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Abstract 

We present a simple algorithm for 
clustering semantic patterns based on 
distributional similarity and use cluster 
memberships to guide semi-supervised 
pattern discovery. We apply this 
approach to the task of relation 
extraction. The evaluation results 
demonstrate that our novel 
bootstrapping procedure significantly 
outperforms a standard bootstrapping. 
Most importantly, our algorithm can 
effectively prevent semantic drift and 
provide semi-supervised learning with a 
natural stopping criterion. 

1 Introduction 

The Natural Language Processing (NLP) 
community faces new tasks and new domains 
all the time. Without enough labeled data of a 
new task or a new domain to conduct supervised 
learning, semi-supervised learning (SSL) is 
particularly attractive to NLP researchers since 
it only requires a handful of labeled examples, 
known as seeds.  SSL starts with these seeds to 
train an initial model; it then applies this model 
to a large volume of unlabeled data to get more 
labeled examples and adds the most confident 
ones as new seeds to re-train the model. This 
iterative procedure has been successfully 
applied to a variety of NLP tasks, such as 
hypernym/hyponym extraction (Hearst, 1992), 
word sense disambiguation (Yarowsky, 1995), 
question answering (Ravichandran and Hovy, 
2002), and information extraction (Brin, 1998; 
Collins and Singer, 1999; Riloff and Jones, 
1999; Agichtein and Gravano, 2000; Yangarber 
et al., 2000; Chen and Ji, 2009).  

While SSL can give good performance for 
many tasks, it is a procedure born with two 
defects. One is semantic drift.  When SSL is 
under-constrained, the semantics of newly 
promoted examples might stray away from the 
original meaning of seed examples as discussed 
in (Brin, 1998; Curran et al., 2007; Carlson et 
al., 2010). For example, a SSL procedure to 
learn semantic patterns for the LocatedIn 
relation (PERSON in LOCATION/GPE1) might 
accept patterns for the Employment relation 
(employee of GPE / ORGANIZATION) 
because many unlabeled pairs of names are 
connected by patterns belonging to multiple 
relations. Patterns connecting <Bill Clinton, 
Arkansas> include LocatedIn patterns such as 
“visit”, “arrive in” and “fly to”, but also patterns 
indicating other relations such as “governor of”, 
“born in”, and “campaign in”. Similar analyses 
can be applied to many other examples such as 
<Bush, Texas> and <Schwarzenegger, 
California>. Without careful design, SSL 
procedures usually accept bogus examples 
during certain iterations and hence the learning 
quality degrades.  

The other shortcoming of SSL is its lack of 
natural stopping criteria. Most SSL algorithms 
either run a fixed number of iterations 
(Agichtein and Gravano, 2000) or run against a 
separate labeled test set to find the best stopping 
criterion (Abney, 2008). The former solution 
needs a human to keep eyeballing the learning 
quality of different iterations and set ad-hoc 
thresholds accordingly. The latter requires a 

                                                 
1 These are the types of relations and names used in 
the NIST-sponsored ACE evaluation. 
http://www.itl.nist.gov/iad/mig//tests/ace/. GPE 
represents a Geo-Political Entity — an entity with 
land and a government. 
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separate labeled test set for each new task or 
domain. They make SSL less appealing than it 
could be since the intention of using SSL is to 
minimize supervision.  

In this paper, we propose a novel learning 
framework which can automatically monitor the 
semantic drift and find a natural stopping 
criterion for SSL. Central to our idea is that 
instead of using unlabeled data directly in SSL, 
we first cluster the seeds and unlabeled data in 
an unsupervised way before conducting SSL. 
The semantics of unsupervised clusters are 
usually unknown. However, the cluster to which 
the seeds belong can serve as the target cluster. 
Then we guide the SSL procedure using the 
target cluster. Under such learning settings, 
semantic drift can be automatically detected and 
a stopping criterion can be found:  stopping the 
SSL procedure when it tends to accept examples 
belonging to clusters other than the target 
cluster.  

We demonstrate in this paper the above 
general idea by considering a bootstrapping 
procedure to discover semantic patterns for 
extracting relations between named entities 
(NE). Standard bootstrapping usually starts with 
some high-precision and high frequency seed 
patterns for a specific relation to match named 
entities, then it uses newly promoted entities to 
search for additional confident patterns 
connecting them. It is a procedure driven by the 
duality between patterns and entities: a good 
pattern can connect more than one pair of 
named entities and a pair of named entities is 
usually connected by more than one good 
pattern.  

