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Abstract J (“Ningbo”), indicating that the canonical po-

_ _ sition of this NP is next to the ver (“come”).
Empty categories represent an impor-

tant source of information in syntactic
parses annotated in the generative linguis-
tic tradition, but empty category recovery
has only started to receive serious atten-
tion until very recently, after substantial
progress in statistical parsing. This paper
describes a unified framework in recover-
ing empty categories in the Chinese Tree-
bank. Our results show that given skele-

The empty category effectively localizes the syn-
tactic dependency between the verb and this NP,
making it easier to detect and extract this relation.

Marking the extraction site of a dislocated item
is not the only use of empty categories. For lan-
guages like Chinese, empty categories are also
used to represent dropped pronouns. Chinese is
a pro-drop language (Huang, 1989) and subject
pronouns are routinely dropped. Recovering these

elliptical elements is important to many natural
language applications. When translated into an-
other language, for example, these dropped pro-
nouns may have to be made explicit and replaced
with overt pronouns or noun phrases if the target
language does not allow dropped pronouns.

tal gold standard parses, the empty cate-
gories can be detected with very high ac-
curacy. We report very promising results

for empty category recovery for automatic

parses as well.

1 Introduction Although empty categories have been an inte-

The use of empty categories to represent the sygral part of the syntactic representation of a sen-
tactic structure of a sentence is the hallmark of theence ever since the Penn Treebank was first con-
generative linguistics and they represent an instructed, it is only recently that they are starting
portant source of information in treebanks anncto receive the attention they deserve. Works on
tated in this linguistic tradition. The use of emptyautomatic detection of empty categories started
categories in the annotation of treebanks startdd emerge (Johnson, 2002; Dienes and Dubey,
with the Penn Treebank (Marcus et al., 1993), and003; Campbell, 2004; Gabbard et al., 2006) af-
this practice is continued in the Chinese Treebanier substantial progress has been made in statis-
(CTB) (Xue et al., 2005) and the Arabic Tree-tical syntactic parsing. This progress has been
bank, the Penn series of treebanks. Empty ca&chieved after over a decade of intensive research
egories come in a few different varieties, servon syntactic parsing that has essentially left the
ing different purposes. One use of empty cateempty categories behind (Collins, 1999; Char-
gories is to mark the extraction site of an disloniak, 2000). Empty categories were and still are
cated phrase, thus effectively reconstructing theoutinely pruned out in parser evaluations (Black
canonical structure of a sentence, allowing easst al., 1991). They have been excluded from the
extraction of its predicate-argument structure. Fqoarser development and evaluation cycle not so
example, in Figure 1, the empty categoty*- much because their importance was not under-
1 is coindexed with the dislocated topic NP  stood, but because researchers haven't figured out
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“Ningbo, this is the third time | came here.”

Figure 1: A CTB tree with empty categories

a way to incorporate the empty category detectiotection as a binary classification problem where
in the parsing process. In fact, the detection ofdach word is labeled as either having a empty cat-
empty categories relies heavily on the other comegory before it or not. This makes it possible to
ponents of the syntactic representation, and asuse any standard machine learning technique to
result, empty category recovery is often formusolve this problem. The key is to find the appro-
lated as postprocessing problem after the skeletpfiate set of features. Section 3 describes the fea-
structure of a syntactic parse has been determinddres we use in our experiments. We present our
As work on English has demonstrated, empty caexperimental results in Section 4. There are two
egory detection can be performed with high accuexperimental conditions, one with gold standard
racy given high-quality skeletal syntactic parses aseebank parses (stripped of empty categories) as
input. input and the other with automatic parses. Section

