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Abstract

In this paper we present a novel phrase 
structure parsing approach with the help 
of dependency structure. Different with 
existing phrase parsers, in our approach 
the inference procedure is guided by 
dependency structure, which makes the 
parsing procedure flexibly.  The 
experimental results show our approach is 
much more accurate. With the help of 
golden dependency trees, F1 score of our 
parser achieves 96.08% on Penn English 
Treebank and 90.61% on Penn Chinese 
Treebank. With the help of N-best 
dependency trees generated by modified 
MSTParser, F1 score achieves 90.54% 
for English and 83.93% for Chinese. 

1 Introduction 

Over the past few years, several high-precision 
phrase parsers have been presented, and most of 
them are employing probabilistic context-free 
grammar (PCFG). As we all know, the basic 
PCFG has the problems that the independence 
assumption is too strong and lacks of lexical 
conditioning (Jurafsky and Martin, 2007). 
Although researchers have proposed various 
models and inference algorithms aiming to solve 
these problems, the performance of existing 
phrase parsers is still remained to further 
improve. Most of the existing approaches can be 
classified into two categories: unlexicalized 
PCFG based (Johnson, 1998; Klein and 
Manning, 2003; Levy and Manning, 2003; 
Matsuzaki et al., 2005; Petrov et al., 2006) and 
lexicalized PCFG based (Collins, 1999a; 
Charniak, 1997; Bikel, 2004; Charniak and 
Johnson, 2005). 

Unlexicalized PCFG based approach attempts 
to weaken the independence assumption by 
annotating non-terminal symbols with labels of 

ancestor, siblings and even the latent annotations 
encoded by local information. In lexicalized 
PCFG based approach, researchers believe that 
the forms of a constituent and its sub-
constituents are determined more by the 
constituent’s head than any other of its lexical 
items (Charniak, 1997), so they annotate non-
terminal symbols with the head words 
information. 

Both of the two PCFG based approaches have 
improved the basic PCFG based parsers 
significantly. However, neither of them has been 
guided by enough linguistic priori knowledge. 
Their parsing procedures are too mechanical. 
Because of this, the efficiency is always worse, 
and much more artificial ambiguities, which are 
different from linguistic ambiguities (Krotov et 
al., 1998; Johnson, 1998), are generated. We 
believe parsing procedure guided by more 
linguistic priori knowledge will help to 
overcome the drawbacks in some extent. From 
our intuition, dependency structure, another type 
of syntactic structure with much linguistic 
knowledge, will be a good candidate to guide 
phrase parsing procedure.  

In this paper we present a novel approach to 
using dependency structure to guide phrase 
parsing. This novel approach has its virtues from 
multiple angles. First, dependency structure 
offers a good compromise between the 
conflicting demands of analysis depth, which 
makes it much easier to get through hand 
annotating than phrase structure (Nivre, 2004). 
So, when we want to build a phrase structure 
corpus, we can build a dependency structure 
corpus first, and get the corresponding phrase 
structure automatically with the help of 
dependency structure. Second, many parsing 
algorithms with linear-time complexity used in 
dependency parsers can still achieve the state-
of-the-art results (Johansson, 2007), but almost 
all phrase parsers with high-precision have no 
efficient algorithms superior to cubic-time 
complexity. So, in order to get an efficient 
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parser, we can first get a dependency structure 
through linear-time algorithm, and then obtain 
the phrase structure with the help of dependency 
structure more efficiently. Third, the lexicalized 
PCFG based parsers which just bring the head 
words into account have got a highly improved 
performance. It gives us reasons to believe 
dependency structure which takes the 
relationship of all the words will bring phrase 
parser a great help. 

Remainder of this paper is organized as 
follows: Section 2 introduces the related work. 
Section 3 gives a consistency between 
dependency structure and phrase structure, and 
presents an approach to parsing phrase structure 
with dependency structure. In Section 4, we 
discuss the experiments and analysis. Finally, 
we conclude this paper and point out some 
future work in Section 5. 

