
Coling 2010: Poster Volume, pages 1194–1202,
Beijing, August 2010

Semi-supervised Semantic Pattern Discovery with Guidance
from Unsupervised Pattern Clusters

Ang Sun
Computer Science Department

New York University
asun@cs.nyu.edu

Ralph Grishman
Computer Science Department

New York University
grishman@cs.nyu.edu

Abstract

We present a simple algorithm for
clustering semantic patterns based on
distributional similarity and use cluster
memberships to guide semi-supervised
pattern discovery. We apply this
approach to the task of relation
extraction. The evaluation results
demonstrate that our novel
bootstrapping procedure significantly
outperforms a standard bootstrapping.
Most importantly, our algorithm can
effectively prevent semantic drift and
provide semi-supervised learning with a
natural stopping criterion.

1 Introduction

The Natural Language Processing (NLP)
community faces new tasks and new domains
all the time. Without enough labeled data of a
new task or a new domain to conduct supervised
learning, semi-supervised learning (SSL) is
particularly attractive to NLP researchers since
it only requires a handful of labeled examples,
known as seeds. SSL starts with these seeds to
train an initial model; it then applies this model
to a large volume of unlabeled data to get more
labeled examples and adds the most confident
ones as new seeds to re-train the model. This
iterative procedure has been successfully
applied to a variety of NLP tasks, such as
hypernym/hyponym extraction (Hearst, 1992),
word sense disambiguation (Yarowsky, 1995),
question answering (Ravichandran and Hovy,
2002), and information extraction (Brin, 1998;
Collins and Singer, 1999; Riloff and Jones,
1999; Agichtein and Gravano, 2000; Yangarber
et al., 2000; Chen and Ji, 2009).

While SSL can give good performance for
many tasks, it is a procedure born with two
defects. One is semantic drift. When SSL is
under-constrained, the semantics of newly
promoted examples might stray away from the
original meaning of seed examples as discussed
in (Brin, 1998; Curran et al., 2007; Carlson et
al., 2010). For example, a SSL procedure to
learn semantic patterns for the LocatedIn
relation (PERSON in LOCATION/GPE1) might
accept patterns for the Employment relation
(employee of GPE / ORGANIZATION)
because many unlabeled pairs of names are
connected by patterns belonging to multiple
relations. Patterns connecting <Bill Clinton,
Arkansas> include LocatedIn patterns such as
“visit”, “arrive in” and “fly to”, but also patterns
indicating other relations such as “governor of”,
“born in”, and “campaign in”. Similar analyses
can be applied to many other examples such as
<Bush, Texas> and <Schwarzenegger,
California>. Without careful design, SSL
procedures usually accept bogus examples
during certain iterations and hence the learning
quality degrades.

The other shortcoming of SSL is its lack of
natural stopping criteria. Most SSL algorithms
either run a fixed number of iterations
(Agichtein and Gravano, 2000) or run against a
separate labeled test set to find the best stopping
criterion (Abney, 2008). The former solution
needs a human to keep eyeballing the learning
quality of different iterations and set ad-hoc
thresholds accordingly. The latter requires a

1 These are the types of relations and names used in
the NIST-sponsored ACE evaluation.
http://www.itl.nist.gov/iad/mig//tests/ace/. GPE
represents a Geo-Political Entity — an entity with
land and a government.

1194

separate labeled test set for each new task or
domain. They make SSL less appealing than it
could be since the intention of using SSL is to
minimize supervision.

In this paper, we propose a novel learning
framework which can automatically monitor the
semantic drift and find a natural stopping
criterion for SSL. Central to our idea is that
instead of using unlabeled data directly in SSL,
we first cluster the seeds and unlabeled data in
an unsupervised way before conducting SSL.
The semantics of unsupervised clusters are
usually unknown. However, the cluster to which
the seeds belong can serve as the target cluster.
Then we guide the SSL procedure using the
target cluster. Under such learning settings,
semantic drift can be automatically detected and
a stopping criterion can be found: stopping the
SSL procedure when it tends to accept examples
belonging to clusters other than the target
cluster.

