
Coling 2010: Poster Volume, pages 1220–1228,
Beijing, August 2010

Confidence Measures for Error Discrimination
in an Interactive Predictive Parsing Framework1

Ricardo Sánchez-Sáez, Joan Andreu Sánchez and José Miguel Bened
Instituto Tecnológico de Informática
Universidad Politécnica de Valencia

{rsanchez,jandreu,jbenedi}@dsic.upv.es

Abstract

We study the use of Confidence Measures
(CM) for erroneous constituent discrimi-
nation in an Interactive Predictive Parsing
(IPP) framework. The IPP framework al-
lows to build interactive tree annotation
systems that can help human correctors
in constructing error-free parse trees with
little effort (compared to manually post-
editing the trees obtained from an auto-
matic parser). We show that CMs can
help in detecting erroneous constituents
more quickly through all the IPP process.
We present two methods for precalculat-
ing the confidence threshold (globally and
per-interaction), and observe that CMs re-
main highly discriminant as the IPP pro-
cess advances.

1 Introduction

Within the Natural Language Processing (NLP)
field, we can tell apart two different usage scenar-
ios for automatic systems that output or work with
natural language. On one hand, we have the cases
in which the output of such systems is expected to
be used in a vanilla fashion, that is, without val-
idating or correcting the results produced by the
system. Within this usage scheme, the most im-
portant factor of a given automatic system is the
quality of the results. Although memory and com-
putational requirements of such systems are usu-
ally taken into account, the ultimate aim of most

1Work partially supported by the Spanish MICINN under
the MIPRCV “Consolider Ingenio 2010” (CSD2007-00018),
MITTRAL (TIN2009-14633-C03-01), Prometeo (PROME-
TEO/2009/014) research projects, and the FPU fellowship
AP2006-01363.

research that relates to this scenario is to minimize
the amount of error (measured with metrics like
Word Error Rate, BLEU, F-Measure, etc.) present
within the results that are being produced.

The second usage scenario arises when there
exists the need for perfect and completely error-
free results, for example, flawlessly translated
sentences or correctly annotated syntactic trees.
In such cases, the intervention of a human valida-
tor/corrector is unavoidable. The corrector will
review and validate the results, making the suit-
able modifications before the system output can
be employed. In these kind of tasks, the most im-
portant factor to be minimized is the human ef-
fort that has to be applied to transform the sys-
tem’s potentially incorrect output into validated
and error-free output. Measuring user effort has
an intrinsic subjectivity that makes it hard to be
quantitatized. Given that the user effort is usually
inversely proportional to the quality of the system
output, most research about problems associated
to this scenario t to minimize just the system’s er-
ror rate as well.

Interactive Predictive NLP Systems

Only recently, more comparable and repro-
ducible evaluation methods for Interactive Natural
Language Systems have started to be developed,
within the context of Interactive Predictive Sys-
tems (IPS). These systems formally integrate the
correcting user into the loop, making him part of
the system right at its theoretical framework. IPSs
allow for human correctors to spare effort because
the system updates its output after each individ-
ual user correction, potentially fixing several er-
rors at each step. Interactive Predictive methods
have been studied and successfully used in fields

1220

like Handwritten Text Recognition (HTR) (Toselli
et al., 2008) and Statistical Machine Translation
(SMT) (Vidal et al., 2006; Barrachina et al., 2009)
to ease the work of transcriptors and translators.

In IPS related research the importance of the
system base error rate per se is diminished. In-
stead, the intention is to measure how well the
user and the system work together. For this, for-
mal user simulation protocols together with new
objective effort evaluation metrics such as the
Word Stroke Ratio (WSR) (Toselli et al., 2008) or
the Key-Stroke and Mouse-Ratio (KSMR) (Bar-
rachina et al., 2009) started to be used as a
benchmark. These ratios reflect the amount of
user effort (whole-word corrections in the case of
WSR; keystrokes plus mouse actions in the case of
KSMR) given a certain output. To get the amount
of user effort into context they should be measured
against the corresponding error ratios of compara-
ble non-interactive systems: Word Error Rate for
WSR and Character Error Rate for KSMR.