We present a new bootstrapping procedure in 
which we first cluster the seed and other 
patterns in a large corpus based on distributional 
similarity. We then guide the bootstrapping 
using the target cluster.  

The next section describes our unsupervised 
pattern clusters. Section 3 presents the details of 
our novel bootstrapping procedure with 
guidance from pattern clusters. We evaluate our 
algorithms in Section 4 and present related work 
in Section 5. We draw conclusions and point to 
future work in Section 6. 

2 Pattern Clusters 

2.1 Distributional Hypothesis 

The Distributional Hypothesis (Harris, 1954) 
states that words that tend to occur in similar 
contexts tend to have similar meanings. Lin and 
Pantel (2001) extended this hypothesis to cover 
patterns (dependency paths in their case). The 
idea of the extension is that if two patterns tend 
to occur in similar contexts then the meanings 
of the patterns tend to be similar. For example, 
in “X solves Y” and “X finds a solution to Y”, 
“solves” and “finds a solution to” share many 
common Xs and Ys and hence are similar to 
each other. This extended distributional 
hypothesis serves as the basis on which we 
compute similarities for each pair of patterns. 

2.2 Pattern Representation — Shortest 
Dependency Path 

We adopt a shortest dependency path (SDP) 
representation of relation patterns. SDP has 
demonstrated its power in kernel methods for 
relation extraction (Bunescu and Mooney, 2005). 
Its capability in capturing most of the 
information of interest is also evidenced by a 
systematic comparison of effectiveness of 
different information extraction (IE) patterns in 
(Stevenson and Greenwood, 2006) 2 . For 
example, “nsubj  met  prep_in” is able to 
represent LocatedIn between “Gates” and 
“Seattle” while a token-based pattern would be 
much less general because it would have to 
specify all the intervening tokens. 

 
Figure 1.  Stanford dependency tree for sentence 
“Gates, Microsoft’s chairman, met with President 
Clinton in Seattle”.  

 
                                                 
2 SDP is equivalent to the linked chains described in 
Stevenson and Greenwood (2006) when the 
dependency of a sentence is represented as a tree not 
a graph. 
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2.3 Pre-processing 

We tag and parse each sentence in our corpus 
with the NYU named entity tagger 3  and the 
Stanford dependency parser. Then for each pair 
of names in the dependency tree, we extract the 
SDP connecting them. Names in the path are 
replaced by their types. We require SDP to 
contain at least one verb or noun. We use the 
base form of words in SDP. We also require the 
length of the path (defined as the number of 
dependency relations and words in it) to be 
between 3 and 7. Short paths are more likely to 
be generic patterns such as “of” and can be 
handled separately as in (Pantel and 
Pennacchiotti, 2006). Very long paths are more 
likely to be non-relation patterns and too sparse 
to be useful even if they are relation patterns. 

2.4 Clustering Algorithm 

The basic idea of our clustering algorithm is to 
group all the paths (including the seed paths 
used later for SSL) in our corpus into different 
clusters based on distributional similarities. We 
first extract a variety of features from the named 
entities X and Y connected by a path P as shown 
in Table 1. We then compute an analogue of tf-
idf for each feature f of P as follows: tf as the 
number of corpus instances of P having feature f 
divided by the number of instances of P; idf as 
the total number of paths in the corpus divided 
by the number of paths with at least one 
instance with feature f. Then we adopt a vector 
space model, i.e., we construct a tf-idf feature 
vector for each P.  Now we compute the 
similarity between two vectors/paths using 
Cosine similarity and cluster all the paths using 
Complete Linkage. 

Some technical details deserve more attention 
here.  

Feature extraction: We extract more types 
of features than the DIRT paraphrase discovery 
procedure used in (Lin and Pantel, 2001). Lin 
and Pantel (2001) considered X and Y separately 
while we also use the conjunction of X and Y. 
We also extract named entity types as features 
since we are interested in discovering relations 
among different types of names. Some names 
are ambiguous such as Jordan. We hope 

                                                 
3 Please refer to Grishman et al. (2005) and 
http://cs.nyu.edu/grishman/jet/license.html 

coupling the type with the string of the name 
may alleviate the ambiguity. 