We demonstrate in this paper the above
general idea by considering a bootstrapping
procedure to discover semantic patterns for
extracting relations between named entities
(NE). Standard bootstrapping usually starts with
some high-precision and high frequency seed
patterns for a specific relation to match named
entities, then it uses newly promoted entities to
search for additional confident patterns
connecting them. It is a procedure driven by the
duality between patterns and entities: a good
pattern can connect more than one pair of
named entities and a pair of named entities is
usually connected by more than one good
pattern.

We present a new bootstrapping procedure in
which we first cluster the seed and other
patterns in a large corpus based on distributional
similarity. We then guide the bootstrapping
using the target cluster.

The next section describes our unsupervised
pattern clusters. Section 3 presents the details of
our novel bootstrapping procedure with
guidance from pattern clusters. We evaluate our
algorithms in Section 4 and present related work
in Section 5. We draw conclusions and point to
future work in Section 6.

2 Pattern Clusters

2.1 Distributional Hypothesis

The Distributional Hypothesis (Harris, 1954)
states that words that tend to occur in similar
contexts tend to have similar meanings. Lin and
Pantel (2001) extended this hypothesis to cover
patterns (dependency paths in their case). The
idea of the extension is that if two patterns tend
to occur in similar contexts then the meanings
of the patterns tend to be similar. For example,
in “X solves Y” and “X finds a solution to Y”,
“solves” and “finds a solution to” share many
common Xs and Ys and hence are similar to
each other. This extended distributional
hypothesis serves as the basis on which we
compute similarities for each pair of patterns.

2.2 Pattern Representation — Shortest
Dependency Path

We adopt a shortest dependency path (SDP)
representation of relation patterns. SDP has
demonstrated its power in kernel methods for
relation extraction (Bunescu and Mooney, 2005).
Its capability in capturing most of the
information of interest is also evidenced by a
systematic comparison of effectiveness of
different information extraction (IE) patterns in
(Stevenson and Greenwood, 2006) 2 . For
example, “nsubj met prep_in” is able to
represent LocatedIn between “Gates” and
“Seattle” while a token-based pattern would be
much less general because it would have to
specify all the intervening tokens.

Figure 1. Stanford dependency tree for sentence
“Gates, Microsoft’s chairman, met with President
Clinton in Seattle”.

2 SDP is equivalent to the linked chains described in
Stevenson and Greenwood (2006) when the
dependency of a sentence is represented as a tree not
a graph.

1195

2.3 Pre-processing

We tag and parse each sentence in our corpus
with the NYU named entity tagger 3 and the
Stanford dependency parser. Then for each pair
of names in the dependency tree, we extract the
SDP connecting them. Names in the path are
replaced by their types. We require SDP to
contain at least one verb or noun. We use the
base form of words in SDP. We also require the
length of the path (defined as the number of
dependency relations and words in it) to be
between 3 and 7. Short paths are more likely to
be generic patterns such as “of” and can be
handled separately as in (Pantel and
Pennacchiotti, 2006). Very long paths are more
likely to be non-relation patterns and too sparse
to be useful even if they are relation patterns.

2.4 Clustering Algorithm

The basic idea of our clustering algorithm is to
group all the paths (including the seed paths
used later for SSL) in our corpus into different
clusters based on distributional similarities. We
first extract a variety of features from the named
entities X and Y connected by a path P as shown
in Table 1. We then compute an analogue of tf-
idf for each feature f of P as follows: tf as the
number of corpus instances of P having feature f
divided by the number of instances of P; idf as
the total number of paths in the corpus divided
by the number of paths with at least one
instance with feature f. Then we adopt a vector
space model, i.e., we construct a tf-idf feature
vector for each P. Now we compute the
similarity between two vectors/paths using
Cosine similarity and cluster all the paths using
Complete Linkage.

Some technical details deserve more attention
here.