This dichotomy in evaluating either system per-
formance or user effort applies to Syntactic Pars-
ing as well. The objective of parsing is to pre-
cisely determine the syntactic structure of sen-
tences written in one of the several languages that
humans use. Very bright research has been carried
out in this field, resulting in several top perform-
ing completely automatic parsers (Collins, 2003;
Klein and Manning, 2003; McClosky et al., 2006;
Huang, 2008; Petrov, 2010). However, these pro-
duce results that are erroneous to some extent, and
as such unsuitable for some applications without a
previous manual correction. There are many prob-
lems where error-free results consisting in per-
fectly annotated trees are needed, such as hand-
written mathematical expression recognition (Ya-
mamoto et al., 2006) or construction of large new
gold treebanks (de la Clergerie et al., 2008).

When using automatic parsers as a baseline for
building perfect syntactic trees, the role of the
human annotator is usually to post-edit the trees
and correct the errors. This manner of operat-
ing results in the typical two-step process for er-
ror correcting, in which the system first gener-
ates the whole output and then the user verifies
or amends it. This paradigm is rather inefficient
and uncomfortable for the human annotator. For

example, a basic two-stage setup was employed
in the creation of the Penn Treebank annotated
corpus: a rudimentary parsing system provided a
skeletal syntactic representation, which then was
manually corrected by human annotators (Marcus
et al., 1994). Additional works within this field
have presented systems that act as a computerized
aid to the user in obtaining the perfect annotation
(Carter, 1997; Oepen et al., 2004; Hiroshi et al.,
2005). Subjective measuring of the effort needed
to obtain perfect annotations was reported in some
of these works, but we feel that a more compara-
ble metric is needed.

With the objective of reducing the user effort
and making the laborious task of tree annotation
easier, the authors of (Sánchez-Sáez et al., 2009a)
devised an Interactive Predictive Parsing (IPP)
framework. That work embeds the human cor-
rector into the automatic parser, and allows him
to interact in real time within the system. In this
manner, the system can use the readily available
user feedback to make predictions about the parts
of the trees that have not been validated by the
corrector. The authors simulated user interaction
and calculated effort evaluation metrics, establish-
ing that an IPP system results in amounts slightly
above 40% of effort reduction for a manual anno-
tator compared to a two-step system.

Confidence Measures in NLP

Annotating trees syntactically, even with the
aid of automatic systems, generally requires hu-
man intervention with a high degree of special-
ization. This fact partially justifies the shortage
in large manually annotated treebanks. Endeavors
directed at easing the burden for the experts per-
forming this task could be of great help.

One approach that can be followed in reducing
user effort within an IPS is adding information
that helps the user to locate the individual errors
in a sentence, so he can correct them in a hastier
fashion. The use of the Confidence Measure (CM)
formalism goes in this direction, allowing us to
assign a probability of correctness for individual
erroneous constituents of a more complex output
block of a NLP system.

In fields such as HTR, SMT or Automatic
Speech Recognition (ASR), the output sentences

1221

have a global probability (or score) that reflects
the likeness of the output sentence being correct.
CMs allow precision beyond the sentence level in
predicting errors: they can be used to label the in-
dividual words as either correct or incorrect. Au-
tomatic systems can use CMs to help the user in
identifying the erroneous parts of the output in a
faster way or to aid with the amendments by sug-
gesting replacement words that are likely to be
correct.

Previous research shows that CMs have been
successfully applied within the ASR (Wessel et
al., 2001), HTR (Tarazón et al., 2009; Serrano
et al., 2010) and SMT (Ueffing and Ney, 2007)
fields. In these works, the ability of CMs in de-
tecting erroneous constituents is assessed by the
classical confidence metrics: the Confidence Er-
ror Rate (CER) and the Receiver Operating Char-
acteristic (ROC) (Ueffing and Ney, 2007).

However, until recent advances, the use of CMs
remained largely unexplored in Parsing. Assess-
ing the correctness of the different parts of a pars-
ing tree can be useful in improving the efficiency
and usability of an IPP system, not only by tag-
ging parts with low confidence for the user to re-
view, but also by automating part of the correction
process itself by presenting constituents that yield
a higher confidence when an error is confirmed by
the user.

CMs for parsing in the form of combinations
of features calculated from n-best lists were pro-
posed in (Benedı́ et al., 2007). Later on, the au-
thors of (Sánchez-Sáez et al., 2009b) introduced
a statistical method for calculating a CM for each
of the constituents in a parse tree. In that work,
CMs are calculated using the posterior probability
of each tree constituent, approach which is similar
to the word-graph based methods in the ASR and
SMT fields.