2 Related work 

Unlexicalized PCFG based parsers (Johnson, 
1998; Klein and Manning, 2003; Levy and 
Manning, 2003; Matsuzaki et al., 2005; Petrov 
et al., 2006) are the most successful parsing 
tools. They regard parsing as a pure machine 
learning question. However, they haven’t taken 
any extra linguistic priori knowledge directly 
into account. Lexicalized PCFG based parsers 
(Collins, 1999a; Charniak, 1997; Bikel, 2004; 
Charniak and Johnson, 2005) just bring a little 
linguistic priori knowledge (head word 
information) into learning phase. In inference 
phase, both of the unlexicalized PCFG based 
approach and lexicalized PCFG based approach 
are using the pure searching algorithms, which 
try to parse a sentence monotonously, either 
from left to right or from right to left. From 
these states, we can find that manners of current 
parsers are too mechanical. Because of this, the 
efficiency of phrase parsers is always worse, and 
much more artificial ambiguities are generated. 

There have been some work (Collins et al., 
1999b; Xia and Palmer, 2001) about converting 
dependency structures to phrase structures. 
Collins et al. (1999b) proposed an algorithm to 
convert the Czech dependency Treebank into a 
phrase structure Treebank and do dependency 
parsing through Collins (1999a)’s model. 
Results showed the accuracy of dependency 
parsing for Czech was improved largely. Xia 

and Palmer (2001) proposed a more generalized 
algorithm according to X-bar theory and Collins 
et al. (1999b), and they did some experiments on 
Penn Treebank. The results showed their 
algorithm produced phrase structures that were 
very close to the ones in Penn Treebank. 
However, we have to point out that they only 
computed the unlabeled performance but lost all 
the exact syntactic symbols. Different from tree-
transformed PCFG based approach and 
lexicalized PCFG based approach, both of 
Collins et al. (1999b) and Xia and Palmer (2001) 
attempted to build some heuristic rules through 
linguistic theory, but didn’t try to learn anything 
from Treebank. 

Li and Zong (2005) presented a hierarchical 
parsing algorithm for long complex Chinese 
sentences with the help of punctuations. They 
first divided a long sentence into short ones 
according to punctuation marks, then parsed the 
short ones into sub-trees individually, and at last 
combined all the sub-trees into a whole tree. 
Experimental results showed the parsing time 
was reduced largely, and performance was 
improved too. Although the procedure of their 
parser is more close to human beings’ manner, it 
appears a little shallow just using the 
punctuation marks. 

In this paper our motivations are to bring 
more linguistic priori knowledge into phrase 
parsing procedure with the help of dependency 
structure, and make the parsing procedure 
flexibly. 

Matsuzaki et al. (2005) defined a generative 
model called PCFG with latent annotations 
(PCFG-LA). Using EM-algorithm each non-
terminal symbols was annotated with a latent 
variable, and a fine-grained model can be got.  
In order to get a more compact PCFG-LA model, 
Petrov et al. (2006) presented a split-and-merge 
method which can get PCFG-LA model 
hierarchically, and their final result 
outperformed state-of-the-art phrase parsers. To 
make the parsing process of hierarchical PCFG-
LA model more efficient, Petrov and Klein 
(2007) presented a coarse-to-fine inference 
algorithm. In Section 4 of this paper, we try to 
combine the hierarchical PCFG-LA model in 
learning phase and coarse-to-fine method in 
inference phase into our parser in order to get an 
accurate and efficient parser. 
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3 Our framework 

In this section, we first compare phrase structure 
with dependency structure of the same sentence, 
and get a consistent relationship among them. 
Then, based on this relationship, we present an 
inference framework to make the parsing 
procedure flexible and more efficient.  

3.1 Analysis on consistency between phrase 
structure and dependency structure 

Phrase structure and dependency structure are 
two different ways to represent syntactic 
structures of sentences. Phrase structure 
represents sentences by nesting of multi-word 
constituents, while dependency structure 
represents sentences as trees, whose nodes are 
words and edges represent the relations among 
words.

As we know, there are two kinds of 
dependency structures, projective structure and 
non-projective structure. For free-word order 
languages, non-projectivity is a common 
phenomenon, e.g. Czech. For languages like 
English and Chinese, the dependency structures 
are often projective trees. In this paper, we only 
consider English parsing based on Penn 
Treebank (PTB) and Chinese parsing based on 
Penn Chinese Treebank (PCTB), so we just 
research the consistency between phrase 
structure and projective dependency structure 
through PTB/PCTB.  

