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Abstract

We investigate a series of targeted modifi-
cations to a data-driven dependency parser
of German and show that these can be
highly effective even for a relatively well
studied language like German if they are
made on a (linguistically and methodolog-
ically) informed basis and with a parser
implementation that allows for fast and
robust training and application. Mak-
ing relatively small changes to a range
of very different system components, we
were able to increase labeled accuracy on
a standard test set (from the CoNLL 2009
shared task), ignoring gold standard part-
of-speech tags, from 87.64% to 89.40%.
The study was conducted in less than five
weeks and as a secondary project of all
four authors. Effective modifications in-
clude the quality and combination of auto-
assigned morphosyntactic features enter-
ing machine learning, the internal feature
handling as well as the inclusion of global
constraints and a combination of different
parsing strategies.

1 Introduction

The past years have seen an enormous surge of in-
terest in dependency parsing, mainly in the data-
driven paradigm, and with a particular emphasis
on covering a whole set of languages with a single
approach. The reasons for this interest are mani-
fold; the availability of shared task data from var-

ious CoNLL conferences (among others (Buch-
holz and Marsi, 2006; Hajič et al., 2009)), com-
prising collections of languages based on a sin-
gle representation format, has certainly been in-
strumental. But likewise, the straightforward use-
fulness of dependency representations for a num-
ber of tasks plays an important role. The rela-
tive language independence of the representations
makes dependency parsing particularly attractive
for multilingually oriented work, including ma-
chine translation.

As data-driven approaches to dependency pars-
ing have reached a certain level of maturity, it may
appear as if further improvements of parsing per-
formance have to rely on relatively advanced tun-
ing procedures, such as sophisticated automatic
feature selection procedures or combinations of
different parsing approaches with complementary
strengths. It is indeed still hard to pinpoint the
structural properties of a language (or annotation
scheme) that make the parsing task easier for a
particular approach, so it may seem best to leave
the decision to a higher-level procedure.

This paper starts from the suspicion that
while sophisticated tuning procedures are cer-
tainly helpful, one should not underestimate the
potential of relatively simple modifications of the
experimental set-up, such as a restructuring of as-
pects of the dependency format, a targeted im-
provement of the quality of automatically as-
signed features, or a simplification of the feature
space for machine learning – the modifications
just have to be made in an informed way. This
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presupposes two things: (i) a thorough linguistic
understanding of the issues at hand, and (ii) a rel-
atively powerful and robust experimental machin-
ery which allows for experimentation in various
directions and which should ideally support a fast
turn-around cycle.

We report on a small pilot study exploring the
potential of relatively small, informed modifica-
tions as a way of improving parsing accuracy
even for a language that has received considerable
attention in the parsing literature, including the
dependency parsing literature, namely German.
Within a timeframe of five weeks and spending
only a few hours a day on the project (between a
group of four people), we were able to reach some
surprising improvements in parsing accuracy.

By way of example, we experimented with
modifications in a number of rather different sys-
tem areas, which we will discuss in the course
of this paper after a brief discussion of related
work and the data basis in Section 2. Based on a
second-order maximum spanning tree algorithm,
we used a hash kernel to facilitate the mapping
of the features onto their weights for a very large
number of features (Section 3); we modified the
dependency tree representation for prepositional
phrases, adding hierarchical structure that facili-
tates the picking up of generalizations (Section 4).
We take advantage of a morphological analyzer
to train an improved part-of-speech tagger (Sec-
tion 5), and we use knowledge about the structure
of morphological paradigms and the morphology-
syntax interface in the feature design for machine
learning (Section 6). As is known from other stud-
ies, the combination of different parsing strategies
is advantageous; we include a relatively simple
parser stacking procedure in our pilot study (Sec-
tion 7), and finally, we apply Integer Linear Pro-
gramming in a targeted way to add some global
constraints on possible combinations of arc labels
with a single head (Section 8). Section 9 offers a
brief conclusion.

2 Related Work and Data Basis

We quickly review the situation in data-driven de-
pendency parsing in general and on applying it to
German specifically.