In this paper, we apply Confidence Measures
to the Interactive Predictive Parsing framework to
asses how CMs are increasingly more accurate as
the user validates subtrees within the interactive
process. We prove that after each correction per-
formed by the user, the CMs of the remaining un-
validated constituents are more helpful to detect
errors.

2 Interactive Predictive Parsing

In this section we review the IPP framework
(Sánchez-Sáez et al., 2009a) and its underlying
operation protocol. In parsing, a syntactic tree t,
attached to a string x = x1 . . . x|x| is composed
by substructures called constituents. A constituent
cAij is defined by the nonterminal symbol (either
a syntactic label or a POS tag) A and its span
ij (the starting and ending indexes which delimit
the part of the input sentence encompassed by the
constituent).

Here follows a general formulation for the non-
interactive syntactic parsing scenario, which will
allow us to better introduce the IPP formulation.
Assume that using a given parsing model G, the
parser analyzes the input sentence x and produces
the most probable parse tree

t̂ = argmax
t∈T

pG(t|x), (1)

where pG(t|x) is the probability of the parse tree
t given the input string x using model G, and T is
the set of all possible parse trees for x.

In the IPP framework, the manual corrector
provides feedback to the system by correcting any
of the constituents cAij from t̂. The system reacts
to each of the corrections performed by the human
annotator by proposing a new t̂′ that takes into ac-
count the correction.

Within the IPP framework, the user reviews the
constituents contained in the tree to assess their
correctness. When the user finds an incorrect con-
stituent he modifies it, setting the correct span and
label. This action implicitly validates what it is
called the validated prefix tree tp.

We define the validated prefix tree to be com-
posed by the partially corrected constituent, all
of its ancestor constituents, and all constituents
whose end span is lower than the start span of the
corrected constituent. When the user replaces the
constituent cAij with the correct one c′Aij , the vali-
dated prefix tree is

tp(c
′A
ij) = {cBmn : m ≤ i, n ≥ j ,

d(cBmn) ≤ d(c′Aij)} ∪
{cDpq : q < i }

(2)

1222

with d(cZab) being the depth (distance from root)
of constituent cZab.

The validated prefix tree is parallel to the vali-
dated sentence prefix commonly used in Interac-
tive Machine Translation or Interactive Handwrit-
ten Recognition, and is established after each user
action.

This particular definition of the prefix tree de-
termines the fact that the user is expected to re-
view the parse tree in a preorder fashion (left-to-
right depth-first). Note that this specific explo-
ration order allows us to simulate the user inter-
action for the experimentation, as we will explain
below. Also note that other types of prefixes could
be defined, allowing for different tree review or-
ders.

Within the IPP formulation, when a constituent
correction is performed, the prefix tree tp(c

′A
ij) is

validated and a new tree t̂′ that takes into account
the prefix is proposed. Incorporating this new
evidence into expression (1) yields the following
equation

t̂′ = argmax
t∈T

pG(t|x, tp(c′Aij)). (3)

Given the properties of Probabilistic Context-
Free Grammars (PCFG) the only subtree that ef-
fectively needs to be recalculated is the one start-
ing from the parent of the corrected constituent.
This way, just the descendants of the newly intro-
duced constituent, as well as its right hand siblings
(along with their descendants) are calculated.

2.1 User Interaction Operation

The IPP formulation allows for a very straightfor-
ward operation protocol that is performed by the
manual corrector, in which he validates or corrects
the successive output parse trees:

1. The IPP system proposes a full parse tree t
for the input sentence.

2. Then, the user finds the first incorrect con-
stituent exploring the tree in a certain ordered
manner (preorder in our case, given by the
tree prefix definition) and amends it, by mod-
ifying its span and/or label (implicitly vali-
dating the prefix tree tp).

3. The IPP system produces the most probable
tree that is compatible with the validated pre-
fix tree tp as shown in expression (3).

4. These steps are iterated until a final, perfect
parse tree is produced by the system and val-
idated by the user.

It is worth noting that within this protocol, con-
stituents can be automatically deleted or inserted
at the end of any subtree in the syntactic struc-
ture by adequately modifying the span of the left-
neighbouring constituent.

The IPP interaction process is similar to the
ones already established in HTR and SMT. In
these fields, the user reads the output sentence
from left to right. When the user finds and corrects
an erroneous word, he is implicitly validating the
prefix sentence up to that word. The remaining
suffix sentence is recalculated by the system tak-
ing into account the validated prefix sentence.