Information carried by the two structures isn’t 
equal. Phrase structure is more flexible, carries 
more information, and even contains all the 
information of dependency structure. So the task 
to convert a phrase structure to dependency 
structure is more straight, e.g. Nivre and Scholz 
(2004), Johansson and Nugues (2007). However, 
the reverse procedure is much more difficult, 
because dependency structure lacks the syntactic 
symbols, which are indispensable in phrase 
structure.

join

Vinken will board as 29

the director Nov

a nonexecutive

(a) Dependency structure
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(2)

(3)
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Figure 1. The consistency between phrase 
structure and dependency structure 

Although the two structures are completely 
different, they have consistency in some deep 
level. In this paper we analyze the consistency 
from a practical perspective in order to do 
phrase parsing with the help of dependency 
structure. Having investigated the two kinds of 
trees with dependency structure and phrase 
structure, we find a consistency1 that each sub-
tree in dependency structure must correspond to 
a sub-tree in phrase structure who dominates all 
the words appearing in dependency sub-tree. 
Figure 1 shows this relationship more intuitively. 
The dependency sub-tree surrounded by circle 
(1) in Figure 1(a) is a one-layer sub-tree, and has 
a corresponding phrase sub-tree surrounded by 
circle (1) in Figure 1(b). Both of the two sub-
trees dominate the same word “Vinken”. This 
consistency is also satisfied in other cases, e.g. 
two-layer sub-tree surrounded by circle (3) and 
three-layer sub-tree surrounded by circle (2) in 
Figure 1(a). These dependency sub-trees 
respectively have their corresponding phrase 
sub-trees dominating the same words in Figure 
1(b).

This consistency brings us inspiration to make 
use of dependency structure for phrase parsing. 
In other words, in our method when a phrase 
sub-tree is generated from a dependency sub-
tree, it must dominate all the same words with 
ones in the corresponding dependency sub-tree. 

3.2 Inference framework 

1 Be aware that the consistency is irreversible and not every 
phrase sub-tree has its corresponding dependency sub-tree. 
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As we mentioned in Section 2, most of current 
inference algorithms are monotonous, which 
generate much more artificial ambiguities. For 
example, in Figure 1, if a sub-tree only 
dominating “board” and “as” is built (actually it 
is not occurred in golden tree) an artificial 
ambiguity is generated, and it thus will further 
bring a worse effect to other parts. The final 

precision will certainly descend. However, if we 
are given a corresponding dependency structure, 
those errors will be avoided. The consistency 
analyzed above tells us that there isn’t a sub-tree 
dominating only “board” and “as” in 
dependency tree, so the two words can’t build a 
sub-tree independently in phrase parsing. 
According to this strategy, we design an 
inference framework for phrase parsing. 
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(a) fill cell[i,i] for each word

(b) fill spans guided by two-layer dependency sub-trees
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(c) fill spans guided by three-layer dependency sub-trees

(d) fill spans guided by four-layer dependency sub-trees

Figure 2. Parsing procedure of our 
inference framework guided by 
dependency structure

Our inference framework parses a sentence 
flexibly with a traditional inference algorithm. 
The following terms will help to explain our 
work. A key data structure is cell[i,j], which is 
used to store phrase sub-trees spanning words 
from positions i to j of the input sentence. d[i,j]
is a dependency sub-tree spanning words from 
positions i to j. cells[i,j] is an array to store all 
the cells which can be combined to build 
cell[i,j]. The pseudo-code of our inference 
framework is shown in Algorithm1. The line 
indicated by (1) and (2) gives us freedom to 
select any kinds of inference algorithms and 
matching parsing models. 