The two main approaches to data-driven de-

pendency parsing are transition based dependency
parsing (Nivre, 2003; Yamada and Matsumoto,
2003; Titov and Henderson, 2007) and maximum
spanning tree based dependency parsing (Eis-
ner, 1996; Eisner, 2000; McDonald and Pereira,
2006). Transition based parsers typically have
a linear or quadratic complexity (Attardi, 2006).
Nivre (2009) introduced a transition based non-
projective parsing algorithm that has a worst case
quadratic complexity and an expected linear pars-
ing time. Titov and Henderson (2007) combined
a transition based parsing algorithm, using beam
search, with a latent variable machine learning
technique.

Maximum spanning tree based dependency
parsers decompose a dependency structure into
factors. The factors of the first order maximum
spanning tree parsing algorithm are edges consist-
ing of the head, the dependent (child) and the edge
label. This algorithm has a quadratic complexity.
The second order parsing algorithm of McDonald
and Pereira (2006) uses a separate algorithm for
edge labeling. In addition to the first order fac-
tors, this algorithm uses the edges to those chil-
dren which are closest to the dependent and has a
complexity of O(n3). The second order algorithm
of Carreras (2007) uses in addition to McDonald
and Pereira (2006) the child of the dependent oc-
curring in the sentence between the head and the
dependent as well as the edge from the dependents
to a grandchild. The edge labeling is an integral
part of the algorithm which requires an additional
loop over the labels. This algorithm therefore has
a complexity of O(n4). Johansson and Nugues
(2008) reduced the required number of loops over
the edge labels by considering only the edges that
existed in the training corpus for a distinct head
and child part-of-speech tag combination.

Predating the surge of interest in data-based
dependency parsing, there is a relatively long
tradition of dependency parsing work on Ger-
man, including for instance Menzel and Schröder
(1998) and Duchier and Debusmann (2001). Ger-
man was included in the CoNLL shared tasks in
2006 (Multilingual Dependency Parsing, (Buch-
holz and Marsi, 2006)) and in 2009 (Syntactic and
Semantic Dependencies in Multiple Languages,
(Hajič et al., 2009)) with data based on the TIGER
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corpus (Brants et al., 2002) in both cases. Since
the original TIGER treebank is in a hybrid phrase-
structural/dependency format with a relatively flat
hierarchical structure, conversion to a pure depen-
dency format involves some non-trivial steps. The
2008 ACL Workshop on Parsing German included
a specific shared task on dependency parsing of
German (Kübler, 2008), based on two sets of data:
again the TIGER corpus – however with a differ-
ent conversion routine than for the CoNLL tasks –
and the TüBa-D/Z corpus (Hinrichs et al., 2004).

In the 2006 CoNLL task and in the 2008 ACL
Workshop task, the task was dependency parsing
with given gold standard part-of-speech tags from
the corpus. This is a valid way of isolating the
specific subproblem of parsing, however it is clear
that the task does not reflect the application set-
ting which includes noise from automatic part-of-
speech tagging. In the 2009 CoNLL task, both
gold standard tags and automatically assigned tags
were provided. The auto-tagged version was cre-
ated with the standard model of the TreeTagger
(Schmid, 1995) (i.e., with no domain-specific tag-
ger training).

In our experiments, we used the data set from
the 2009 CoNLL task, for which the broadest
comparison of recent parsing approaches exists.
The highest-scoring system in the shared task was
Bohnet (2009) with a labeled accuracy (LAS) of
87.48%, on auto-tagged data. The highest-scoring
(in fact the only) system in the dependency pars-
ing track of the 2008 ACL Workshop on parsing
German was Hall and Nivre (2008) with an LAS
of 90.80% on gold-tagged data, and with a data
set that is not comparable to the CoNLL data.1

3 Hash Kernel

Our parser is based on a second order maximum
spanning tree algorithm and uses MIRA (Cram-
mer et al., 2006) as learning technique in combi-
nation with a hash kernel. The hash kernel has
a higher accuracy since it can use additional fea-
tures found during the creation of the dependency

1To get an idea of how the data sets compare, we trained
the version of our parser described in Section 3 (i.e., with-
out most of the linguistically informed improvements) on
this data, achieving labeled accuracy of 92.41%, compared
to 88.06% for the 2009 CoNLL task version.