Feature extraction: We extract more types
of features than the DIRT paraphrase discovery
procedure used in (Lin and Pantel, 2001). Lin
and Pantel (2001) considered X and Y separately
while we also use the conjunction of X and Y.
We also extract named entity types as features
since we are interested in discovering relations
among different types of names. Some names
are ambiguous such as Jordan. We hope

3 Please refer to Grishman et al. (2005) and
http://cs.nyu.edu/grishman/jet/license.html

coupling the type with the string of the name
may alleviate the ambiguity.

Table 1. Sample features for “X visited Y” as in “Jordan

visited China”
Feature Type Example

Name Type of X LEFT_PERSON
Name Type of Y RIGHT_GPE
Combination of

Types of X and Y
PERSON_GPE

Conjunction of String
and Type of X

LEFT_Jordan_PERSON

Conjunction of String
and Type of Y

RIGHT_China_GPE

Conjunction of
Strings and Types of

X and Y

Jordan_PERSON_China_GPE

Similarity measure and clustering method:

There are many ways to compute the
similarity/distance between two feature vectors,
such as Cosine, Euclidean, Hamming, and
Jaccard coefficient. There are also many
standard clustering algorithms. A systematic
comparison of the performance of different
distance measures and clustering algorithms is
beyond the scope of this paper.

3 Semi-supervised Relation Pattern
Discovery

We first present a standard bootstrapping
algorithm coupled with analyses of some of its
shortcomings. Then we describe our new
bootstrapping procedure which is guided by
pattern clusters.

3.1 Bootstrapping without Guidance

The procedure associates a precision between 0
and 1 with each pattern, and a confidence
between 0 and 1 with each name pair. Initially
the seed patterns for a specific relation R have
precision 1 and all other patterns 0. It consists of
the following steps:

Step1: Use seed patterns to match new NE
pairs and evaluate NE pairs.

Intuitively, for a newly matched NE pair iN ,
if many of the k patterns connecting the two
names are high-precision patterns then the name
pair has a high confidence. The confidence is
computed by the following formula.

1

() 1 (1 Pr ())
k

i j
j

Conf N ec p
=

= − −∏ (1)

1196

Problem: While the intuition is correct, in
practice this will over-rank NE pairs which are
not only matched by patterns belonging to the
target relation R but are also connected by
patterns of many other relations. This is because
of the initial settings used in many SSL systems:
seeds are assigned high confidence. Thus all NE
pairs matched by initial seed patterns will have
very high confidence.

Suppose the target relation is LocatedIn, and
“visited” is a seed pattern; then the <Clinton,
Arkansas> example will be over-rated because
we cannot take into account that it would also
match patterns of other relations such as
PersonGovernorOfLocation and
PersonBornInLocation in a real corpus. This
will cause a vicious circle, i.e., bogus NE pairs
extract more bogus patterns which further
extract more bogus NE pairs. We believe this
flaw of the initial settings partially results in the
semantic drift problem.

One can imagine that this is not a problem
that can be solved by using a different formula
to replace the one presented here. A possible
solution is to study the structure of unlabeled
data (NE pairs in our case) and integrate this
structure information into the initial settings.
Indeed, this is where pattern clusters come into
play. We will demonstrate this in Section 3.2.

Step 2: Use NE pairs to search for new
patterns and rank patterns.

Similar to the intuition in Step 1, for a pattern
p, if many of the NE pairs it matches are very
confident then p has many supporters and
should have a high ranking. We can use formula
(2) to estimate the confidence of patterns and
rank them.

()() log ()
| |

Sup pConf p Sup p
H

= • (2)

Here |H| is the number of unique NE pairs
matched by p and Sup(p) is the sum of the
support it can get from the |H| pairs:

| |

1
() ()

H

j
j

Sup p Conf N
=

= ∑ (3)

The precision of p is given by the average
confidence of the NE pairs matched by p.

()Pr ()
| |

Sup pec p
H

= (4)

Formula (4) normalizes the precision to range
from 0 to 1. As a result the confidence of each
NE pair is also normalized to between 0 and 1.