Because Chinese allows dropped pronouns arpddescribes related work and Section 6 conclude
thus has more varieties of empty categories thdH! Paper.
languages like English, it can be argued that the
is added importance in Chinese empty catego
detection. However, to our knowledge, there has

been little work in this area, and the work wejn the CTB, empty categories are marked in a
report here represents the first effort in Chinesgarse tree which represents the hierarchical struc-
empty category detection. Our results are promisyre of a sentence, as illustrated in Figure 1.
ing, but they also show that Chinese empty catrhere are eight types of empty categories anno-
egory detection is a very challenging problemgated in the CTB, and they are listed in Table 1.
mostly because Chinese syntactic parsing is difqmong them, *pro* and *PRO* are used to rep-
ficult and still Iags Significantly behind the StatEresent nominal empty CategorieS, *T* and *NP*
of the art in English parsing. We show that giveryre used to represent traces of dislocated items,
skeletal gold-standard parses (with empty catepp=js used to represent empty relative pronouns
gories pruned out), the empty detection can bg relative clauses, and *RNR* is used to repre-
performed with a fairly high accuracy of almostsent pseudo attachment. The reader is referred to
89%. The performance drops significantly, t@he CTB bracketing manual (Xue and Xia, 2000)
63%, when the output of an automatic parser ifpr detailed descriptions and examples. As can
used. be seen from Table 1, the distribution of these

The rest of the paper is organized as followsempty categories is very uneven, and many of
In Section 2, we formulate the empty category dethese empty categories do not occur very often.

2 Formulating the empty category
detection as atagging problem
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EC Type| count Description empty category. What we have gained is a sim-
*pro* 2024 small pro ple unified representation for all empty categories

*PRO* | 2856 big pro that lend itself naturally to machine learning ap-
*T* 4486 | trace for extraction proaches. Another advantage is that for natural
*RNR* | 217 | right node raising language applications that do not need the full
*OP* 879 operator parse trees but only need the empty categories,
* 132 trace for raising this representation provides an easy-to-use repre-
sentation for those applications. Since this linear-

Table 1: Empty categories in CTB. lized representation is still aligned with its parse

tree, we still have easy access to the full hierar-
As a first step of learning an empty categoryehical structure of this tree from which useful fea-
model, we treat all the empty categories as a uniures can be extracted.
fied type, and for each word in the sentence, w
only try to decide if there is an empty categor

before it. This amounts to an empty category desaving modeled empty category detection as a
tection task, and the objective is to first locate thenachine learning task, feature selection is crucial
empty categories without attempting to determingy successfully finding a solution to this problem.
the specific empty category type. Instead of prefhe machine learning algorithm scans the words
dicting the locations of the empty categories in @& a sentence from left to right one by one and
parse tree and having a separate classifier for eagétermine if there is an empty category before it.
syntactic construction where an empty category i/hen the sentence is paired with its parse tree,
likely to occur, we adopt a linear view of the parsehe feature space is all the surrounding words of
tree and treat empty categories, along with ovethe target word as well as the syntactic parse for
word tokens, as leaves in the tree. This allows uge sentence. The machine learning algorithm also
to identify the location of the empty categories imhas access to the empty category labels (EC or
relation to overt word tokens in the same sentenc®EC) of all the words before the current word.
as illustrated in Example (1): Figure 2 illustrates the feature space for the last

1) T B 2 B= kK AT . word (a period) in the sentence.

Features

In this representation, the position of the empt

IP
category can be defined either in relation to th /
revious or the next word, or both. To make
pre ) _ . NP NPT VP o
this even more amenable to machine learning a| N
proaches, we further reformulate the problem as QP VP

tagging problem so that each overt word is labele CLP
either with EC, indicating there is an empty cate
gory before this word, or NEC, indicating thereis NR PN VC OD M vV PU

no empty category. This reformulated represent: = # =2 %= * 5k o

tion is illustrated in Example (2): NEC NEC NEC NEC NEC NEC EC

(2) T IHINEC FINEC s&/NEC % =/NEC Ningbo | be third time come
{RINECHK/NEC - /EC "Ningbo, this is the third time | came here."

In (2), the EC label attached to the final perioa
indicates that there is an empty category beforgiq re 2: Feature space of empty category detec-
this punctuation mark. There is a small price tg;,,
pay with this representation: when there is more
than one empty category before a word, itis indis- For purposes of presentation, we divide our
tinguishable from cases where there is only onfeatures into lexical and syntactic features. The
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lexical features are different combinations of the

words and their parts of speech (POS), while syn-

tactic features are the structural information gath-

ered from the nonterminal phrasal labels and their

syntactic relations.