tree in addition to the features extracted from the
training examples. The modification to MIRA is
simple: we replace the feature-index mapping that
maps the features to indices of the weight vector
by a random function. Usually, the feature-index
mapping in the support vector machine has two
tasks: The mapping maps the features to an index
and it filters out features that never occurred in a
dependency tree. In our approach, we do not filter
out these features, but use them as additional fea-
tures. It turns out that this choice improves pars-
ing quality. Instead of the feature-index mapping
we use the following hash function:2

h ← |(l xor(l ∨ 0xffffffff00000000 >> 32))% size|
The Hash Kernel for structured data uses the hash
function h : J → {1...n} to index φ where φ
maps the observations X to a feature space. We
define φ(x, y) as the numeric feature representa-
tion indexed by J . The learning problem is to fit
the function F so that the errors of the predicted
parse tree y are as low as possible. The scoring
function of the Hash Kernel is defined as:3

F (x, y) = −→w ∗ φ(x, y)
For different j, the hash function h(j) might gen-
erate the same value k. This means that the hash
function maps more than one feature to the same
weight which causes weight collisions. This pro-
cedure is similar to randomization of weights (fea-
tures), which aims to save space by sharing val-
ues in the weight vector (Blum, 2006; Rahimi
and Recht, 2008). The Hash Kernel shares values
when collisions occur that can be considered as
an approximation of the kernel function, because
a weight might be adapted due to more than one
feature. The approximation works very well with
a weight vector size of 115 million values.

With the Hash Kernel, we were able to improve
on a baseline parser that already reaches a quite
high LAS of 87.64% which is higher than the top
score for German (87.48%) in the CoNLL Shared
task 2009. The Hash Kernel improved that value
by 0.42 percentage points to 88.06%. In addition
to that, we obtain a large speed up in terms of pars-
ing time. The baseline parser spends an average of
426 milliseconds to parse a sentence of the test

2>> n shifts n bits right, and % is the modulo operation.
3−→w is the weight vector and the size of −→w is n.
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set and the parser with Hash Kernel only takes
126 milliseconds which is an increase in speed
of 3.4 times. We get the large speed up because
the memory access to a large array causes many
CPU cache misses which we avoid by replacing
the feature-index mapping with a hash function.
As mentioned above, the speedup influences the
experimenters’ opportunities for explorative de-
velopment since it reduces the turnaround time for
experimental trials.

4 Restructuring of PPs

In a first step, we applied a treebank transforma-
tion to our data set in order to ease the learning
for the parser. We concentrated on prepositional
phrases (PP) to get an idea how much this kind
of transformation can actually help a parser. PPs
are notoriously flat in the TIGER Treebank anno-
tation (from which our data are derived) and they
do not embed a noun phrase (NP) but rather attach
all parts of the noun phrase directly at PP level.
This annotation was kept in the dependency ver-
sion and it can cause problems for the parser since
there are two different ways of annotating NPs: (i)
for normal NPs where all dependents of the noun
are attached as daughters of the head noun and (ii)
for NPs in PPs where all dependents of the noun
are attached as daughters to the preposition thus
being sisters to their head noun. We changed the
annotation of PPs by identifying the head noun in
the PP and attaching all of its siblings to it. To find
the correct head, we used a heuristic in the style of
Magerman (1995). The head is chosen by taking
the rightmost daughter of the preposition that has
a category label according to the heuristic and is
labeled with NK (noun kernel element).

Table 1 shows the parser performance on the
data after PP-restructuring.4 The explanation for
the benefit of the restructuring is of course that

4Note that we are evaluating against a gold standard here
(and in the rest of the paper) which has been restructured as
well. With a different gold standard one could argue that the
absolute figures we obtain are not fully comparable with the
original CoNLL shared task. However, since we are doing
dependency parsing, the transformation does neither add nor
remove any nodes from the structure nor do we change any
labels. The only thing that is done during the transforma-
tion is the reattachment of some daughters of a PP. This is
only a small modification, and it is certainly linguistically
warranted.

now there is only one type of NP in the whole cor-
pus which eases the parser’s task to correctly learn
and identify them.

dev. set test set
LAS UAS LAS UAS

hash kernel 87.40 89.79 88.06 90.24
+restructured 87.49 89.97 88.30 90.44

Table 1: Parser performance on restructured data

Since restructuring parts of the corpus seems
beneficial, there might be other structures where
more consistent annotation could help the parser,
e. g., coordination or punctuation (like in the 2008
ACL Workshop data set, cp. Footnote 1).

