
Coling 2010: Poster Volume, pages 885–893,
Beijing, August 2010

A Learnable Constraint-based Grammar Formalism

Smaranda Muresan
School of Communication and Information

Rutgers University
smuresan@rci.rutgers.edu

Abstract

Lexicalized Well-Founded Grammar
(LWFG) is a recently developed syntactic-
semantic grammar formalism for deep
language understanding, which balances
expressiveness with provable learnability
results. The learnability result for LWFGs
assumes that the semantic composition
constraints are learnable. In this paper,
we show what are the properties and
principles the semantic representation and
grammar formalism require, in order to
be able to learn these constraints from
examples, and give a learning algorithm.
We also introduce a LWFG parser as a
deductive system, used as an inference
engine during LWFG induction. An
example for learning a grammar for noun
compounds is given.

1 Introduction

Recently, several machine learning approaches
have been proposed for mapping sentences to their
formal meaning representations (Ge and Mooney,
2005; Zettlemoyer and Collins, 2005; Muresan,
2008; Wong and Mooney, 2007; Zettlemoyer and
Collins, 2009). However, only few of them in-
tegrate the semantic representation with a gram-
mar formalism: λ-expressions and Combinatory
Categorial Grammars (CCGs) (Steedman, 1996)
are used by Zettlemoyer and Collins (2005;2009),
and ontology-based representations and Lexical-
ized Well-Founded Grammars (LWFGs) (Mure-
san and Rambow, 2007) are used by Muresan
(2008).

An advantage of the LWFG formalism, com-
pared to most constraint-based grammar for-
malisms developed for deep language understand-
ing, is that it is accompanied by a learnability

guarantee, the search space for LWFG induc-
tion being a complete grammar lattice (Muresan
and Rambow, 2007). Like other constraint-based
grammar formalisms, the semantic structures in
LWFG are composed by constraint solving, se-
mantic composition being realized through con-
straints at the grammar rule level. Moreover, se-
mantic interpretation is also realized through con-
straints at the grammar rule level, providing ac-
cess to meaning during parsing.

However, the learnability result given by Mure-
san and Rambow (2007) assumed that the gram-
mar constraints were learnable. In this paper we
present the properties and principles of the seman-
tic representation and grammar formalism that al-
low us to learn the semantic composition con-
straints. These constraints are a simplified version
of ”path equations” (Shieber et al., 1983), and we
present an algorithm for learning these constraints
from examples (Section 5). We also present a
LWFG parser as a deductive system (Shieber et
al., 1995) (Section 3). The LWFG parser is used
as an innate inference engine during LWFG learn-
ing, and we present an algorithm for learning
LWFGs from examples (Section 4). A discussion
and an example of learning a grammar for noun
compounds are given is Section 6.

2 Lexicalized Well-Founded Grammars

Lexicalized Well-Founded Grammar (LWFG) is
a recently developed formalism that balances
expressiveness with provable learnability results
(Muresan and Rambow, 2007). LWFGs are a type
of Definite Clause Grammars (Pereira and War-
ren, 1980) in which (1) the context-free back-
bone is extended by introducing a partial ordering
relation among nonterminals, 2) grammar non-
terminals are augmented with strings and their
syntactic-semantic representations, called seman-
tic molecules, and (3) grammar rules can have

885

1. Syntagmas containing elementary semantic molecules
a. (w1,

`h1
b1

´
)= (laser,

0BBBBB@

264cat noun
head X1

mod X2

375
D
X1.isa = laser, X2.P1=X1

E

1CCCCCA
) b. (w2,

`h2
b2

´
)=(printer,

0BBBBB@

264cat noun
nr sg
head X3

375
D
X3.isa = printer

E

1CCCCCA
)

2. Syntagmas containing a derived semantic molecule
(w,
`h
b

´
)=(laser printer,

0BBBBB@

264cat nc
nr sg
head X

375
D
X1.isa = laser, X .P1=X1, X .isa=printer

E

1CCCCCA
)