3.1 Lexical features
The lexical features are collected from a narrow

window of five words and their POS tags. If the
target word is a verb, the lexical features also in-

clude transitivity information of this verb, which
is gathered from the CTB. A transitivity lexicon is

Feature Names| Description

word(0) Current word

word(-1) Previous word

pos(0) POS of current word

pos(-1,0) POS of previous and cuf
rent word

pos(0, 1) POS of current and nex
word

pos(0, 1, 2) POS of current & next
word, & word 2 after

pos(-2, -1) POS of previous word &

word 2 before

induced from the CTB by checking whether a verb
has a right NP or IP sibling. Each time a verb is

word(-1), pos(0)

Previous word & POS o
current word

used as a transitive verb (having a right NP or IP
sibling), its transitive count is incremented by one.

pos(-1),word(0)

POS of previous word&
current word

Conversely, each time a verb is used as an intranf
sitive verb (not having a right NP or IP sibling), its

intransitive use is incremented by one. The result-
ing transitivity lexicon after running through the

trans(0) current word is transitive
or intransitive verb
prep(0) true if POS of current

word is a preposition

entire Chinese Treebank consists of a list of verb
with frequencies of their transitive and intransitive
uses. A verb is considered to be transitive if its in-
transitive count in this lexicon is zero or if its tran-

Table 2: Feature set.

sitive use is more than three times as frequent asp  14-word-in-subjectless-1P; True if the cur-

its intransitive use. Similarly, a verb is considered
to be intransitive if its transitive count is zero or

if its intransitive use is at least three times as fre-
guent as its transitive use. The full list of lexical

features is presented in Table 2.

3.2 Syntactic features
Syntactic features are gathered from the CTB

parses stripped of function tags and empty cate- 4

gories when the gold standard trees are used as
input. The automatic parses used as input to our

system are produced by the Berkeley parser. Likeg

most parsers, the Berkeley parser does not repro-
duce the function tags and empty categories in the

original trees in the CTB. Syntactic features cap- g

ture the syntactic context of the target word, and

as we shall show in Section 4, the syntactic fea- 7

tures are crucial to the success of empty category
detection. The list of syntactic features we use in
our system include:

1. 1st-1P-child: True if the current word is the
first word in the lowest IP dominating this
word.
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8.

rent word starts an IP with no subject. Sub-
jectis detected heuristically by looking at left

sisters of a VP node. Figure 3 illustrates this
feature for the first word in a sentence where
the subject is a dropped pronoun.

. 1st-word-in-subjectless- | P+POS: POS of

the current word if it starts an IP with no sub-
ject.

1st-VP-child-after-PU: True if the current
word is the first terminal child of a VP fol-
lowing a punctuation mark.

NT-in-1P: True if POS of current word is NT,
and it heads an NP that does not have a sub-
ject NP as its right sister.

ver b-in-NP/VP: True if the current word is a
verb in an NP/VP.

parent-label: Phrasal label of the parent of
the current node, with the current node al-
ways corresponding to a terminal node in the
parse tree.

has-no-object: True If the previous word is
a transitive verb and this verb does not take
an object.



P 4.2 Experimental conditions

Two different kinds of data sets were used in the

\

VP
/ ‘ \ evaluation of our method: 1) gold standard parse
v trees from the CTB; and 2) automatic parses pro-

PP ADVP ADVP
/\ N\ duced by the Berkeley parser
P LCP v QP
s 7N\ 4.2.1 Gold standard parses
NT LC AD AD CD M
s R & it wh —E—tx % There are two experimental conditions. In our
NEC NEC NEC NEC NEC  NEC  NEC first experiment, we use the gold standard parse
by lastyear end  dlready accumulatively approve 216 M trees from the CTB as input to our classifier. The

By the end of last year, (Shanghai) has approved 216 ...