5 Part-of-Speech Tagging

High quality part-of-speech (PoS) tags can greatly
improve parsing quality. Having a verb wrongly
analyzed as a noun and similar mistakes are very
likely to mislead the parser in its decision process.
A lot of the parser’s features include PoS tags and
reducing the amount of errors during PoS tagging
will therefore reduce misleading feature values as
well. Since the quality of the automatically as-
signed PoS tags in the German CoNLL ’09 data
is not state-of-the-art (see Table 2 below), we de-
cided to retag the data with our own tagger which
uses additional information from a symbolic mor-
phological analyzer to direct a statistical classifier.

For the assignment of PoS tags, we apply
a standard maximum entropy classification ap-
proach (see Ratnaparkhi (1996)). The classes of
the classifier are the PoS categories defined in the
Stuttgart-Tübingen Tag Set (STTS) (Schiller et al.,
1999). We use standard binarized features like
the word itself, its last three letters, whether the
word is capitalized, contains a hyphen, a digit or
whether it consists of digits only. As the only non-
binary feature, word length is recorded. These
standard features are augmented by a number of
binary features that support the classification pro-
cess by providing a preselection of possible PoS
tags. Every word is analyzed by DMOR, a finite
state morphological analyzer, from whose output
analyses all different PoS tags are collected and
added to the feature set. For example, DMOR
assigns the PoS tags NN (common noun) and
ADJD (predicative adjective) to the word gegan-
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gen (gone). From these analyses two features are
generated, namely possible-tag:NN and possible-
tag:ADJD, which are strong indicators for the
classifier that one of these classes is very likely
to be the correct one. The main idea here is to
use the morphological analyzer as a sort of lexicon
that preselects the set of possible tags beforehand
and then use the classifier to do the disambigua-
tion (see Jurish (2003) for a more sophisticated
system based on Hidden-Markov models that uses
roughly the same idea). Since the PoS tags are in-
cluded in the feature set, the classifier is still able
to assign every class defined in STTS even if it is
not in the preselection. Where the morphological
analyzer does not know the word in question we
add features for every PoS tag representing a pro-
ductive word class in German, making the reason-
able assumption that the morphology knows about
all closed-class words and word forms. Finally,
we add word form and possible tag features for
the previous and the following word to the feature
set thus simulating a trigram tagger. We used the
method of Kazama and Tsujii (2005) which uses
inequality constraints to do a very efficient feature
selection5 to train the maximum entropy model.

We annotated the entire corpus with versions
of our own tagger, i.e., the training, development
and test data. In order to achieve a realistic be-
havior (including remaining tagging errors, which
the parser may be able to react to if they are sys-
tematic), it was important that each section was
tagged without any knowledge of the gold stan-
dard tags. For the development and test portion,
this is straightforward: we trained a model on the
gold PoS of the training portion of the data and
applied it to retag these two portions. Retagging
the training portion was a bit trickier since we
could not use a model trained on the same data,
but at the same time, we wanted to use a tagger
of similarly high quality – i.e. one that has seen a
similar amount of training data. The training set
was therefore split into 20 different parts and for
every split, a tagging model was trained on the
other 19 parts which then was used to retag the
remaining 20th part. Table 2 shows the quality
of our tagger evaluated on the German CoNLL

5We used a width factor of 1.0.