Algorithm 1
InferenceFramework(sentence S, dependency tree D)

initialize a List for the input sentence 
for each word wi in S do

fill cell[i, i] and add it to a list L

parse the cells[] hierarchically 
for each d[s, t] of D in topological order do

fill cells[s, t] with spans in L
fill cell[s, t] with cells[s, t] through  

traditional inference algorithm   (1) 
add cell[s, t] to L

extract the best tree 
estimate all trees in cell[0, n]

through parsing model             (2) 
return the best phrase tree

Now, let’s illustrate the flexible parsing 
procedure step by step through an example. 
Please see Figure 2.  For simplicity, we just 
draw sub-trees of the final best tree, and ignore 
all the others. Figure 2(a) shows the procedure 
of filling cell[i,i] for each word. In Figure 2(b), 
there are three two-layer dependency sub-trees 
d[3,4], d[6,8] and d[9,10]. So we try to generate 
phrase sub-trees for cell[3,4], cell[6,8] and 
cell[9,10], which have been annotated with bold 
edges. For example, we use sub-trees contained 
in cell[6,6], cell[7,7] and cell[8,8] to 
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build new sub-trees for cell[6,8]. Figure 2(c) 
and Figure 2(d) show the same procedure for 
parsing with the help of three-layer dependency 
sub-trees and four-layer dependency sub-trees 
individually. The generated phrase sub-trees are 
all annotated with bold edges in the figure. 
Obviously, the biggest dependency sub-tree is 
the whole dependency tree of sentence. In this 
example, when the four-layer dependency sub-
tree is processed, the whole phrase trees are built. 
Usually, more than one phrase trees with the 
similar skeletons are generated. So we use a 
model to evaluate candidate results, and get out 
the one with the highest score as the final result.

Benefiting from the dependency structure, we 

can parse a sentence flexibly. Comparing with 
previous work on converting dependency 
structure to phrase structure (Collins et al., 
1999b; Xia and Palmer, 2001), we make use of 
Treebank knowledge more sufficient with the 
help of traditional parsing technology. The 
search space has been pruned tremendously. As 
we know, the traditional parsing approach often 
tries to search all the n*(n+1)/2  cells for input 
sentence which has n words, but our parsing 
framework search cells intelligently with the 
help of corresponding dependency structure. 
Let’s get a view of this through the sentence 
shown in Figure 2. From the whole parsing 
procedure shown in Figure 2, our framework 
just tries to fill 16 cells, which are cell[i,i] for 
each word, cell[3,4], cell[6,8], cell[9,10],
cell[5,8] and cell[0,10] hierarchically, but 
traditional parsing approach would try to fill all 
66 cells. So 75.76% searching space has been 
pruned.

4 Experiments and results 

In order to evaluate the effectiveness of our 
approach, we have done some experiments both 
for English parsing and Chinese parsing. 

4.1 Preparation

To make comparison with previous work fairly, 
our experiments are based on general Treebank 
according to standard settings. We choose Penn 
English Treebank for English parsing 
experiments and Penn Chinese Treebank for 
Chinese. Table 1 shows the standard settings we 
take.

PU NP NP NP PU

VP PUVP
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PUIPPU PUIP

IP

(b) Golden phrase tree

(c) Parsing result of PCFG model and CYK algorithm

PU NP NP NP PU

VP PUVP
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(d) Parsing result after pruning strategy added

NP

PU NP NP NP PU

VP PUVP

IP

(e) Parsing result of PCFG-LA model

(a) Golden dependency tree

/hold

/ceremony /today /in

/Shanghai/collaborate /project /signing

/America

/China /high

/technology

Figure 4. An example showing 
experimental results

English Chinese
Train Set Sections 2-21 Art. 1-270, 400-1151 
Dev Set Section 22 Articles 301-325 
Test Set Section 23 Articles 271-300 

Table 1. Experimental settings 

Because the two Treebanks are in type of 
phrase structure, we should get dependency 
structures corresponding with them. There are 
two ways to accomplish this work. First, use 
converting tools to get dependency trees directly 
through converting the original Treebanks, and 
the generated trees are always considered as 
golden trees during dependency parsing. Second, 
use a dependency parser with state-of-the-art 
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performance to parse all the sentences 
automatically. In this paper, we design two 
groups of experiments, as following: 
(1) Phrase parsing with the help of golden 

dependency trees. 
(2) Phrase parsing with the help of N-best 

dependency trees generated automatically. 