3. Constraint Grammar Rule
NC(w,

`h
b

´
) → Noun(w1,

`h1
b1

´
), Noun(w2,

`h2
b2

´
) : Φc(h, h1, h2),Φonto(b)

Φc(h, h1, h2) = {h.cat = nc, h1.cat = noun, h2.cat = noun, h.head = h1.mod, h.head = h2.head, h.nr = h2.nr}
Φonto(b) returns 〈X1.isa = laser,X.instr = X1,X.isa = printer〉

Figure 1: Syntagmas containing elementary semantic molecules (1) and a derived semantic molecule
(2); A constraint grammar rule together with the semantic composition and ontology-based interpreta-
tion constraints, Φc and Φonto (3)

two types of constraints, one for semantic com-
position and one for semantic interpretation. The
first property allows LWFG learning from a small
set of examples. The last two properties make
LWFGs a type of syntactic-semantic grammars.

Definition 1. A semantic molecule associated
with a natural language string w, is a syntactic-
semantic representation, w′ =

(
h
b

)
, where h

(head) encodes compositional information, while
b (body) is the actual semantic representation of
the string w.

Grammar nonterminals are augmented with
pairs of strings and their semantic molecules.
These pairs are called syntagmas, and are denoted
by σ = (w,w′) = (w,

(
h
b

)
).

Examples of semantic molecules for the nouns
laser and printer and the noun-noun compound
laser printer are given in Figure 1. When as-
sociated with lexical items, semantic molecules
are called elementary semantic molecules. When
semantic molecules are built by the combina-
tion of others, they are called derived semantic
molecules. Formally, the semantic molecule head,
h, is a one-level feature structure (i.e., values are
atomic), while the semantic molecule body, b, is a
logical form built as a conjunction of atomic pred-
icates 〈concept〉.〈attr〉 = 〈concept〉, where vari-
ables are either concept or slot identifiers in an on-
tology.1

1The body of a semantic molecule is called OntoSeR and

Muresan and Rambow (2007) formally defined
LWFGs, and we present here a slight modification
of their definition.

Definition 2. A Lexicalized Well-Founded Gram-
mar (LWFG) is a 7-tuple, G = 〈Σ,Σ′, NG,�
, PG, PΣ, S〉, where:

1. Σ is a finite set of terminal symbols.

2. Σ′ is a finite set of elementary seman-
tic molecules corresponding to the terminal
symbols.

3. NG is a finite set of nonterminal symbols.
NG∩Σ = ∅. We denote pre(NG) ⊆ NG, the
set of pre-terminals (a.k.a, parts of speech)

4. � is a partial ordering relation among non-
terminals.

5. PG is the set of constraint grammar rules. A
constraint grammar rule is written A(σ) →
B1(σ1), . . . , Bn(σn) : Φ(σ̄), where A,Bi ∈
NG, σ̄ = (σ, σ1, ..., σn) such that σ =
(w,w′), σi = (wi, wi

′), 1 ≤ i ≤ n,w =
w1 · · ·wn, w′ = w′1 ◦ · · · ◦ w′n, and ◦ is the
composition operator for semantic molecules
(more details about the composition oper-
ator are given in Section 5). For brevity,
we denote a rule by A → β : Φ, where
A ∈ NG, β ∈ N+

G . PΣ is the set of con-
straint grammar rules whose left-hand side
are pre-terminals, A(σ) →, A ∈ pre(NG).

is a flat ontology-based semantic representation.

886

We use the notation A → σ for this gram-
mar rules. In LWFG due to partial ordering
among nonterminals we can have ordered
constraint grammar rules and non-ordered
constraint grammar rules (both types can be
recursive or non-recursive). A grammar rule
A(σ) → B1(σ1), . . . , Bn(σn) : Φ(σ̄), is an
ordered rule, if for all Bi, we have A � Bi.
In LWFGs, each nonterminal symbol is a
left-hand side in at least one ordered non-
recursive rule and the empty string cannot be
derived from any nonterminal symbol.

6. S ∈ NG is the start nonterminal symbol, and
∀A ∈ NG, S � A (we use the same notation
for the reflexive, transitive closure of �).

