings of the Poster
Session of COLING/ACL-06, pages 41–48, Sydney,
Australia.

Carroll, John, Ted Briscoe, and Antonio Sanfilippo.
1998. Parser evaluation: a survey and a new pro-
posal. In Proceedings of the 1st LREC Conference,
pages 447–454, Granada, Spain.

Charniak, Eugene and Mark Johnson. 2005. Coarse-
to-fine N-best parsing and maxent discriminative
reranking. In Proceedings of the 43rd Meeting of
the ACL, pages 173–180, Michigan, Ann Arbor.

Charniak, Eugene. 2000. A maximum-entropy-
inspired parser. In Proceedings of the 1st Meeting
of the NAACL, pages 132–139, Seattle, WA.

Clark, Stephen and James R. Curran. 2004. The im-
portance of supertagging for wide-coverage CCG
parsing. In Proceedings of COLING-04, pages 282–
288, Geneva, Switzerland.

Clark, Stephen and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG
and log-linear models. Computational Linguistics,
33(4):493–552.

Collins, Michael. 1999. Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Curran, James R. and Stephen Clark. 2003. Inves-
tigating GIS and smoothing for maximum entropy
taggers. In Proceedings of the 10th Meeting of the
EACL, pages 91–98, Budapest, Hungary.

Curran, James R. 2004. From Distributional to Se-
mantic Similarity. Ph.D. thesis, University of Edin-
burgh.

Djordjevic, Bojan, James R. Curran, and Stephen
Clark. 2007. Improving the efficiency of a wide-
coverage CCG parser. In Proceedings of IWPT-07,
pages 39–47, Prague, Czech Republic.

Hockenmaier, Julia and Mark Steedman. 2007. CCG-
bank: a corpus of CCG derivations and dependency
structures extracted from the Penn Treebank. Com-
putational Linguistics, 33(3):355–396.

Jurafsky, Daniel and James H. Martin. 2000. Speech
and Language Processing: An Introduction to Nat-
ural Language Processing, Computational Linguis-
tics and Speech Recognition. Prentice Hall, New
Jersey.

Kaplan, Ron, Stefan Riezler, Tracy H. King, John
T. Maxwell III, Alexander Vasserman, and Richard
Crouch. 2004. Speed and accuracy in shallow and

deep stochastic parsing. In Proceedings of HLT-
NAACL’04, Boston, MA.

Kummerfeld, Jonathan K., Jessika Roesner, Tim
Dawborn, James Haggerty, James R. Curran, and
Stephen Clark. 2010. Faster parsing by supertag-
ger adaptation. In Proceedings of ACL-10, Uppsala,
Sweden.

Lin, Thomas, Oren Etzioni, and James Fogarty. 2009.
Identifying interesting assertions from the web. In
Proceedings of the 18th Conference on Information
and Knowledge Management (CIKM 2009), Hong
Kong.

McClosky, David, Eugene Charniak, and Mark John-
son. 2006. Effective self-training for parsing. In
Proceedings of NAACL-06, pages 152–159, Brook-
lyn, NY.

Ninomiya, Takashi, Yoshimasa Tsuruoka, Yusuke
Miyao, and Jun’ichi Tsujii. 2005. Efficacy of beam
thresholding, unification filtering and hybrid pars-
ing in probabilistic HPSG parsing. In Proceedings
of IWPT-05, pages 103–114, Vancouver, Canada.

Nivre, J. and M. Scholz. 2004. Deterministic depen-
dency parsing of English text. In Proceedings of
COLING-04, pages 64–70, Geneva, Switzerland.

Petrov, Slav and Dan Klein. 2007. Improved infer-
ence for unlexicalized parsing. In Proceedings of
the HLT/NAACL conference, Rochester, NY.

Ratnaparkhi, Adwait. 1996. A maximum entropy
model for part-of-speech tagging. In Proceedings
of EMNLP-96, pages 133–142, Somerset, New Jer-
sey.

Roark, Brian and Kristy Hollingshead. 2009. Lin-
ear complexity context-free parsing pipelines via
chart constraints. In Proceedings of HLT/NAACL-
09, pages 647–655, Boulder, Colorado.

Steedman, Mark. 2000. The Syntactic Process. The
MIT Press, Cambridge, MA.

1479