Step 3: Accept patterns
Most systems accept the K top ranked

patterns in Step 2 as new seeds, subject to some
restrictions such as requiring the differences of
confidence of the K patterns to be within a small
range.

 Step 4: Loop or stop
The procedure now decides whether to repeat

from Step 1 or to terminate.
Most systems simply do not know when to

stop. They either run a fixed number of
iterations or use some held-out data to find one
criterion that works the best for the held-out
data.

3.2 Bootstrapping Guided by Clusters

Recall that our clustering algorithm in Section 2
provides us with K clusters, each of which
contains n (n differs in different clusters)
patterns. Every pattern in our corpus now has a
cluster membership (the seed patterns have the
same membership).

The most important benefit from our pattern
clusters is that now we can measure how
strongly a NE pair iN is associated with our
target cluster tC (the one to which the seed
patterns belong).

(,)
Pr () t

i
p C

i t

freq N p
ob N C

m
∈∈ =
∑

 (5)

Here (,)ifreq N p is the number of times p
matches iN and m is the total number of pattern
instances matching iN .

We integrate this prior cluster distribution of
each NE pair into the initial settings of our new
bootstrapping procedure.

Step1: Use seed patterns to match new NE
pairs and evaluate NE pairs.

 Assumption: A good NE pair must be
strongly associated with the target cluster and
can be matched by multiple high-precision
patterns.

So we evaluate a NE pair by the harmonic
mean of two confidence scores, namely the
confidence as its association with the target
cluster and the confidence given by the patterns
matching it.

1197

_ () _ ()() 2
_ () _ ()

i i
i

i i

Semi Conf N Cluster Conf NConf N
Semi Conf N Cluster Conf N

•
= •

+
 (6)

1

_ () 1 (1 ())
k

i j
j

Semi Conf N Prec p
=

= − −∏ (7)

_ () Pr ()i i tCluster Conf N ob N C= ∈ (8)
Under such settings, <Clinton, Arkansas>

will be assigned a lower confidence score for
the LocatedIn relation than it is in the standard
bootstrapping. Even if we assign high precision
to our seed patterns such as “visited” and
consequently the Semi_Conf is very high, it can
still be discounted by the Cluster_Conf4.

Step 2: Use NE pairs to search for new
patterns and rank patterns.

All the measurement functions are the same
as those used in the standard bootstrapping.
However, with better ranking of NE pairs in
Step 1, the patterns are also ranked better than
they are in the standard bootstrapping.

Step 3: Accept patterns
We also accept the K top ranked patterns.
Step 4: Loop or stop
Since each pattern in our corpus has a cluster

membership, we can monitor the semantic drift
easily and naturally stop: it drifts when the
procedure tries to accept patterns which do not
belong to the target cluster; we can stop when
the procedure tends to accept more patterns
outside of the target cluster.

If our clustering algorithm can give us perfect
pattern clusters, we can stop bootstrapping
immediately after it accepts the first pattern not
belonging to the target cluster. Then the
bootstrapping becomes redundant since all it
does is to consume the patterns of the target
cluster.

Facing the reality of the behavior of many
clustering algorithms, we allow the procedure to
occasionally accept patterns outside of the target
cluster but we are not tolerant when it tries to
accept more patterns outside of the target cluster
than patterns in it. Note that when such patterns
are accepted they will be moved to the target
cluster and invoke the recomputation of
Cluster_Conf of NE pairs connected by these
patterns. The ranking functions in step 1 and 2

4 The Cluster_Conf of <Clinton, Arkansas> related
to the LocatedIn relation is indeed very low (less
than 0.1) in our experiments.

insure that the procedure will only accept
patterns which can gain strong support from NE
pairs that are strongly associated with the target
cluster and are connected by many confident
patterns.

4 Experiments

4.1 Corpus

Our corpora contain 37 years of news articles:
TDT5, NYT(94-00), APW(98-00),
XINHUA(96-00), WSJ(94-96), LATWP(94-97),
REUFF(94-96), REUTE(94-96), and
WSJSF(87-94). It contains roughly 65 million
sentences and 1.3 billion tokens.