Fig. 1 shows an example that intends to clar-
ify the Interactive Predictive process. First, the
system provides a tentative parse tree (Fig. 1.b).
Then the user, which has the correct reference tree
(Fig. 1.a) in mind, notices that it has two wrong
constituents (cX23 and cZ44) (Fig. 1.c), and chooses
to replace cX23 by cB22 (Fig. 1.d). Here, cB22 cor-
responds to c′Aij of expression (3). As the user
does this correction, the system automatically val-
idates the prefix (dashed line in Fig. 1.d, tp(c′Aij)
of expression (2)). The system also invalidates
the subtrees outside the prefix (dotted line line in
Fig. 1.d). Finally, the system automatically pre-
dicts a new subtree (Fig. 1.e). Notice how cZ34
changes its span and cD44 is introduced which pro-
vides the correct reference parse.

For further exemplification, Sánchez-Sáez
et al. (2010) demonstrate an IPP based
annotation tool that can be accessed at
http://cat.iti.upv.es/ipp/.

Within the IPP scenario, the user has to man-
ually review all the system output and correct or
validate it, which is still a considerable amount of
effort. CMs can ease this work by helping to spot
the erroneous constituents.

1223

S

B Z

Y

ba c d

A

DC

(a) Reference tree

S

ba c d

A

CB

X

Y

Z

(b) Iteration 0: Pro-
posed output tree 1

S

ba c d

A

CB

X Z 42
3 4

Y

(c) Iteration 0: Erro-
neous constituents

Y

S

ba c d

A

B 2
2 ?

? ?

(d) Iteration 1:
User corrected
constituent

S

B Z

Y

ba c d

A

DC

3
4

(e) Iteration 1:
Proposed output
tree 2

Figure 1: Synthetic example of user interaction with the IPP system.

3 Confidence Measures

Probabilistic calculation of Confidence Measures
(Sánchez-Sáez et al., 2009b) for all tree con-
stituents can be introduced within the IPP process.

The CM of each constituent is its posterior
probability, which can be considered as a measure
of the degree to which the constituent is believed
to be correct for a given input sentence x. This is
formulated as follows

pG(c
A
ij |x) =

pG(c
A
ij ,x)

pG(x)

=

∑
t′∈T ; c′Aij ∈t′ δ(c

A
ij , c

′A
ij) pG(t

′|x)
pG(x)

(4)

with δ() being the Kronecker delta function. Nu-
merator in expression (4) stands for the probabil-
ity of all parse trees for x that contain the con-
stituent cAij (see Fig. 2).

S

A

αA(i, j)

βA(i, j)

x1 xi−1 xi xj xj+1 x|x|

Figure 2: The product of the inside and outside
probabilities for each constituent comprises the
upper part of expression (5)

The posterior probability is computed with the
inside β and outside α probabilities (Baker, 1979)

C(tAij) = pG(c
A
ij |x) =

pG(c
A
ij ,x)

pG(x)

=
βA(i, j) αA(i, j)

βS(1, |x|)
.

(5)

It should be clear that the calculation of con-
fidence measures reviewed here is generalizable
for any problem that employs PCFGs, and not
just NLP tasks. In the experiments presented in
the following section we show that CMs are in-
creasingly discriminant when used within the IPP
framework to detect erroneous constituents.

4 Experiments

Evaluation of the quality of CMs within the IPP
framework is done in a completely automatic
fashion by simulating user interaction. Section 4.1
introduces the evaluation protocol and metrics
measuring CM quality (i.e., their ability to de-
tect incorrect constituents). The experimentation
framework and the results are discussed in sec-
tion 4.2.

4.1 Evaluation Methods

4.1.1 IPP Evaluation

A good measure of the performance of an In-
teractive Predictive System is the amount of ef-
fort saved by the users of such a system. It is
subjective and expensive to test an IPS with real
users, so these systems are usually evaluated us-
ing automatically calculated metrics that assess
the amount of effort saved by the user.

1224

As already mentioned, the objective of an IPP
based system is to be employed by annotators to
construct correct syntactic trees with less effort.
Evaluation of an IPP system was previously done
by comparing the IPP usage effort (the number of
corrections using the IPP system) against the es-
timated effort required to manually post-edit the
trees after obtaining them with a traditional au-
tomatic parsing system (the amount of incorrect
constituents) (Sánchez-Sáez et al., 2009a).