’09 data in terms of accuracy and compares it
to the originally annotated PoS tags which have
been assigned by using the TreeTagger (Schmid,
1995) together with the German tagging model
provided from the TreeTagger website. Tagging
accuracy improves consistently by about 2 per-
centage points which equates to an error reduction
of 44.55 % to 49.0 %.

training development test
original 95.69 95.51 95.46
retagged 97.61 97.71 97.52
error red. 44.55% 49.00% 45.37%

Table 2: Tagging accuracy

Table 3 shows the parser performance when
trained on the newly tagged data. The consider-
able improvements in tagging accuracy visibly af-
fect parsing accuracy, raising both the labeled and
the unlabeled attachment score by 0.66 percentage
points (LAS) and 0.51 points (UAS) for the de-
velopment set and by 0.45 points (LAS) and 0.64
points (UAS) for the test set.

dev. set test set
LAS UAS LAS UAS

restructured 87.49 89.97 88.30 90.44
+retagged 88.15 90.48 88.75 91.08

Table 3: Parser performance on retagged data

6 Morphological Information

German, as opposed to English, exhibits a rela-
tively rich morphology. Predicate arguments and
nominal adjuncts are marked with special case
morphology which allows for a less restricted
word order in German. The German case system
comprises four different case values, namely nom-
inative, accusative, dative and genitive case. Sub-
jects and nominal predicates are usually marked
with nominative case, objects receive accusative
or dative case and genitive case is usually used
to mark possessors in possessive constructions.
There are also some temporal and spatial nominal
adjuncts which require certain case values. Since
case is used to mark the function of a noun phrase
in a clause, providing case information to a parser
might improve its performance.

The morphological information in the German
CoNLL ’09 data contains much more information
than case alone and previous models (baseline,
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hash kernel, retagged) have used all of it. How-
ever, since we aim to improve a syntactic parser,
we would like to exclude all morphological infor-
mation from the parsing process that is not obvi-
ously relevant to syntax, e. g. mood or tense. By
reducing the morphological annotations to those
that are syntactically relevant, we hope to reduce
the noise that is introduced by irrelevant informa-
tion. (One might expect that machine learning and
feature selection should “filter out” irrelevant fea-
tures, but given the relative sparsity of unambigu-
ous instances of the linguistically relevant effects,
drawing the line based on just a few thousand sen-
tences of positive evidence would be extremely
hard even for a linguist.)

We annotated every case-bearing word in the
corpus with its case information using DMOR.
With case-bearing words, we mean nouns, proper
nouns, attributive adjectives, determiners and all
kinds of pronouns. Other types of morphologi-
cal information was discarded. We did not use
the manually annotated and disambiguated mor-
phological information already present in the cor-
pus for two reasons: the first one is the same as
with the PoS tagging. Since it is unrealistic to
have gold-standard annotation in a real-world ap-
plication which deals with unseen data, we want
the parser to learn from and hopefully adapt to
imperfectly annotated data. The second reason
is the German-inherent form syncretism in nom-
inal paradigms. The German noun inflection sys-
tem is with over ten different (productive and
non-productive) inflectional patterns quite com-
plicated, and to make matters worse, there are
only five different morphological markers to dis-
tinguish 16 different positions in the pronoun, de-
terminer and adjective paradigms and eight differ-
ent positions in the noun paradigms. Some po-
sitions in the paradigm will therefore always be
marked in the same way and we would like the
parser to learn that some word forms will always
be ambiguous with respect to their case value.

We also conducted experiments where we an-
notated number and gender values in addition to
case. The idea behind this is that number and gen-
der might help to further disambiguate case val-
ues. The downside of this is the increase in fea-
ture values. Combining case and number features

means a multiplication of their values creating
eight new feature values instead of four. Adding
gender annotation raises this number to 24. Be-
side the disambiguation of case, there is also an-
other reason why we might want to add num-
ber and gender: Inside a German noun phrase,
all parts have to agree on their case and number
feature in order to produce a well-formed noun
phrase. Furthermore, the head noun governs the
gender feature of the other parts. Thus, all three
features can be relevant to the construction of a
syntactic structure.6 Table 4 shows the results of
our experiments with morphological features.

dev. set test set
LAS UAS LAS UAS

retagged 88.15 90.48 88.75 91.08
no morph. 87.78 90.18 88.60 90.92
+case 88.04 90.48 88.77 91.13
+c+n 88.21 90.62 88.88 91.13
+c+n+g 87.96 90.33 88.73 90.99