4.2 Seeds

Seeds of the 3 relations we are going to test are
given in table 2. LocatedIn detects relation
between PERSON and LOCATION/GPE;
Social (SOC) detects social relations (either
business or family) between PERSON and
PERSON; Employment (EMP) detects
employment relations between PERSON and
ORGANIZATION.

Table 2. Seed Patterns
Relation Seeds
Located-
in

nsubj' visit dobj
nsubj' travel prep_to
poss' trip prep_to

SOC appos friend/lawyer poss
appos son/spokesman prep_of/prep_for
nsubj' fire dobj
nsubjpass' fire agent

 EMP5 appos chairman/executive/founder prep_of
appos editor prep_of
appos director/head/officer/analyst prep_at
appos manager prep_with

(nsubj, dobj, prep, appos, poss, nsubjpass, agent
stand for subject, direct object, preposition,
apposition, possessive, passive nominal subject
and complement of passive verb. The quote
marks in Table 2 and Table 3 denote inverse
dependencies in the dependency path.)

We work on these three relations mainly
because of the availability of benchmark
evaluation data. These are the most frequent
relations in our evaluation data.

5 We provide more seeds (executives and staff) for
EMP because it has been pointed out in (Sun, 2009)
that EMP contains a lot of job titles.

1198

4.3 Unsupervised Experiments

We run the clustering algorithm described in
Section 2 using all the 37 years’ data. We
require that a pattern match at least 7 distinct
NE pairs and that an NE pair must be connected
by at least 7 unique patterns. As a result, there
are 635,128 patterns (22,225 unique ones) used
in experiments. We use 0.005 as the cutoff
threshold of complete linkage. The threshold is
decided by trying a series of thresholds and
searching for the maximal6 one that is capable
of placing the seed patterns for each relation
into a single cluster. Table 3 shows the top 15
patterns (ranked by their corpus frequency) of
the cluster into which our LocatedIn seeds fall.

Table 3. Top 15 patterns in the LocatedIn Cluster
Index Pattern Frequency
1 nsubj' said prep_in 2203
2 nsubj' visit dobj 1831
3 poss' visit prep_to 1522
4 nsubj' return prep_to 1394
5 nsubj' tell prep_in 1363
6 nsubj' be prep_in 1283
7 nsubj' arrive prep_in 1113
8 nsubj' leave dobj 1106
9 nsubj' go prep_to 926
10 nsubj' fly prep_to 700
11 nsubj' come prep_to 658
12 appos leader poss 454
13 poss' trip prep_to 442
14 rcmod be prep_in 419
15 nsubj' make prep_in 418

4.4 Semi-supervised Experiments

To provide strong statistical evidence, we divide
our data into 10 folds (combinations of news
articles from different years and different news
resources). We then run both the standard and
our new bootstrapping on the 10 folds. For both
procedures, we accept n patterns in a single
iteration (n is initialized to 2 and set to n + 1
after each iteration). We run 50 iterations in the
standard bootstrapping and 1,325 patterns are
accepted for each fold and each relation. Our
new bootstrapping procedure stops when there
are two consecutive iterations in which more
than half of the newly accepted patterns do not
belong to the target cluster. Thus the number of

6 We choose the maximal value because many
clusters will be merged to a single one when the
threshold is close to 0, making the clusters too
general to be useful.

patterns accepted for each fold and each relation
differs as the last iteration differs.

4.5 Evaluation

The output of our bootstrapping procedures is
60 sets of patterns (3 relations × 2 methods ×
10 folds). We need a data set and evaluation
method which can compare their effectiveness
equally and consistently.