 
Table 1. Sample features for “X visited Y” as in “Jordan 

visited China” 
Feature Type Example 

Name Type of X LEFT_PERSON 
Name Type of Y RIGHT_GPE 
Combination of 

Types of X and Y 
PERSON_GPE 

Conjunction of String 
and Type of X 

LEFT_Jordan_PERSON 

Conjunction of String 
and Type of Y 

RIGHT_China_GPE 

Conjunction of 
Strings and Types of 

X and Y 

Jordan_PERSON_China_GPE 

 
Similarity measure and clustering method: 

There are many ways to compute the 
similarity/distance between two feature vectors, 
such as Cosine, Euclidean, Hamming, and 
Jaccard coefficient. There are also many 
standard clustering algorithms. A systematic 
comparison of the performance of different 
distance measures and clustering algorithms is 
beyond the scope of this paper.  

3 Semi-supervised Relation Pattern 
Discovery 

We first present a standard bootstrapping 
algorithm coupled with analyses of some of its 
shortcomings. Then we describe our new 
bootstrapping procedure which is guided by 
pattern clusters.   

3.1 Bootstrapping without Guidance  

The procedure associates a precision between 0 
and 1 with each pattern, and a confidence 
between 0 and 1 with each name pair. Initially 
the seed patterns for a specific relation R have 
precision 1 and all other patterns 0. It consists of 
the following steps: 

Step1: Use seed patterns to match new NE 
pairs and evaluate NE pairs. 

Intuitively, for a newly matched NE pair iN , 
if many of the k patterns connecting the two 
names are high-precision patterns then the name 
pair has a high confidence. The confidence is 
computed by the following formula. 

1

( ) 1 (1 Pr ( ))
k

i j
j

Conf N ec p
=

= − −∏  (1) 
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Problem: While the intuition is correct, in 
practice this will over-rank NE pairs which are 
not only matched by patterns belonging to the 
target relation R but are also connected by 
patterns of many other relations. This is because 
of the initial settings used in many SSL systems: 
seeds are assigned high confidence. Thus all NE 
pairs matched by initial seed patterns will have 
very high confidence.  

Suppose the target relation is LocatedIn, and 
“visited” is a seed pattern; then the <Clinton, 
Arkansas> example will be over-rated because 
we cannot take into account that it would also 
match patterns of other relations such as 
PersonGovernorOfLocation and 
PersonBornInLocation in a real corpus. This 
will cause a vicious circle, i.e., bogus NE pairs 
extract more bogus patterns which further 
extract more bogus NE pairs. We believe this 
flaw of the initial settings partially results in the 
semantic drift problem.  

One can imagine that this is not a problem 
that can be solved by using a different formula 
to replace the one presented here. A possible 
solution is to study the structure of unlabeled 
data (NE pairs in our case) and integrate this 
structure information into the initial settings. 
Indeed, this is where pattern clusters come into 
play. We will demonstrate this in Section 3.2. 

Step 2: Use NE pairs to search for new 
patterns and rank patterns. 

Similar to the intuition in Step 1, for a pattern 
p, if many of the NE pairs it matches are very 
confident then p has many supporters and 
should have a high ranking. We can use formula 
(2) to estimate the confidence of patterns and 
rank them. 

( )( ) log ( )
| |

Sup pConf p Sup p
H

= •   (2) 

Here |H| is the number of unique NE pairs 
matched by p and Sup(p) is the sum of the 
support it can get from the |H| pairs: 

| |

1
( ) ( )

H

j
j

Sup p Conf N
=

= ∑   (3) 

The precision of p is given by the average 
confidence of the NE pairs matched by p. 

( )Pr ( )
| |

Sup pec p
H

=     (4) 

Formula (4) normalizes the precision to range 
from 0 to 1. As a result the confidence of each 
NE pair is also normalized to between 0 and 1. 

Step 3: Accept patterns 
Most systems accept the K top ranked 

patterns in Step 2 as new seeds, subject to some 
restrictions such as requiring the differences of 
confidence of the K patterns to be within a small 
range. 

 Step 4: Loop or stop 
The procedure now decides whether to repeat 

from Step 1 or to terminate. 
Most systems simply do not know when to 

stop. They either run a fixed number of 
iterations or use some held-out data to find one 
criterion that works the best for the held-out 
data. 

3.2 Bootstrapping Guided by Clusters 

Recall that our clustering algorithm in Section 2 
provides us with K clusters, each of which 
contains n (n differs in different clusters) 
patterns. Every pattern in our corpus now has a 
cluster membership (the seed patterns have the 
same membership).  

The most important benefit from our pattern 
clusters is that now we can measure how 
strongly a NE pair iN  is associated with our 
target cluster tC  (the one to which the seed 
patterns belong).  