The partial ordering relation�makes the set of
nonterminals well-founded2 , which allows the or-
dering of the grammar rules, as well as the order-
ing of the syntagmas generated by LWFGs. This
ordering allow LWFG learning from a small set of
representative examples (Muresan and Rambow,
2007) (PΣ is not learned).

An example of a LWFG rule is given in Fig-
ure 1(3). Nonterminals are augmented with syn-
tagmas. Moreover, in LWFG the semantic com-
position and interpretation are realized via con-
straints at the grammar rule level (Φ(σ̄) in Defi-
nition 2). More precisely, syntagma composition
means string concatenation (w = w1w2) and se-
mantic molecule composition (

(
h
b

)
=
(
h1

b1

)
◦
(
h2

b2

)
)

—- where the bodies of semantic molecules are
concatenated through logical conjunction (b =
(b1, b2)ν, where ν is a variable substitution ν =
{X2/X,X3/X}), while the semantic molecules
heads are composed through compositional con-
straints Φc(h, h1, h2), which are a simplified ver-
sion of “path equations” (Shieber et al., 1983) (see
Figure 1(3)). During LWFG learning, composi-
tional constraints Φc are learned together with the
grammar rules. Semantic interpretation, which
is ontology-based in LWFG, is also encoded as
constraints at the grammar rule level — Φonto

— providing access to meaning during parsing.
Φonto(b) constraints are applied to the body of
the semantic molecule corresponding to the syn-

2� should not be confused with information ordering de-
rived from flat feature structures

tagma associated with the left-hand side nonter-
minal. The ontology-based constraints are not
learned; rather, Φonto is a general predicate that
succeed or fail as a result of querying an ontology
— when it succeeds, it instantiates the variables
of the semantic representation with concepts/slots
in the ontology (see the example in Figure 1(3)).

2.1 Derivation in LWFG

The derivation in LWFG is called ground syn-
tagma derivation, and it can be seen as the
bottom up counterpart of the usual derivation.
Given a LWFG, G, the ground syntagma deriva-
tion relation, ∗G⇒, is defined as: A→σ

A
∗G⇒σ

(if σ =

(w,w′), w ∈ Σ, w′ ∈ Σ′, i.e., A ∈ pre(NG,),

and Bi
∗G⇒σi, i=1,...,n, A(σ)→B1(σ1),...,Bn(σn) : Φ(σ̄)

A
∗G⇒σ

.

The set of all syntagmas generated by a gram-
mar G is Lσ(G) = {σ|σ = (w,w′), w ∈
Σ+, ∃A ∈ NG, A

∗G⇒ σ}. Given a LWFG G,
Eσ ⊆ Lσ(G) is called a sublanguage of G. Ex-
tending the notation, given a LWFG G, the set of
syntagmas generated by a rule (A→ β : Φ) ∈ PG
is Lσ(A → β : Φ) = {σ|σ = (w,w′), w ∈
Σ+, (A → β : Φ)

∗G⇒ σ}, where (A → β : Φ)
∗G⇒

σ denotes the ground derivation A ∗G⇒ σ obtained
using the rule A → β : Φ in the last derivation
step.

3 LWFG Parsing as Deduction

Following Shieber (1995), we present the Lexical-
ized Well-Founded Grammar parser as a deduc-
tive proof system in Table 1. The items of the
logic are of the form [i, j, σij , A → α • βΦA],
where A → αβ : ΦA is a grammar rule, ΦA —
the constraints corresponding to the grammar rule
whose left-hand side nonterminal is A— can be
true, • shows how much of the right-hand side
of the rule has been recognized so far, i points to
the parent node where the rule was invoked, and j
points to the position in the input that the recogni-
tion has reached. We use the following notations:

σRij = (wRij ,
(hRij
bRij

)
) are syntagmas corresponding

to the partially parsed right-hand side of a rule;