Evaluation data: ACE 2004 training data.
ACE does not provide relation annotation
between each pair of names. For example, in
“US President Clinton said that the United
States …” ACE annotates an EMP relation
between the name “US” and nominal
“President”. There is no annotation between
“US” and “Clinton”. However, it provides entity
co-reference information which connects
“President” to “Clinton”. So we take advantage
of this entity co-reference information to
automatically re-annotate the relations where
possible to link a pair of names within a single
sentence. The re-annotation yields an EMP
relation between “US” and “Clinton”. The re-
annotation is reviewed by hand to avoid adding
a relation linking “Clinton” and the more distant
co-referent “United States”, even though “US”
and “the United States” refer to the same entity.
This data set provides us with 412/3492
positive/negative relation instances between
names. Among the 412 positive instances, there
are 188/117/35 instances for
EMP/LocatedIn/SOC relations.

Evaluation method: We adopt a direct
evaluation method, i.e., use our sets of patterns
to extract relations between names on ACE data.
Applying patterns to a benchmark data set can
provide us with better precision/recall analyses.
We use a strict pattern match strategy. We can
certainly take advantage of loose match or add
patterns as additional features to feature-based
relation extraction systems to boost our
performance but we do not want these to
complicate the comparison of the standard and
our new bootstrapping procedures.

4.6 Results and Analyses

We average our results on the 10 folds. We plot
precision against recall and semantic drift rate
against iterations (Drift). We compute the
semantic drift rate as the percentage of false

1199

Figure 2. Performance for EMP/LocatedIn/SOC

EMP Precision vs. Recall

Recall

0.0 .1 .2 .3 .4 .5 .6

P
re

ci
si

on

.5

.6

.7

.8

.9

1.0

LocatedIn Precision vs. Recall

Recall

0.00 .05 .10 .15 .20 .25 .30 .35

P
re

ci
si

on

.3

.4

.5

.6

.7

.8

.9

1.0

1.1

SOC Precision vs. Recall

Recall

.05 .10 .15 .20 .25 .30 .35 .40 .45

Pr
ec

is
io

n

0.0

.2

.4

.6

.8

1.0

1.2

positive instances belonging to ACE relations
other than the target relation. Take EMP for
example, we compute how many of the false
positive instances belonging to other relations
such as LocatedIn, SOC and other ACE
relations. In all plots, red solid lines represent
bootstrapping with guidance from clusters and
blue dotted lines standard bootstrapping.
 There are a number of conclusions that can be

Figure 3. Drift for EMP/LocatedIn/SOC

EMP Drift

Iteration

0 10 20 30 40 50 60

D
rif

t

0.00

.05

.10

.15

.20

.25

.30

LocatedIn Drift

Iteration

0 10 20 30 40 50 60

D
rif

t

0.00

.05

.10

.15

.20

.25

.30

.35

SOC Drift

Iteration

0 10 20 30 40 50 60

D
rif

t

0.00

.01

.02

.03

.04

.05

.06

.07

drawn from these results. We are particularly
interested in the following two questions: To
what extent did we prevent semantic drift by the
guidance of pattern clusters? Did we stop at the
right point, i.e., can we keep high precision
while maintaining near maximal recall?

1) It is obvious from the drift curves that our
bootstrapping effectively prevents semantic drift.
Indeed, there is no drift at all when LocatedIn

1200

and SOC learners terminate. Although drift
indeed occurs in the EMP relation, its curve is
much lower than that of the standard
bootstrapping.

2) Our new procedure terminates when the
precision is still high while maintaining a
reasonable recall. Our bootstrapping for
EMP/SOC/LocatedIn terminates at F-measures
of 60/37/28 (in percentage). We conducted the
Wilcoxon Matched-Pairs Signed-Ranks Test on
the 10 folds, comparing the F-measures of the
last iteration of our bootstrapping guided by
clusters and the iteration which provides the
best average F-measure over the 3 relations of
the standard bootstrapping. The results show
that the improvement of using clusters to guide
bootstrapping is significant at a 97% confidence
level.

We hypothesize that when working on
dozens or hundreds of relations the gain of our
procedure will be even bigger since we can
effectively prevent inter-class errors.