( , )
Pr ( ) t

i
p C

i t

freq N p
ob N C

m
∈∈ =
∑

      (5) 

Here ( , )ifreq N p  is the number of times p 
matches iN  and m is the total number of pattern 
instances matching iN . 

We integrate this prior cluster distribution of 
each NE pair into the initial settings of our new 
bootstrapping procedure.  

Step1: Use seed patterns to match new NE 
pairs and evaluate NE pairs. 

 Assumption: A good NE pair must be 
strongly associated with the target cluster and 
can be matched by multiple high-precision 
patterns.  

So we evaluate a NE pair by the harmonic 
mean of two confidence scores, namely the 
confidence as its association with the target 
cluster and the confidence given by the patterns 
matching it. 
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_ ( ) _ ( )
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i

i i

Semi Conf N Cluster Conf NConf N
Semi Conf N Cluster Conf N

•
= •

+
     (6) 

1

_ ( ) 1 (1 ( ))
k

i j
j

Semi Conf N Prec p
=

= − −∏  (7) 

_ ( ) Pr ( )i i tCluster Conf N ob N C= ∈      (8) 
Under such settings, <Clinton, Arkansas> 

will be assigned a lower confidence score for 
the LocatedIn relation than it is in the standard 
bootstrapping. Even if we assign high precision 
to our seed patterns such as “visited” and 
consequently the Semi_Conf is very high, it can 
still be discounted by the Cluster_Conf4.   

Step 2: Use NE pairs to search for new 
patterns and rank patterns. 

All the measurement functions are the same 
as those used in the standard bootstrapping. 
However, with better ranking of NE pairs in 
Step 1, the patterns are also ranked better than 
they are in the standard bootstrapping. 

Step 3: Accept patterns 
We also accept the K top ranked patterns.  
Step 4: Loop or stop 
Since each pattern in our corpus has a cluster 

membership, we can monitor the semantic drift 
easily and naturally stop: it drifts when the 
procedure tries to accept patterns which do not 
belong to the target cluster; we can stop when 
the procedure tends to accept more patterns 
outside of the target cluster. 

If our clustering algorithm can give us perfect 
pattern clusters, we can stop bootstrapping 
immediately after it accepts the first pattern not 
belonging to the target cluster. Then the 
bootstrapping becomes redundant since all it 
does is to consume the patterns of the target 
cluster.  

Facing the reality of the behavior of many 
clustering algorithms, we allow the procedure to 
occasionally accept patterns outside of the target 
cluster but we are not tolerant when it tries to 
accept more patterns outside of the target cluster 
than patterns in it. Note that when such patterns 
are accepted they will be moved to the target 
cluster and invoke the recomputation of 
Cluster_Conf of NE pairs connected by these 
patterns. The ranking functions in step 1 and 2 

                                                 
4 The Cluster_Conf of <Clinton, Arkansas> related 
to the LocatedIn relation is indeed very low (less 
than 0.1) in our experiments. 

insure that the procedure will only accept 
patterns which can gain strong support from NE 
pairs that are strongly associated with the target 
cluster and are connected by many confident 
patterns.  

4 Experiments 

4.1 Corpus 

Our corpora contain 37 years of news articles: 
TDT5, NYT(94-00), APW(98-00), 
XINHUA(96-00), WSJ(94-96), LATWP(94-97), 
REUFF(94-96), REUTE(94-96), and 
WSJSF(87-94). It contains roughly 65 million 
sentences and 1.3 billion tokens.  

4.2 Seeds 

Seeds of the 3 relations we are going to test are 
given in table 2. LocatedIn detects relation 
between PERSON and LOCATION/GPE; 
Social (SOC) detects social relations (either 
business or family) between PERSON and 
PERSON; Employment (EMP) detects 
employment relations between PERSON and 
ORGANIZATION.  

 
Table 2.  Seed Patterns 
Relation Seeds 
Located-
in 

nsubj' visit dobj 
nsubj' travel prep_to 
poss' trip prep_to 

SOC appos friend/lawyer poss 
appos son/spokesman prep_of/prep_for 
nsubj' fire dobj 
nsubjpass' fire agent 

 EMP5 appos chairman/executive/founder prep_of 
appos editor prep_of  
appos director/head/officer/analyst prep_at 
appos manager prep_with 

 
(nsubj, dobj, prep, appos, poss, nsubjpass, agent 
stand for subject, direct object, preposition, 
apposition, possessive, passive nominal subject 
and complement of passive verb. The quote 
marks in Table 2 and Table 3 denote inverse 
dependencies in the dependency path.) 