σLij = (wLij ,
(hLij
bLij

)
) are ground-derived syntagmas

(i.e., they are augmenting the left-hand side non-

887

Item form [i, j, σij , A→ α • βΦA] 1 ≤ i, j ≤ n+ 1, A ∈ NG, αβ ∈ N∗G
the ΦA constraint can be true

Axioms [i, i+ 1, σLii+1, Bi → •] 1 ≤ i ≤ n,Bi ∈ pre(NG), Bi → σLii+1 ∈ PΣ

Goals [i, j, σLij , A→ αΦA•] 1 ≤ i, j ≤ n+ 1, A ∈ NG, α ∈ N+
G

Inference Rules

Prediction [i,j,σL
ij ,B→βΦB•]

[i,i,σR
ii,A→•BγΦA]

〈A→ Bγ : ΦA〉 (A→ Bγ : ΦA) ∈ PG
σRii = σ∅ (i.e., wRii = ε, bRii = true and hRii = ∅)

Completion
[i,j,σR

ij ,A→α • B γ ΦA] [j,k,σL
jk,B→β ΦB •]

[i,k,σR
ik
,A→α B • γ ΦA]

σRik = σRij ◦ σLjk, where

wRik = wRijw
L
jk, bRik = bRijb

L
jk, hRik = hRij ∪ hLjk

Constraint [i,j,σR
ij ,A→α•ΦA]

[i,j,σL
ij ,A→αΦA•] 〈ΦA is satisfiable 〉 σLij = φ(σRij)

Table 1: LWFG parsing as deductive system

terminal of a LWFG rule). The goal items are
of the form [i, j, σLij , A → αΦA•], where σLij is
ground-derived from the rule A→ α : ΦA.

Compared to the deductive system in (Shieber
et al., 1995), the LWFG parser has the follow-
ing characteristics: each item is augmented with
a syntagma; the Constraint rule is a new infer-
ence rule, and the goal items are associated to
every nonterminal in the grammar, not only to
the start symbol (i.e., LWFG parser is a robust
parser). The Constraint inference rule is the only
one that obtains an inactive edge3, from an active
edge by executing the grammar constraint ΦA (the
• is shifted across the constraint). By applying the
Constraint rule as the last inference rule we obtain
the ground-derived syntagmas σLij . Thus, the goal
items are obtained only after the Constraint rule is
applied. During this inference rule we have that
σLij = φ(σRij), where φ is defined by: wLij = wRij ,
bLij = bRijνij , and hLij = ϕ(hRij). The substitution
νij and the function ϕ are implicitly contained in
the grammar constraint ΦA

c (hLij , h
R
ij) (see Section

5 for details)

Definition 3 (Robust parsing provability). Robust
parsing provability corresponds to reaching the
goal item: `rp A(σLij) iff [i, j, σLij , A→ αΦA•].

Thus, we can notice that the ground syntagma
derivation is equivalent to robust parsing provabil-
ity, i.e., A ∗G⇒ σ iff G `rp A(σ).

3We use Kay’s terminology: items are edges, where the
axioms and goals are inactive edges having • at the end,
while the rest are active edges (Kay, 1986).

4 Learning LWFGs

The theoretical learning model for LWFG induc-
tion, Grammar Approximation by Representative
Sublanguage (GARS), together with a learnability
theorem was introduced in (Muresan and Ram-
bow, 2007). LWFG’s learning framework char-
acterizes the “importance” of substructures in the
model not simply by frequency, but rather lin-
guistically, by defining a notion of “representa-
tive examples” that drives the acquisition process.
Informally, representative examples are “building
blocks” from which larger structures can be in-
ferred via reference to a larger generalization cor-
pus referred to as representative sublanguage in
(Muresan and Rambow, 2007). The GARS model
uses a polynomial algorithm for LWFG learning
that take advantage of the building blocks nature
of representative examples.