In the case of IPP, the gold reference trees are
used to simulate system interaction by a human
corrector and provide a comparable benchmark.
This automatic evaluation protocol is similar to
the one presented in section 2.1:

1. The IPP system proposes a full parse tree t
for the input sentence.

2. The user simulation subsystem finds the first
incorrect constituent by exploring the tree in
the order defined by the prefix tree definition
(preorder) and comparing it with the refer-
ence. When the first erroneous constituent
is found, it is amended by being replaced in
the output tree by the correct one, operation
which implicitly validates the prefix tree tp.

3. The IPP system produces the most probable
tree that is compatible with the validated pre-
fix tree tp.

4. These steps are iterated until a final, perfect
parse tree is produced by the IPP system and
validated against the reference by the user
simulation subsystem.

In this work, metrics assessing the quality of
CM are introduced within this automatic protocol.
We calculate and report them after each of the it-
erations in the IPP process.

4.1.2 Confidence Measure Evaluation
Metrics

The CM of each tree constituent, computed as
shown in expression (4) can be seen as its prob-
ability of being correct. Once all CM are calcu-
lated, a confidence threshold τ ∈ [0, 1] can be
chosen. Constituents are then marked using τ : the
ones with a confidence above this threshold are

marked as correct, and the rest as incorrect. Com-
paring the confidence marks in the output tree
with the reference, we obtain the false rejection
Nf (τ) ∈ [0, Nc] (number of correct constituents
in the output tree wrongly marked as incorrect by
their CM) and the true rejection Nt(τ) ∈ [0, Ni]
(number of incorrect constituents in the output
tree that are indeed detected as incorrect by their
confidence).

The amount of correct and incorrect con-
stituents in each tree is Nc and Ni respectively. In
the ideal case of perfectly error discriminant CM,
using the best threshold would yield Nf (τ) = 0
and Nt(τ) = Ni.

A evaluation metric that assess the ability of
CMs in telling apart correct constituents from in-
correct ones is the Confidence Error Rate (CER):

CER(τ) =
Nf (τ) + (Ni −Nt(τ))

Nc +Ni
. (6)

The CER is the number of errors incurred by the
CMs divided by the total number of constituents.

The CER can be compared with the Absolute
Constituent Error Rate (ACER), which is the CER
obtained assuming that all constituents are marked
as correct (the only possible assumption when CM
are not available):

ACER = CER(0) =
Ni

Nc +Ni
. (7)

4.2 Experimental Framework

Our experiments were carried out over the Wall
Street Journal Penn Treebank (PTB) manually an-
notated corpus. Three sets were defined over the
PTB: train (sections 2 to 21), test (section 23),
and development (the first 346 sentences of sec-
tion 24). Before carrying out experimentation, the
NoEmpties transformation was applied to all sets
(Klein and Manning, 2001).

We implemented the CYK-Viterbi parsing al-
gorithm as the parse engine within the IPP
framework. This algorithm uses grammars in
the Chomsky Normal Form (CNF) so we em-
ployed the open source Natural Language Toolkit2

(NLTK) to obtain several right-factored binary

2http://www.nltk.org/

1225

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

C
E

R

T
hr

es
ho

ld

Interaction

Thr.

ACER
CER

(a) PCFG: h=0,v=1

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

C
E

R

T
hr

es
ho

ld

Interaction

Thr.

ACER
CER

(b) PCFG: h=0,v=2

Figure 3: CER results over IPP system interaction. Threshold fixed at before the interactive process.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

C
E

R

T
hr

es
ho

ld

Interaction

Thr.

ACER
CER

(a) PCFG: h=0,v=1

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

C
E

R

T
hr

es
ho

ld

Interaction

Thr.
ACER

CER

(b) PCFG: h=0,v=2

Figure 4: CER results over IPP system interaction. Threshold optimized for each step of the interactive
process.

grammars with different markovization parame-
ters from the training set (Klein and Manning,
2003).

The purpose of our experimentation is to de-
termine if CMs can successfully discriminate er-
roneous constituents from correct ones within an
IPP process, that is, if they help the user to find
errors in a hastier manner. For this we need to
assess if there exists discriminant information in
the CMs corresponding to the constituents of the
unvalidated part of the successive IPP-proposed
trees.