We work on these three relations mainly 
because of the availability of benchmark 
evaluation data. These are the most frequent 
relations in our evaluation data.  
                                                 
5 We provide more seeds (executives and staff) for 
EMP because it has been pointed out in (Sun, 2009) 
that EMP contains a lot of job titles.  
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4.3 Unsupervised Experiments 

We run the clustering algorithm described in 
Section 2 using all the 37 years’ data. We 
require that a pattern match at least 7 distinct 
NE pairs and that an NE pair must be connected 
by at least 7 unique patterns. As a result, there 
are 635,128 patterns (22,225 unique ones) used 
in experiments. We use 0.005 as the cutoff 
threshold of complete linkage. The threshold is 
decided by trying a series of thresholds and 
searching for the maximal6 one that is capable 
of placing the seed patterns for each relation 
into a single cluster. Table 3 shows the top 15 
patterns (ranked by their corpus frequency) of 
the cluster into which our LocatedIn seeds fall.  

 
Table 3.  Top 15 patterns in the LocatedIn Cluster 
Index Pattern Frequency 
1 nsubj' said prep_in 2203 
2 nsubj' visit dobj 1831 
3 poss' visit prep_to 1522 
4 nsubj' return prep_to 1394 
5 nsubj' tell prep_in 1363 
6 nsubj' be prep_in 1283 
7 nsubj' arrive prep_in 1113 
8 nsubj' leave dobj 1106 
9 nsubj' go prep_to 926 
10 nsubj' fly prep_to 700 
11 nsubj' come prep_to 658 
12 appos leader poss 454 
13 poss' trip prep_to 442 
14 rcmod be prep_in 419 
15 nsubj' make prep_in 418 

4.4 Semi-supervised Experiments 

To provide strong statistical evidence, we divide 
our data into 10 folds (combinations of news 
articles from different years and different news 
resources). We then run both the standard and 
our new bootstrapping on the 10 folds. For both 
procedures, we accept n patterns in a single 
iteration (n is initialized to 2 and set to n + 1 
after each iteration). We run 50 iterations in the 
standard bootstrapping and 1,325 patterns are 
accepted for each fold and each relation. Our 
new bootstrapping procedure stops when there 
are two consecutive iterations in which more 
than half of the newly accepted patterns do not 
belong to the target cluster. Thus the number of 
                                                 
6  We choose the maximal value because many 
clusters will be merged to a single one when the 
threshold is close to 0, making the clusters too 
general to be useful. 

patterns accepted for each fold and each relation 
differs as the last iteration differs. 

4.5 Evaluation 

The output of our bootstrapping procedures is 
60 sets of patterns (3 relations ×  2 methods ×  
10 folds). We need a data set and evaluation 
method which can compare their effectiveness 
equally and consistently.  

Evaluation data: ACE 2004 training data. 
ACE does not provide relation annotation 
between each pair of names. For example, in 
“US President Clinton said that the United 
States …” ACE annotates an EMP relation 
between the name “US” and nominal 
“President”. There is no annotation between 
“US” and “Clinton”. However, it provides entity 
co-reference information which connects 
“President” to “Clinton”. So we take advantage 
of this entity co-reference information to 
automatically re-annotate the relations where 
possible to link a pair of names within a single 
sentence. The re-annotation yields an EMP 
relation between “US” and “Clinton”. The re-
annotation is reviewed by hand to avoid adding 
a relation linking “Clinton” and the more distant 
co-referent “United States”, even though “US” 
and “the United States” refer to the same entity. 
This data set provides us with 412/3492 
positive/negative relation instances between 
names. Among the 412 positive instances, there 
are 188/117/35 instances for 
EMP/LocatedIn/SOC relations.  

Evaluation method: We adopt a direct 
evaluation method, i.e., use our sets of patterns 
to extract relations between names on ACE data. 
Applying patterns to a benchmark data set can 
provide us with better precision/recall analyses. 
We use a strict pattern match strategy. We can 
certainly take advantage of loose match or add 
patterns as additional features to feature-based 
relation extraction systems to boost our 
performance but we do not want these to 
complicate the comparison of the standard and 
our new bootstrapping procedures.  