The LWFG induction algorithm belongs to the
class of Inductive Logic Programming methods
(ILP), based on entailment (Muggleton, 1995;
Dzeroski, 2007). At each step a new constraint
grammar rule is learned from the current repre-
sentative example, σ. Then this rule is added to
the grammar rule set. The process continues until
all the representative examples are covered. We
describe below the process of learning a grammar
rule from the current representative example:

1. Most Specific Grammar Rule Generation.
In the first step, the most specific grammar
rule is generated from the current represen-
tative example σ. The category annotated

888

STEP 1 (Most Specific Grammar Rule Generation)

STEP 2 (Grammar Rule Generalization)

(laser printer,

CANDIDATE GRAMMAR RULES

laser printer

Performance Criteria
BEST RULE

((laser printer) manual)
(desktop (laser printer))

K ! Background Knowledge
Lexicon

(laser,)

Previously learned grammar rules

cat nc

)

(printer,)

σ = (w,
(
h
b

)
) - Current representative example

a) chunks={[NA(laser), Noun(laser)], [NC(printer),Noun(printer)]}

rg1 NC → Noun Noun:Φc4 (score=1)

rg2 NC → NA Noun:Φc5 (score=2)

b) r: NC(w,
(
h
b

)
) → Noun(w1,

(
h1

b1

)
) Noun(w2,

(
h2

b2

)
):Φc4(h, h1, h2)

Φc4(h, h1, h2) = {h.cat = nc, h1.cat = noun, h2.cat = noun,

Eσ - Representative Sublanguage

NC → NA NC:Φc7

rg4 NC → NA NC:Φc7 (score=3)

rg3 NC → Noun NC:Φc6 (score=2)

Noun →

cat noun
head X1

mod X2

〈X1.isa = laser, X2.Y = X1〉
cat noun

〈X3.isa = printer〉

NA → Noun:Φc1

〈B.isa = laser, A.P1 = B, A.isa = printer〉

NA → NA NA:Φc2

NC → Noun:Φc3

nr sg
head A

head X3

nr sg

Noun →

h.head = h1.mod, h.head = h2.head, h.nr = h2.nr}

Figure 2: Example of Grammar Rule Learning

in the representative example gives the
left-hand-side nonterminal, while a robust
parser returns the minimum number of
chunks covering the representative example.
The categories of the chunks give the non-
terminals of the right-hand side of the most
specific rule. For example, in Figure 2, given
the representative example laser printer
annotated with its semantic molecule, and
the background knowledge containing the
already learned rules NA → Noun : Φc1 ,
NA → NA NA : Φc2 , NC → Noun : Φc3

the robust parser generates the chunks
corresponding to the noun laser and the
noun printer: [NA(laser),Noun(laser)]
and [NC(printer),Noun(printer)], re-
spectively. The most specific rule is
NC → Noun Noun : Φc4 , where the
left-hand side nonterminal is given by the
category of the representative example, in
this case nc. Compositional constraints Φc4

are learned as well. In section 5 we give
the algorithm for learning these constraints,
and several properties and principles that are
needed in order for these constraints to be
learnable.

2. Grammar Rule Generalization. In the sec-
ond step, this most specific rule is gener-
alized, obtaining a set of candidate gram-
mar rules (the generalization step is the in-
verse of the derivation step used to define
the complete grammar lattice search space in

(Muresan and Rambow, 2007)). The perfor-
mance criterion in choosing the best gram-
mar rule among these candidate hypotheses
is the number of examples in the representa-
tive sublanguage Eσ (generalization corpus)
that can be parsed using the candidate gram-
mar rule, rgi in the last ground derivation
step, together with the previous learned rules,
i.e., |Eσ∩Lσ(rgi)|. In Figure 2 given the rep-
resentative sublanguage Eσ={ laser printer,
laser printer manual, desktop laser printer}
the learner will generalize to the recursive
rule NC → NA NC : Φ7, since only this
rule can parse all the examples in Eσ.

5 Learnable Composition Constraints

In LWFG, the semantic structures are composed
by constraint solving, rather than functional ap-
plication (with lambda expressions and lambda re-
duction). This section presents the properties and
principles that guarantee the learnability of the
compositional constraints,Φc, and presents an al-
gorithm to generate these constraints from exam-
ples, which is a key result for LWFG learnability.