5 Related Work

Recent research starts exploring unlabeled data
for discriminative learning. Miller et al., (2004)
augmented name tagging training data with
hierarchical word clusters and encoded cluster
membership in features for improving name
tagging. Lin and Wu (2009) further explored a
two-stage cluster-based approach: first
clustering phrases and then relying on a
supervised learner to identify useful clusters and
assign proper weights to cluster features. Other
similar work includes (Wong and Ng, 2007) for
name tagging, and (Koo et. al., 2008) for
dependency parsing.

While similar in spirit, our supervision is
minimal, i.e., we only use a few seeds while the
above approaches rely on a large amount of
labeled data. To the best of our knowledge, the
theme explored in this paper is the first study of
using pattern clusters for preventing semantic
drift in semi-supervised pattern discovery.

Recent research also explored the idea of
driving SSL with explicit constraints
constructed by hand such as identifying mutual
exclusion of different categories (i.e., people
and sport are mutually exclusive). This is
termed constraint-driven learning in (Chang et
al., 2007), coupled learning in (Carlson et al.,

2010) and counter-training in (Yangarber, 2003).
The learning quality largely depends on the
completeness of explicit constraints. While we
share the same goal, i.e., to prevent semantic
drift, we rely on unsupervised clusters to
discover implicit constraints for us instead of
generating constraints by hand.

Our research is also close to semi-supervised
IE pattern learners including (Riloff and Jones,
1999), (Agichtein and Gravano, 2000),
(Yangarber et al., 2000), and many others.
While they conduct bootstrapping on unlabeled
data directly, we first cluster unlabeled data and
then bootstrap with help from clusters.

There are also clear connections to work on
unsupervised relation discovery (Hasegawa et
al., 2004; Zhang et al., 2005; Rosenfeld and
Feldman, 2007). They group pairs of names into
relation clusters based on the contexts between
names while we group the contexts/patterns into
clusters based on features extracted from names.

6 Conclusions and Future Work

We presented a simple algorithm for clustering
patterns and used pattern clusters to guide semi-
supervised semantic pattern discovery. The
novel bootstrapping procedure can achieve the
best F-1 score while maintaining a good trade-
off between precision and recall. We also
demonstrated that it can effectively prevent
semantic drift and naturally terminate.

We plan to extend this idea to improve
relation extraction performance with a richer
model as used in (Zhang et al., 2004; Zhou et al.,
2008) than a simple pattern learner. The feature
space will be much larger than the one adopted
in this paper. We will investigate how to
overcome the memory bottleneck when we
apply rich models to millions of instances.

7 Acknowledgements

We would like to thank Prof. Satoshi Sekine for
his useful suggestions.

References
Steven Abney. 2008. Semisupervised Learning for

Computational Linguistics, Chapman and Hall.

Eugene Agichtein and Luis Gravano. 2000. Snowball:
Extracting relations from large plain-text

1201

collections. In Proc. of the Fifth ACM
International Conference on Digital Libraries.

Sergey Brin. Extracting patterns and relations from
the World-Wide Web. 1998. In Proc. of the 1998
Intl. Workshop on the Web and Databases.

Razvan C. Bunescu and Raymond J. Mooney. 2005.
A Shortest Path Dependency Kernel for Relation
Extraction. In Proc. of HLT/EMNLP.

Andrew Carlson, Justin Betteridge, Richard C. Wang,
Estevam Rafael Hruschka Junior and Tom M.
Mitchell. 2010. Coupled Semi-Supervised
Learning for Information Extraction. In WSDM.

Ming-Wei Chang, Lev Ratinov, and Dan Roth. 2007.
Guiding semisupervision with constraint-driven
learning. In Proc. of ACL-2007, Prague.

Zheng Chen and Heng Ji. 2009. Can One Language
Bootstrap the Other: A Case Study on Event
Extraction. In NAACL HLT Workshop on Semi-
supervised Learning for NLP.

Michael Collins and Yoram Singer. 1999.
Unsupervised models for named entity
classication. In Proc. of EMNLP-99.