4.6 Results and Analyses  

We average our results on the 10 folds. We plot 
precision against recall and semantic drift rate 
against iterations (Drift). We compute the 
semantic drift rate as the percentage of false 
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Figure 2.  Performance for EMP/LocatedIn/SOC 
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positive instances belonging to ACE relations 
other than the target relation. Take EMP for 
example, we compute how many of the false 
positive instances belonging to other relations 
such as LocatedIn, SOC and other ACE 
relations. In all plots, red solid lines represent 
bootstrapping with guidance from clusters and  
blue dotted lines standard bootstrapping. 
  There are a number of conclusions that can be  

Figure 3.  Drift for EMP/LocatedIn/SOC 
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drawn from these results. We are particularly 
interested in the following two questions: To 
what extent did we prevent semantic drift by the 
guidance of pattern clusters? Did we stop at the 
right point, i.e., can we keep high precision 
while maintaining near maximal recall? 

1) It is obvious from the drift curves that our 
bootstrapping effectively prevents semantic drift. 
Indeed, there is no drift at all when LocatedIn 
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and SOC learners terminate. Although drift 
indeed occurs in the EMP relation, its curve is 
much lower than that of the standard 
bootstrapping.  

2) Our new procedure terminates when the 
precision is still high while maintaining a 
reasonable recall. Our bootstrapping for 
EMP/SOC/LocatedIn terminates at F-measures 
of 60/37/28 (in percentage). We conducted the 
Wilcoxon Matched-Pairs Signed-Ranks Test on 
the 10 folds, comparing the F-measures of the 
last iteration of our bootstrapping guided by 
clusters and the iteration which provides the 
best average F-measure over the 3 relations of 
the standard bootstrapping. The results show 
that the improvement of using clusters to guide 
bootstrapping is significant at a 97% confidence 
level. 

We hypothesize that when working on 
dozens or hundreds of relations the gain of our 
procedure will be even bigger since we can 
effectively prevent inter-class errors.  

5 Related Work 

Recent research starts exploring unlabeled data 
for discriminative learning. Miller et al., (2004) 
augmented name tagging training data with 
hierarchical word clusters and encoded cluster 
membership in features for improving name 
tagging. Lin and Wu (2009) further explored a 
two-stage cluster-based approach: first 
clustering phrases and then relying on a 
supervised learner to identify useful clusters and 
assign proper weights to cluster features. Other 
similar work includes (Wong and Ng, 2007) for 
name tagging, and (Koo et. al., 2008) for 
dependency parsing.  

While similar in spirit, our supervision is 
minimal, i.e., we only use a few seeds while the 
above approaches rely on a large amount of 
labeled data. To the best of our knowledge, the 
theme explored in this paper is the first study of 
using pattern clusters for preventing semantic 
drift in semi-supervised pattern discovery.  

Recent research also explored the idea of 
driving SSL with explicit constraints 
constructed by hand such as identifying mutual 
exclusion of different categories (i.e., people 
and sport are mutually exclusive). This is 
termed constraint-driven learning in (Chang et 
al., 2007), coupled learning in (Carlson et al., 

2010) and counter-training in (Yangarber, 2003). 
The learning quality largely depends on the 
completeness of explicit constraints. While we 
share the same goal, i.e., to prevent semantic 
drift, we rely on unsupervised clusters to 
discover implicit constraints for us instead of 
generating constraints by hand. 

Our research is also close to semi-supervised 
IE pattern learners including (Riloff and Jones, 
1999), (Agichtein and Gravano, 2000), 
(Yangarber et al., 2000), and many others. 
While they conduct bootstrapping on unlabeled 
data directly, we first cluster unlabeled data and 
then bootstrap with help from clusters. 

There are also clear connections to work on 
unsupervised relation discovery (Hasegawa et 
al., 2004; Zhang et al., 2005; Rosenfeld and 
Feldman, 2007). They group pairs of names into 
relation clusters based on the contexts between 
names while we group the contexts/patterns into 
clusters based on features extracted from names. 

6 Conclusions and Future Work 

We presented a simple algorithm for clustering 
patterns and used pattern clusters to guide semi-
supervised semantic pattern discovery. The 
novel bootstrapping procedure can achieve the 
best F-1 score while maintaining a good trade-
off between precision and recall. We also 
demonstrated that it can effectively prevent 
semantic drift and naturally terminate.  

We plan to extend this idea to improve 
relation extraction performance with a richer 
model as used in (Zhang et al., 2004; Zhou et al., 
2008) than a simple pattern learner. The feature 
space will be much larger than the one adopted 
in this paper. We will investigate how to 
overcome the memory bottleneck when we 
apply rich models to millions of instances.  
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