The information for semantic composition is
encoded in the head of semantic molecules. There
are three types of attributes that belong to the se-
mantic molecule head h: category attributes Ach,
variable attributes Avh, and feature attributes Afh.
Thus, Ah = Ach ∪ Avh ∪ A

f
h and Ach,Avh,A

f
h are

pairwise disjoint. For example, in Figure 1 for the
noun-noun compound laser printer, we have that
Ach = {cat}, Afh = {nr}, and Avh = {head},
while for the noun laser we have that Ach1

=

{cat}, Afh1
= ∅, andAvh1

= {head,mod} (nouns
can be modifiers of other nouns, so their represen-
tation is similar to that of an adjective).

We describe in turn each of these types of at-
tributes and their corresponding principles. All
principles, except the first and the last mirror
principles in other constraint-based linguistic for-
malisms, such as HPSG (Pollard and Sag, 1994).

The category attributes Ach are state at-
tributes, and their value set gives the category of
the semantic molecule. There is one attribute, cat
∈ Ach, which is mandatory and whose value is the
name of the category (e.g., h.cat = nc in Figure

889

1). The category of a semantic molecule can be
given by: 1) the cat attribute alone, or 2) the cat
attribute together with other state attributes in Ach
which are syntactic-semantic markers.

Principle 1 (Category Name Principle). The cat-
egory name h.cat of a syntagma σ = (w,

(
h
b

)
) is

the same as the grammar nonterminal augmented
with syntagma σ.

When learning a LWFG rule from an example
σ, the above principle allows us to determine the
nonterminal in the left-hand side of the grammar
rule. For example, when learning the LWFG rule
from the syntagma corresponding to laser printer
in Figure 2, the nonterminal in the left-hand side
of the LWFG rule is NC since h.cat = nc.

The variable attributes Avh are attributes
whose values are logical variables and represent
the semantic valence of the molecule, which al-
lows the binding of the semantic representations.
These logical variables appear in the semantic
molecule body as well. For example, in Figure
1(2) for the noun-noun compound laser printer,
the value of the variable attribute head ∈ Avh is
a variable X , which appears also in the body of
the semantic molecule 〈X1.isa = laser,X.P1 =
X1, X.isa = printer〉. It can be noticed that the
semantic molecule body contains other variables
as well (X1, P1). However, only the variables
present in the semantic molecule head as well (X)
will participate in further composition.

Principle 2 (Semantic Representation Binding
Principle). All the logical variables that the body
b of a semantic molecule corresponding to a syn-
tagma σ = (w,

(
h
b

)
), share with other syntagmas,

are at the same time values of the variable at-
tributes (Avh) of the semantic molecule head.

There is one variable attribute, head ∈ Avh that
represents the head of a syntagma, giving the fol-
lowing principle:

Principle 3 (Semantic Head Principle). Given a
syntagma σ = (w,

(
h
b

)
) ground derived from a

grammar rule, r, there exists one and only one
syntagma σi = (wi,

(
hi
bi

)
) corresponding to a non-

terminal Bi in rule r’s right-hand side, which
has the same value of the attribute head, i.e.,
h.head = hi.head.

The feature attributes Afh are the attributes
whose values express the specific properties of the
semantic molecules (e.g., number, person).

Principle 4 (Feature Inheritance Principle). If
σi = (wi,

(
hi
bi

)
) is the semantic head of a ground-

derived syntagma σ = (w,
(
h
b

)
), then all fea-

ture attributes of σ inherit the values of the cor-
responding attributes that belong to the seman-
tic head σi. That is, if h.head = hi.head , then
h.f = hi.f , ∀f ∈ Afh ∩A

f
hi

.

Besides this principle, the feature attributes are
used for category agreement. The categories that
enter in agreement are maximum projection cat-
egories. This linguistic knowledge about agree-
ment is used in the form of the following princi-
ple:

Principle 5 (Feature Agreement Principle). The
agreeing categories and the agreement features
are a-priori given based on linguistic knowledge,
and are applied only at the semantic head level.