Table 4: Parser performance with morph. infor-
mation (c=case, n=number, g=gender)

The no morph row in Table 4 shows, that
using no morphological information at all de-
creases parser performance. When only case val-
ues are annotated, the parser performance does
not change much in comparison to the retagged
model, so there is no benefit here. Adding num-
ber features on the other hand improves parsing
results significantly. This seems to support our in-
tuition that number helps in disambiguating case
values. However, adding gender information does
not further increase this effect but hurts parser per-
formance even more than case annotation alone.
This leaves us with a puzzle here. Annotating case
and number helps the parser, but case alone or
having case, number and gender together affects
performance negatively. A possible explanation
might be that the effect of the gender information
is masked by the increased number of feature val-
ues (24) which confuses the parsing algorithm.

7 Parser Stacking

Nivre and McDonald (2008) show how two dif-
ferent approaches to data-driven dependency pars-

6Person would be another syntactically relevant informa-
tion. However, since we are dealing with a newspaper cor-
pus, first and second person features appear very rarely.
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ing, the graph-based and transition-based ap-
proaches, may be combined and subsequently
learn to complement each other to achieve im-
proved parsing results for different languages.

MaltParser (Nivre et al., 2006) is a language-
independent system for data-driven dependency
parsing which is freely available.7 It is based on a
deterministic parsing strategy in combination with
treebank-induced classifiers for predicting parsing
actions. MaltParser employs a rich feature repre-
sentation in order to guide parsing. For the train-
ing of the Malt parser model that we use in the
stacking experiments, we use learner and parser
settings identical to the ones optimized for Ger-
man in the CoNLL-X shared task (Nivre et al.,
2006). Furthermore, we employ the technique
of pseudo-projective parsing described in Nilsson
and Nivre (2005) and a split prediction strategy for
predicting parse transitions and arc labels (Nivre
and Hall, 2008).8 In order to obtain automatic
parses for the whole data set, we perform a 10-
fold split. For the parser stacking, we follow the
approach of Nivre and McDonald (2008), using
MaltParser as a guide for the MST parser with the
hash kernel, i.e., providing the arcs and labels as-
signed by MaltParser as features. Table 5 shows
the scores we obtain by parser stacking. Although
our version of MaltParser does not quite have the
same performance as for instance the version of
Hall and Nivre (2008), its guidance leads to a
small improvement in the overall parsing results.

dev. set test set
LAS UAS LAS UAS

MaltParser 82.47 85.78 83.84 86.8
our parser 88.21 90.62 88.88 91.13
+stacking 88.42 90.77 89.28 91.40

Table 5: Stacked parser performance with guid-
ance by MaltParser

7http://maltparser.org
8The feature models make use of information about the

lexical form (FORM), the predicted PoS (PPOS) and the de-
pendency relation constructed thus far during parsing (DEP).
In addition, we make use of the predicted values for other
morphological features (PFEATS). We employ the arc-eager
algorithm (Nivre, 2003) in combination with SVM learners,
using LIBSVM with a polynomial kernel.

8 Relabeling

In the relabeling step, we pursue the idea that
some erroneous parser decisions concerning the
distribution of certain labels might be detected and
repaired in post-processing. In German and in
most other languages, there are syntactic restric-
tions on the number of subjects and objects that
a verb might select. The parser will learn this be-
havior during training. However, since it is using a
statistical model with a limited context, it can still
happen that two or more of the same grammati-
cal functions are annotated for the same verb. But
having two subjects annotated for a single verb
makes this particular clause uninterpretable for
subsequently applied tasks. Therefore, we would
like to detect those doubly annotated grammatical
functions and correct them in a controlled way.