version of the parse tree that we use as input to
our classifier is stripped of the empty category
Figure 3: First word in a subject-less IP information. What our system effectively does
is to restore the empty categories given a skele-
. . tal syntactic parse. The purpose of this experi-
Empty categories generally occur in clausal or . : .
. ment is to establish a topline and see how accu-
phrasal boundaries, and most of the features are . .
: . ) rately the empty categories can be restored given
designed to capture such information. For exam: .o oot parse
ple, the five feature typedst-1P-child, 1st-word- '
in-subjectless-IP, 1st-word-in-subjectless-IP, 1st- 422  Automatic parses
VP-child-after-PU and NT-in-IP all represent the . - .
. To be used in realistic scenarios, the parse trees
left edge of a clause (IP) with some level ofgran-n d 1o be produced automaticallv from raw text
ularity. parent label andverb-in-NP/VP represent eed 1o be produced automatically from raw te

phrases within which empty categories typicallyusmg an automatic parser. In our experiments we

occur do not occur. Thhas-no-object feature is use the Berkeley Parser as a representative of the

. i state-of-the-art automatic parsers. The input to the
intended to capture transitive uses of a verb whe .

R erkeley parser is words that have already been
the object is missing.

segmented in the CTB. Obviously, to achieve fully
4 Experiments automatic parsing, the raw text should be auto-

matically segmented as well. The Berkeley parser
Given that our approach is independent of specificomes with a fully trained model, and to make
machine learning techniques, many standard maure that none of our test and development data is
chine learning algorithms can be applied to thishcluded in the training data in the original model,
task. For our experiment we built a Maximum En-we retrained the parser with our training set and

tropy classifier with the Mallet toolkit used the resulting model to parse the documents
in the development and test sets.
41 Data When training our empty category model using

In our experiments, we use a subset of the CTBUtomatic parses, it is important that the quality
6.0. This subset is further divided into train-Of the parses match between the training and test
ing (files chth0081 thorough chtif§900), devel- Sets. So the automatic parses in the training set
opment (files chttD041 through chtf)080) and are acquired by first training the parser with 4/5
test sets (files chtB001 through chtt9040, files Of the data and using the resulting model to parse
chtb.0901 through chttP931). The reason for not the remaining 1/5 of the data that has been held
using the entire Chinese Treebank is that the daflt. Measured by the ParsEval metric (Black et
in the CTB is from a variety of different sourcesal-» 1991), the parser accuracy stands at 80.3% (F-
and the automatic parsing accuracy is very unevei¢ore), with a precision of 81.8% and a recall of
across these different sources. 78.8% (recall).

http://mallet.cs.umass.edu 2http://code.google.com/p/berkeleyparser
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4.3 Evaluation metrics word immediately following a transitive verb if it

We use precision, recall and F-measure as of°€s not have an NP or IP object. Since the miss-

evaluation metrics for empty category detectionNd Subjects and objects account for most of the

Precision is defined as the number of correctlfMPY categories in Chinese, this baseline covers

identified Empty Categories (ECs) divided by thdnost of the empty categories. The baseline results

total number of ECs that our system producec®® &/S0 presented in Table 3 (in brackets). The
Recall is defined as the number of correctly iden@@Seline results using the gold standard trees are

tified ECs divided by the total number of EC la-/2-3% (precision), 70.5% (recall), and 72.8% (F-
bels in the CTB gold standard data. F-measurscore). Using the automatic parses, the results are

is defined as the geometric mean of precision arl/-9% (precision), 50.2% (recall), and 53.8% (F-
recall. score) respectively. It is clear from our results that

our machine learning model beats the rule-based
baseline by a comfortable margin in both exper-
imental conditions. Table 4 breaks down our re-
sults by empty category types. Notice that we did
(2) not attempt to predict the specific empty category
type. This only shows the percentage of empty
o 2 3) categories our model is able to recover (recall) for
1/R+1/P each type. As our model does not predict the spe-
cific empty category type, only whether there is an
empty category before a particular word, we can-
We report our best result for the gold standaréhot compute the precision for each empty category
trees and the automatic parses produced by thge. Nevertheless, this breakdown gives us a
Berkeley parser in Table 3. These results argense of which empty category is easier to recover.
achieved by using all lexical and syntactic featuresor both experimenta| conditions, the empty cate-
presented in Section 3. gory that can be recovered with the highest accu-
racy is*PRO*, an empty category often used in
Data | Prec.(%) | Rec.(%) F(%) subject/object control constructiortpro* seems
Gold | 95.9 (75.3)| 83.0 (70.5)| 89.0 (72.8)| {4 pe the category that is most affected by parsing
Auto | 80.3 (57.9)| 52.1 (50.2)| 63.2 (53.8)]  accuracy. It has the widest gap between the two
experimental conditions, at more than 50%.