James R. Curran, Tara Murphy, and Bernhard Scholz.
2007. Minimising semantic drift with Mutual
Exclusion Bootstrapping. In Proc. of PACLING.

Ralph Grishman, David Westbrook and Adam
Meyers. 2005. NYU’s English ACE 2005 System
Description. ACE 2005 Evaluation Workshop.

Zellig S. Harris. 1954. Distributional Structure. Word.
Vol 10,1954, 146-162.

Takaaki Hasegawa, Satoshi Sekine, Ralph Grishman.
2004. Discovering Relations among Named
Entities from Large Corpora. In Proc. of ACL-04.

Marti Hearst. 1992. Automatic acquisition of
hyponyms from large text corpora. In Proc. of the
14th Intl. Conf. on Computational Linguistics.

Terry Koo, Xavier Carreras, and Michael Collins.
2008. Simple Semi-supervised Dependency
Parsing. In Proceedings of ACL-08: HLT.

Dekang Lin and Patrick Pantel. 2001. Discovery of
inference rules for question-answering. Natural
Language Engineering, 7(4):343–360.

Dekang Lin and Xiaoyun Wu. 2009. Phrase
Clustering for Discriminative Learning. In
Proceedings of the ACL and IJCNLP 2009.

Marie-Catherine de Marneffe and Christopher D.
Manning. 2008. The Stanford typed dependencies
representation. In COLING Workshop on Cross-
framework and Cross-domain Parser Evaluation.

Scott Miller, Jethran Guinness and Alex Zamanian.
2004. Name Tagging with Word Clusters and
Discriminative Training. In Proc. of HLT-NAACL.

Patrick Pantel and Marco Pennacchiotti. 2006.
Espresso: Leveraging Generic Patterns for
Automatically Harvesting Semantic Relations. In
Proc. of COLING-06 and ACL-06.

Deepak Ravichandran and Eduard Hovy. 2002.
Learning Surface Text Patterns for a Question
Answering System. In Proc. of ACL-2002.

Ellen Riloff and Rosie Jones. 1999. Learning
dictionaries for information extraction by multi-
level bootstrapping. In Proc. of AAAI-99.

Benjamin Rosenfeld, Ronen Feldman. 2007.
Clustering for Unsupervised Relation
Identification. In Proc. of CIKM ’07.

Mark Stevenson and Mark A. Greenwood. 2006.
Comparing Information Extraction Pattern
Models. In Proceedings of the Workshop on
Information Extraction Beyond The Document.

Mark Stevenson and Mark A. Greenwood. 2005. A
Semantic Approach to IE Pattern Induction. In
Proc. of the 43rd Annual Meeting of the ACL.

Ang Sun. 2009. A Two-stage Bootstrapping
Algorithm for Relation Extraction. In RANLP-09.

Yingchuan Wong and Hwee Tou Ng. 2007. One
Class per Named Entity: Exploiting Unlabeled
Text for Named Entity Recognition. In Proc. of
IJCAI-07.

Roman Yangarber. 2003. Counter-training in the
discovery of semantic patterns. In Proc. of ACL.

Roman Yangarber, Ralph Grishman, Pasi
Tapanainen and Silja Huttunen. 2000. Automatic
acquisition of domain knowledge for information
extraction. In Proc. of COLING-2000.

David Yarowsky. 1995. Unsupervised word sense
disambiguation rivaling supervised methods. In
Proc. of ACL-95.

Min Zhang, Jian Su, Danmei Wang, Guodong Zhou,
and Chew Lim Tan. 2005. Discovering Relations
Between Named Entities from a Large Raw
Corpus Using Tree Similarity-Based Clustering.
In IJCNLP 2005, LNAI 3651, pp. 378 – 389.

Zhu Zhang. (2004). Weakly supervised relation
classification for information extraction. In Proc.
of CIKM’2004.

GuoDong Zhou, JunHui Li, LongHua Qian and
QiaoMing Zhu. 2008. Semi-supervised learning
for relation extraction. IJCNLP’2008:32-39.

1202