The detection algorithm is simple: Running
over the words of the output parse, we check for
every word whether it has two or more daughters
annotated with the same grammatical function and
if we find one, we relabel all of its daughters.9 For
the relabeling, we applied a dependency-version
of the function labeler described in Seeker et al.
(2010) which uses a maximum entropy classifier
that is restrained by a number of hard constraints
implemented as an Integer Linear Program. These
constraints model the aforementioned selectional
restrictions on the number of certain types of ver-
bal arguments. Since these are hard constraints,
the labeler is not able to annotate more than one
of those grammatical functions per verb. If we
count the number of sentences that contain doubly
annotated grammatical functions in the best pars-
ing results from the previous section, we get 189
for the development set and 153 for the test set.
About two thirds of the doubly annotated func-
tions are subjects and the biggest part of the re-
maining third are accusative objects which are the
most common arguments of German verbs.

Table 6 shows the final results after relabeling
the output of the best performing parser config-
uration from the previous section. The improve-
ments on the overall scores are quite small, which

9The grammatical functions we are looking for are SB
(subject), OA (accusative object), DA (dative), OG (genitive
object), OP (prepositional object), OC (clausal object), PD
(predicate) and OA2 (second accusative object).
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dev. set test set
LAS UAS LAS UAS

stacking 88.42 90.77 89.28 91.40
+relabeling 88.48 90.77 89.40 91.40

Table 6: Parse quality after relabeling

is partly due to the fact that the relabeling affects
only a small subset of all labels used in the data.
Furthermore, the relabeling only takes place if a
doubly annotated function is detected; and even
if the relabeling is applied we have no guarantee
that the labeler will assign the labels correctly (al-
though we are guaranteed to not get double func-
tions). Table 7 shows the differences in precision
and recall for the grammatical functions between
the original and the relabeled test set. As one can
see, scores stay mostly the same except for SB,
OA and DA. For OA, scores improve both in recall
and precision. For DA, we trade a small decrease
in precision for a huge improvement in recall and
vice versa for SB, but on a much smaller scale.
Generally spoken, relabeling is a local repair strat-
egy that does not have so much effect on the over-
all score but can help to get some important labels
correct even if the parser made the wrong deci-
sion. Note that the relabeler can only repair incor-
rect label decisions, it cannot help with wrongly
attached words.

original relabeled
rec prec rec prec

DA 64.2 83.2 74.7 79.6
OA 88.9 85.8 90.7 88.2
OA2 0.0 NaN 0.0 NaN
OC 95.2 93.5 95.1 93.7
OG 33.3 66.7 66.7 80.0
OP 54.2 80.8 54.2 79.9
PD 77.1 76.8 77.1 76.8
SB 91.0 90.6 90.7 93.7

Table 7: Improvements on grammatical functions
in the relabeled test set

9 Conclusion

We presented a sequence of modifications to a
data-driven dependency parser of German, depart-
ing from a state-of-the-art set-up in an imple-
mentation that allows for fast and robust train-
ing and application. Our pilot study tested what
can be achieved in a few weeks if the data-driven
technique is combined with a linguistically in-

formed approach, i.e., testing hypotheses of what
should be particularly effective in a very targeted
way. Most modifications were relatively small,
addressing very different dimensions in the sys-
tem, such as the handling of features in the Ma-
chine Learning, the quality and combination of
automatically assigned features and the ability to
take into account global constraints, as well as the
combination of different parsing strategies. Over-
all, labeled accuracy on a standard test set (from
the CoNLL 2009 shared task), ignoring gold stan-
dard part-of-speech tags, increased significantly
from 87.64% (baseline parser without hash ker-
nel) to 89.40%.10 We take this to indicate that a
targeted and informed approach like the one we
tested can have surprising effects even for a lan-
guage that has received relatively intense consid-
eration in the parsing literature.
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M. Antònia Martı́, L. Màrquez, A. Meyers, J. Nivre,
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Johansson, R. and P. Nugues. 2008. Dependency-based
Syntactic–Semantic Analysis with PropBank and Nom-
Bank. In Proceedings of the Shared Task Session of
CoNLL-2008, Manchester, UK.

Jurish, Bryan. 2003. A hybrid approach to part-of-speech
tagging. Technical report, Berlin-Brandenburgische
Akademie der Wissenschaften.

Kazama, Jun’Ichi and Jun’Ichi Tsujii. 2005. Maximum en-
tropy models with inequality constraints: A case study on
text categorization. Machine Learning, 60(1):159–194.
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