_ #of correctly detected EC
~ #of EC tagged in corpus

(1)

_ #of correctly detected EC
~ # of EC reported by the system

4.4 Overall EC detection performance

Table 3: Best results on the gold tree.

EC Type| Total | Correct | Recall(%)
*pro* 290 | 274/125| 94.5/43.1
*PRO* | 299 | 298/196| 99.7/65.6
*T* 578 | 466/338| 80.6/58.5
*RNR* 32 22/20 | 68.8/62.5
*OP* 134 | 53/20 | 40.0/14.9
* 19 9/5 47.4/26.3

As shown in Table 3, our feature set works
well for the gold standard trees. Not surprisingly,
the accuracy when using the automatic parses is
lower, with the performance gap between using
the gold standard trees and the Berkeley parser
at 25.8% (F-score). When the automatic parser
is used, although the precision is 80.3%, the re-
call is only 52.1%. As there is no similar work in Tapje 4: Results of different types of empty cate-
Chinese empty category detection using the SamBries.
data set, for comparison purposes we established
a baseline using a rule-based approach. The rule- _
based algorithm captures two most frequent locd:® Comparison of feature types
tions of empty categories: the subject and the olFo investigate the relative importance of lexical
ject positions. Our algorithm labels the first wordand syntactic features, we experimented with us-
within a VP with EC if the VP does not have aing just the lexical or syntactic features under
subject NP. Similarly, it assigns the EC label to thdoth experimental conditions. The results are pre-
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sented in Table 5. Our results show that whenFeature Name | Prec.(%)| Rec.(%)| F(%)
using only the lexical features, the drop in accu- all 80.3 52.1 | 63.2
racy is small when automatic parses are used |rilst-IP-child 79.8 49.2 | 60.8
place of gold standard trees. However, when us-1st-VP-child- 79.7 50.5 61.8
ing only the syntactic features, the drop in accy- after-PU
racy is much more dramatic. In both experimental NT-in-IP 79.4 50.8 | 61.9
conditions, however, syntactic features are morelst-word-in- 79.5 51.1 62.2
effective than the lexical features, indicating the subjectless-
crucial importance of high-quality parses to suc- IP+Pos
cessful empty category detection. This makes in-has-no-object 80.0 51.1 62.4
tuitive sense, given that all empty categories o¢-1st-word-in- 79.4 51.5 62.5
cupy clausal and phrasal boundaries that can onlgubjectless-IP
defined in syntactic terms. verb-in-NP/VP 79.9 52.0 63.0
parent-label 79.4 52.4 63.1
Data | Prec.(%)| Rec.(%) | F(%) only lexical 773 39.9 | 52.7
Lexical | 79.7/77.3| 47.6/39.9| 59.6/52.7
Syntactic| 95.9/78.0| 70.0/44.5| 81.0/56.7| Table 6: Performance for individual syntactic fea-

. _ _ tures with automatic parses.
Table 5: Comparison of lexical and syntactic fea-

tures.

detection and resolution. Zero anaphora resolu-
tion has been studied as a computational prob-
lem for many different languages. For example,

Given the importance of syntactic features, wererrandez and Peral, 2000) describes an algo-
conducted an experiment trying to evaluate thfithm for detecting and resolving zero pronouns

impact of each individual syntactic feature on then Spanish texts. (Seki et al., 2002) and (Lida et

overall empty category detection performance. 1g|., 2007) reported work on zero pronoun detec-

this experiment, we kept the lexical feature Sefion and resolution in Japanese.

constant, and switched off the syntactic features Zero anaphora detection and resolution for

one at a time. The performance of the diﬁeren&hinese has been studied as well.