With this objective in mind, we introduced a
CM calculation step after each user interaction
within the IPP process. CMs for all constituents in
each tree were obtained as described in section 3.
After each simulated interaction, we also calcu-

lated the ACER and CER over all the syntactic
constituents of the whole test set.

Each IPP user interaction yields a parse tree
which can be seen as the concatenation of two
parts: the validated prefix tree (which is known
to be correct because the user, or the user simula-
tion subsystem in this case, has already reviewed
it) and a new suffix tree which is calculated by
the IPP system based on the validated prefix, as
shown in section 2.

The fact that the validated prefix is already
known to be correct is taken into account by the
CM calculation process, and the confidence of the
constituents in the prefix tree is automatically set
to their maximum score, equal to 1. This fact
causes that the CMs become more discriminant
after each interaction, because a larger part of the

1226

tree (the prefix) has a completely correct confi-
dence. The key point here is to measure if this
increasingly reduced CER (CM error rate) main-
tains its advantage over the also increasingly re-
duced ACER (absolute constituent error rate with-
out taking CMs into account) which would mean
that the CMs retain their discriminant power and
can be useful as an aid for a human annotator us-
ing an IPP system.

Two batches of experiments were performed
and, in each of them, two different markovizations
of the vanilla PCFG were tested as the parsing
model.

In the first battery of experiments, the confi-
dence threshold τ was optimized over the devel-
opment set before starting the IPP process, re-
maining the same during the user interaction. The
results can be seen in Fig. 3, which shows the
obtained baseline ACER and the CER (the con-
fidence assessing metric) for the test set after each
user interaction. We see how CMs retain all of
their error detection capabilities during the IPP
process: in the h0v1 PCFG they are able to dis-
cern about 25% of incorrect constituents at most
stages of the IPP process, with a slight bump up to
27% after about 7 user interactions; for the h0v2
PCFG they are able to detect about 18% of incor-
rect constituents at the first interactions, but go up
to detect 27% of errors after about 7 or more in-
teractions.

In the second experimental setup, a different
threshold for each interaction step was calcu-
lated by performing the IPP user simulation pro-
cess over the development set and optimizing
the threshold value. The results can be seen in
Fig. 4. We observe improvements in the discrim-
inant ability of confidence values after 8 user in-
teractions, with them being capable to detect more
errors towards the end of each IPP session: about
34% of errors for h0v1, and 49% of them for h0v2.

The calculated thresholds have also been plot-
ted in the aforementioned figures. For the per-
interaction threshold experimentation, we can see
how the threshold gets fine-tuned as the IPP pro-
cess advances. The lower threshold values for the
last interactions were expected due to the fact that
more constituents have been validated and have
the maximum confidence. This method for pre-

calculating one specific threshold for each of the
iterations could be useful when incorporating CM
to a real IPP based annotator.

5 Conclusions and Future Work

We have proved that using Confidence Measures
can be used to discriminate incorrect constituents
from correct ones over an Interactive Predictive
Parsing process. We have show two methods
for calculating the threshold used to mark con-
stituents as correct/incorrect, showing the advan-
tage of precalculating a specific threshold for each
of the interaction steps.

Immediate future work involves implementing
CMs as a visual aid in a real IPP system like
the one presented in (Sánchez-Sáez et al., 2010).
Through he use of CMs, all constituents in the
successive trees could be color-coded according
to their correctness confidence, so the user could
focus and make corrections faster.

Future research paths can deal with applying
CMs to improve the output of completely auto-
matic parsers, for example, using them as a com-
ponent of an n-best re-ranking system.

Additionally, the IPP framework is also suit-
able for studying and applying training algorithms
within the Active Learning and Adaptative/Online
Parsing paradigms. This kind of systems could
improve their models at operating time, by incor-
porating new ground truth data as it is provided by
the user.

References

Baker, JK. 1979. Trainable grammars for speech
recognition. Journal of the Acoustical Society of
America, 65:132.

Barrachina, S., O. Bender, F. Casacuberta, J. Civera,
E. Cubel, S. Khadivi, A. Lagarda, H. Ney, J. Tomás,
E. Vidal, and J.M. Vilar. 2009. Statistical ap-
proaches to computer-assisted translation. Compu-
tational Linguistics, 35(1):3–28.