4.2 Phrase parsing with golden dependency 
trees

In order to verify how much dependency 
structure can help phrase parsing and get an 
upper bound of our approach, we do phrase 
parsing with the help of golden dependency 
trees in this subsection. 

Based on the parsing framework shown in 
Figure 3, we only use the basic PCFG in 
learning phase and our inference framework 
with basic CYK algorithm in inference phase. 
The parsing results are shown with the mark (1) 
in Table 2 for English and Table 3 for Chinese 
respectively. 

Having investigated the generated trees with 
golden trees, we find the consistency of 
dependency structure and phrase structure is 
broken by some trees. Let’s get a view of this 
through an example from Penn Chinese 
Treebank. In Figure 4(a), the dependency sub-
tree surrounded by circle tells us that there must 
be a phrase sub-tree which dominate the word 
sequence of

(the signing ceremony of 
collaborating in high technology between 
America and China), and the golden phrase tree 
shown in Figure 4(b) has a corresponding sub-
tree surrounded by circle indeed. However, the 
parsing tree generated by our approach shown in 
Figure 4(c) doesn’t conform. There are three 
sub-trees dominating the word sequence 
mutually, but they don’t construct a whole one. 
In our opinion, the contradiction derived from 
binarizing process of CYK 2 . The binary trees 
generated by our algorithm have consisted with 
the consistency originally, but after debinarizing 
process the consistency is broken. 

Trying to check our opinion, we add a 
pruning strategy to the original inference 

2 The premise of using CYK is that all the rules must have 
CNF form. So we usually bring some medial nodes to 
binarize rules gathered from Treebank. 

algorithm to prune all the medial nodes which 
may break the consistency during parsing 
procedure. With the help of pruning strategy, the 
performances of English and Chinese are all 
improved further. Corresponding figures are 
shown in Table 2 and Table 3 with the mark (2). 
The parsing result of above example is shown in 
Figure 4(d) and the error appearing in Figure 4(c) 
is corrected naturally after the pruning strategy 
added.

Comparing with previous work which have 
done much work in learning phase, our 
algorithm achieves such amazing results only 
using basic PCFG model. From this aspect, our 
inference framework is much more effective. 
However, there are still some errors our 
approach can’t deal with. For example, in Figure 
4(d) the sub-tree rooted at NP and dominating 
word sequence of  “ ” (hold 
in Shanghai today) is separated by two sub-trees. 
The reason is that the model (basic PCFG) we 
use in learning phase is too coarse to 
disambiguate sufficiently. So we don’t pin all 
hopes in inference phase. We also modify the 
model in learning phase. PCFG-LA is one of the 
most successful models in phrase parsing, so we 
choose PCFG-LA as the model in learning phase. 
After this modification, performance of our 
approach has been improved delightedly. F1 
score is 96.08% for English and 90.06% for 
Chinese. The line marked with (3) in Table 2 
and Table 3 shows more details. 

4.3 Phrase parsing with N-best dependency 
trees generated automatically 

The experimental results shown in subsection 
4.2 bring us confidence that do phrase parsing 
with the help of dependency structure is a highly 
effective approach. However, we don’t usually 
have golden dependency structures, and a more 
acceptable way is using a dependency parser to 
generate dependency trees automatically. In this 
subsection we explore feasibility and 
effectiveness of phrase parsing with the help of 
dependency trees generated automatically. As 
we all know, even state-of-the-art dependency 
parser cannot generate totally correct result. So in 
order to make our system more robust we use N-
best dependency structures to guide phrase 
parsing procedure. 
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length<=40 all sentences 
Precision Recall F1 Precision Recall F1 

(1) Using PCFG and CYK 90.28 88.41 89.34 90.11 88.32 89.21 
(2) Using pruning strategy 90.69 89.53 90.11 90.51 89.45 89.97 
(3) Using PCFG-LA 96.28 95.97 96.13 96.25 95.91 96.08

Table 2. Parsing performance (%) for English with the help of golden dependency tree.  

length<=40 all sentences 
Precision Recall F1 Precision Recall F1 

(1) Using PCFG and CYK 86.89 78.25 82.34 85.56 77.43 81.29 
(2) Using pruning strategy 87.65 82.33 84.91 86.39 81.45 83.85 
(3) Using PCFG-LA 91.51 91.26 91.38 90.43 90.79 90.61

Table 3. Parsing performance (%) for Chinese with the help of golden dependency tree.  