. . . Converse
syntactic features is shown in Table 6. The re 2006) studied Chinese pronominal anaphora res-
sults here assume that automatic parses are us

tion, including zero anaphora resolution, al-

Tbhehflrst row 1S thdelre_sul;[ thlfls'nﬁ alll featuresy, . gh there is no attempt to automatically de-
(both syntactic and lexical) while the last row is Her work only

h it of usi v the lexical f Itect the zero anaphors in text.
the result of using only the lexical features. tdeals with anaphora resolution, assuming the zero

can be seen that syntactic features contribute moé?‘\aphors have already been detected. Chinese
0 :

than 10% to the overall accurac_y. The results als?ero anaphora identification and resolution have

show that features (e.dlst-IP-child) that capture been studied in a machine learning framework-

clause boundary information tend to be more diq-ng in (Zhao and Ng, 2007) and (Peng and Araki
criminative and they occupy the first few rows of2007) ' '

a table that sorted based on feature performance. .
The present work studies empty category re-

covery as part of the effort to fully parse natural

language text and as such our work is not lim-
The problem of empty category detection has bedted to just recovering zero anaphors. We are
studied both in the context of reference resolutiomalso interested in other types of empty categories
and syntactic parsing. In the reference resolutiosuch as traces. Our work is thus more closely re-
literature, empty category detection manifests ittated to the work of (Johnson, 2002), (Dienes and
self in the form of zero anaphora (or zero pronounpubey, 2003), (Campbell, 2004) and (Gabbard et

4.6 Comparison of individual features

5 Reated work
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al., 2006). they have different classifiers for different types of
Johnson (2002) describes a pattern-matchingmpty categories.

algorithm for recovering empty nodes from phrase Although generally higher accuracies are re-
structure trees. The idea was to extract minimaorted in works on English empty category re-
connected tree fragments that contain an empbvery, cross-linguistic comparison is difficult be-
node and its antecedent(s), and to match the egause both the types of empty categories and
tracted fragments against an input tree. He evathe linguistic cues that are accessible to machine
uated his approach both on Penn Treebank goldarning algorithms are different. For example,
standard trees stripped of the empty categories afitkre are no empty complementizers annotated in
on the output of the Charniak parser (Charniakhe CTB while English does not allow dropped
2000). pronouns.
(Dienes and Dubey, 2003) describes an empty
detection method that is similar to ours in that it6 .
. . Conclusion and future work
treats empty detection as a tagging problem. The
difference is that the tagging is done without ac- . .
. . .. We describe a unified framework to recover empty
cess to any syntactic information so that the iden- . . .
e . . . categories for Chinese given skeletal parse trees as
tified empty categories along with word tokens in_ ut. In this framework. empty detection is for-
the sentence can then be fed into a parser. The sygput. ' Pty

cess of this approach depends on strong local cu@smated as a tagging problem where each word

such as infinitive markers and participles, whic In the sentence receives a tag indicating whether

are non-existent in Chinese. Not surprisingly, ourhere is an empty category before it. This ad-

, . . vantage of this approach is that it is amenable to
model yields low accuracy if only lexical features .
are used. learning-based approaches and can be addressed

: with a variety of machine learning algorithms.
Cambell (2004) proposes an algorithm that US€Sur results based on a Maximum Entropy model

linguistic principles in empty category FECOVETY.show that given skeletal gold standard parses,
He argues that a rule-based approach might per- . : :
. . ' empty categories can be recovered with very high

form well for this problem because the locations .
. . . .accuracy (close to 90%). We also report promis-

of the empty categories, at least in English, are in-

2 T Ting results (over 63%). when automatic parses
serted by annotators who follow explicit linguistic : )
principles produced by an off-the-shelf parser is used as in-

ut.
Yuqing(2007) extends (Cabhill et al., 2004) ’sp , . v the f
approach for recovering English non-local depen- Detecting empty categories is only the first step

dencies and applies it to Chinese. This paper prJ)QWarOIS fully reproducing the syntactic represen-

poses a method based on the Lexical-Functiondtion In the CTB, and the obV|ou§ ne_xt ste_p Is to
also classify these empty categories into different

Grammar f-structures, which differs from our ap- ) .
proach. Based on parser output trees includin pes and wherever applicable, link the empty cat-
gories to their antecedent. This is the line of re-

610 files from the CTB, the authors of this pa- ) .
per claimed they have achieved 64.71% f-score fosrearch we intend to pursue in our future work.
trace insertion and 54.71% for antecedent recov-
ery. Acknowledgment

(Gabbard et al., 2006) describes a more recent
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