Benedı́, J.M., J.A. Sánchez, and A. Sanchı́s. 2007.
Confidence measures for stochastic parsing. In
Proc. of RANLP, pages 58–63, Borovets, Bulgaria,
27-29 September.

Carter, D. 1997. The TreeBanker. A tool for super-
vised training of parsed corpora. In Proc. of EN-
VGRAM Workshop, pages 9–15.

1227

Collins, M. 2003. Head-driven statistical models for
natural language parsing. Computational Linguis-
tics, 29(4):589–637.

de la Clergerie, E.V., O. Hamon, D. Mostefa, C. Ay-
ache, P. Paroubek, and A. Vilnat. 2008. Passage:
from French parser evaluation to large sized tree-
bank. Proc. of LREC, 100:2.

Hiroshi, I., N. Masaki, H. Taiichi, T. Takenobu, and
T. Hozumi. 2005. eBonsai: An integrated environ-
ment for annotating treebanks. In Proc. of IJCNLP,
pages 108–113.

Huang, L. 2008. Forest reranking: Discriminative
parsing with non-local features. In Proc. of ACL.

Klein, D. and C.D. Manning. 2001. Parsing with
treebank grammars: Empirical bounds, theoretical
models, and the structure of the Penn treebank. In
Proc. of ACL, pages 338–345, Morristown, USA.
ACL.

Klein, D. and C.D. Manning. 2003. Accurate unlex-
icalized parsing. In Proc. of ACL, volume 1, pages
423–430, Morristown, USA. ACL.

Marcus, M.P., B. Santorini, and M.A. Marcinkiewicz.
1994. Building a large annotated corpus of En-
glish: The Penn Treebank. Computational Linguis-
tics, 19(2):313–330.

McClosky, D., E. Charniak, and M. Johnson. 2006.
Effective self-training for parsing. In Proc. of
NAACL-HLT, pages 152–159.

Oepen, S., D. Flickinger, K. Toutanova, and C.D. Man-
ning. 2004. LinGO Redwoods. Research on Lan-
guage & Computation, 2(4):575–596.

Petrov, S. 2010. Products of Random Latent Variable
Grammars. Proc. of NAACL-HLT.

Sánchez-Sáez, R., J.A. Sánchez, and J.M. Benedı́.
2009a. Interactive predictive parsing. In Proc. of
IWPT’09, pages 222–225, Paris, France, October.
ACL.

Sánchez-Sáez, R., J.A. Sánchez, and J.M. Benedı́.
2009b. Statistical confidence measures for proba-
bilistic parsing. In Proc. of RANLP, pages 388–392,
Borovets, Bulgaria, September.

Sánchez-Sáez, R., L.A. Leiva, J.A. Sánchez, and J.M.
Benedı́. 2010. Interactive predictive parsing using
a web-based architecture. In Proc. of NAACL-HLT,
Los Angeles, United States of America, June.

Serrano, N., A. Sanchis, and A. Juan. 2010. Bal-
ancing error and supervision effort in interactive-
predictive handwriting recognition. In Proc. of IUI,
pages 373–376. ACM.

Tarazón, L., D. Pérez, N. Serrano, V. Alabau,
O. Ramos Terrades, A. Sanchis, and A. Juan. 2009.
Confidence Measures for Error Correction in Inter-
active Transcription of Handwritten Text. In Proc.
of ICIAP, pages 567–574, Vietri sul Mare, Italy,
September. LNCS.

Toselli, A.H., V. Romero, and E. Vidal. 2008. Com-
puter assisted transcription of text images and mul-
timodal interaction. In Proc. MLMI, volume 5237,
pages 296–308. Springer.

Ueffing, N. and H. Ney. 2007. Word-level confidence
estimation for machine translation. Computational
Linguistics, 33(1):9–40.

Vidal, E., F. Casacuberta, L. Rodrı́guez, J. Civera, and
C. Martı́nez. 2006. Computer-assisted translation
using speech recognition. IEEE TASLP, 14(3):941–
951.

Wessel, F., R. Schluter, K. Macherey, and H. Ney.
2001. Confidence measures for large vocabu-
lary continuous speech recognition. IEEE TSAP,
9(3):288–298.

Yamamoto, R., S. Sako, T. Nishimoto, and
S. Sagayama. 2006. On-line recognition of
handwritten mathematical expressions based on
stroke-based stochastic context-free grammar. In
Proc of ICFHR, pages 249–254.

1228