We choose MSTParser 3  which is the most 
famous dependency parser and modify it to 
generate N-best dependency trees. The oracle 
unlabeled accuracy of N-best dependency trees 
generated from 1-order model is shown in 
Table 4. To show the effectiveness of our 
approach, we choose Berkeleyparser 4  as the 
baseline parser, take the same configuration and 
combine it into our general parsing framework 
shown in Figure 3. 

The experiment of parsing with golden 
dependency structure gets an amazing 
performance. It brings us a new way to build 
PTB/PCTB style phrase structure corpus. 
Because dependency structure is much easier to 
get through hand annotating than phrase 
structure, we can build a dependency structure 
corpus first, and then get phrase structure 
corpus through our approach guided by the 
dependency structure corpus. 

The experiment of parsing with N-best 
dependency structures generated automatically 
uplifts the parsing performance to a new height. 
It brings us a more applied parsing tool for 
other NLP applications. 

Considering the number of dependency 
structures (N-best) will affect the final result, 
we make use of the development set shown in 
Table1 to turning parameters. We parse the 
development set many times with different 
number of dependency structures. The F1 
scores are shown in Figure 5 for English and 
Figure 6 5  for Chinese. From Figure 5 and 
Figure 6, we can find when we use 10-best 
dependency structures the performance is better. 
So we choose 10-best dependency trees for the 
test set. 

From the experiments in Section 4.2, we can 
find that even using the golden dependency 
structure we can’t get totally correct phrase 
structure. The reason is that although every 
dependency sub-tree has its corresponding 
phrase sub-tree, not every phrase sub-tree has 
its corresponding dependency sub-tree. So the 
remainder errors can’t be solved only by 
dependency structure and a better way is to 
modify the parsing model. 

The final performances of test set comparing 
with previous work are shown in Table 5 and 
Table 6. We can easily find that our approach 
has outperformed all the parsers which aren’t 
improved through reranking stage or semi-
supervised approach. Although there is still a 
margin between our parser and reranked parser 
or semi-supervised parser, we believe that the 
parsing performance can be improved further if 
we bring the reranking or semi-supervised 
approaches into our parsing framework.

5 Conclusion and Future work  

In this paper, we present a novel phrase parsing 
approach with the help of dependency structure. 
Based on the consistency between phrase 
structure and dependency structure, we propose 
a novel inference framework. Guided by the 
inference framework, inference algorithms 
parse sentences hierarchically with the help of 
dependency structures. Experimental results 
show that our approach can efficiently get 
better performance with both golden 
dependency structure and N-best dependency 

4.4 Discussion 

3 http://www.ryanmcd.com/MSTParser/MSTParser.html 
4 http://code.google.com/p/berkeleyparser/ 
5 F1 score at n=0 is the result of Berkeley parser running 
on my machine 
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Figure 6. F1 scores (%) of Dev Set for Chinese 
with the help of N-best dependency trees Figure 5. F1 scores (%) of Dev Set for English with the 

help of N-best dependency trees 

structures generated automatically. 
However, there are still some problems 

remaining to further study. First, in our 
approach we just use the unlabeled dependency 
trees. The relationship labels carry some useful 
information too, and we can make use of them 
to further improve phrase parsing. Second, 
phrase structure can also help the process of 
dependency parsing (McDonald et al., 2006), so 

we can combine phrase parsing process and 
dependency parsing process together and make 
them help each other. 

English Chinese
len<=40 all len<=40 all

5-best 90.62 90.49 87.92 84.93
10-best 91.6 91.48 89.05 85.9
20-best 92.36 92.21 89.86 86.79
30-best 92.74 92.6 90.3 87.28
40-best 92.96 92.83 90.62 87.63
50-best 93.08 92.95 90.79 87.87

Table 4. Oracle unlabeled accuracy (%) of N-best 
dependency structures generated from MSTParser 
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