Given all the above principles, we can now for-
mulate the general Composition Principle:

Principle 6 (Composition Principle). A syntagma
σ = (w,w′) corresponding to the left-hand side
nonterminal of a grammar rule is obtained by
string concatenation (w = w1 . . . wn) and the
composition of semantic molecules corresponding
to the nonterminals from the rule right-hand side:

w′ =
(
h

b

)
= (w1 · · ·wn)′ = w′1 ◦ · · · ◦ w′n

=

(
h1

b1

)
◦ · · · ◦

(
hn
bn

)
=

(
h1 ◦ · · · ◦ hn
〈b1, . . . , bn〉ν

)

The composition of the semantic molecule bod-
ies is realized through conjunction after the ap-
plication of a variable substitution ν. The body
variable specialization substitution ν is the most
general unifier (mgu) of b and b1, . . . , bn, s.t
b = (b1, . . . , bn)ν. It is a particular form of the
commonly used substitution (Lloyd, 2003), i.e.,
a finite set of the form {X1/Y1, . . . , Xm/Ym},
whereX1, . . . , Xm, Y1, . . . , Ym are variables, and
X1, . . . , Xm are distinct.

The composition of the semantic molecule
heads is realized by a set of constraints
Φc(h, h1..., hn), which is a system of equations

890

similar to “path equations” (Shieber et al., 1983;
van Noord, 1993), but applied to flat feature struc-
tures:




hi.c = ct
hi.vi = hj .vj
hi.f = ct or
hi.f = hj .f



 where

0 ≤ i, j ≤ n, i 6= j

c ∈ Achi

vi ∈ Avhi
, vj ∈ Avhj

f ∈ Afhi
, f ∈ Afhj

When learning a LWFG rule from a repre-
sentative example σ as in Figure 2, the robust
parser returns the minimum number of chunks,
n, covering σ. The body variable substitution ν
is fully determined by the representative exam-
ple as mgu of b and b1, . . . , bn, and the compo-
sitional constraints Φc(h, h1, . . . , hn) are learned
using Alg 1. For example, in Figure 2, when
learning from the representative example corre-
sponding to the string laser printer, we have that
ν = {X1/B,X2/A,X3/A, Y/P1}.

In Alg 1 we use the notation σ0 = (w0,
(
h0

b0

)
) to

denote the representative example σ.

Alg 1: Learn Constraints(σ0, σ1, . . . , σn)
σi = (wi,

`
hi
bi

´
), 0 ≤ i ≤ n

Φc ← ∅
ν ← mgu(b0, (b1, . . . , bn))
foreach 0 ≤ i ≤ n ∧ c ∈ Achi

do1
if hi.c = c1 then

Φc ← Φc ∪ {hi.c = c1}

foreach 0 ≤ i, j ≤ n ∧ i 6= j ∧X/Y ∈ ν∧2
vi ∈ Avhi ∧ vj ∈ Avhj do

if hi.vi = X ∧ hj .vj = Y then
Φc ← Φc ∪ {hi.vi = hj .vj}

if hs.head = h0.head, 1 ≤ s ≤ n then3

foreach f ∈ Afh0
∩ Afhs

do
if h0.f = c1 ∧ hs.f = c1 then

Φc ← Φc ∪ {h0.f = hs.f}
if hs.cat = cs ∧ hi.cat = ci ∧ agr(cs, ci),
1 ≤ i ≤ n then

foreach f ∈ agrFeatures(cs, ci) do
if hs.f = c1 ∧ hi.f = c1 then

Φc ← Φc ∪ {hs.f = hi.f}

for all other f ∈ Afhi
, 0 ≤ i ≤ n do4

/*i.e., if we are not in case 3 */
if hi.f = c1 then

Φc ← Φc ∪ {hi.f = c1}
return Φc /*i.e., Φc(h0, h1, . . . , hn) */

In the first step, the constraints corresponding
to category attributes are fully determined by the

values of these attributes that appear in the se-
mantic molecule heads of σ0, . . . σn. In Figure
2, when learning the most specific rule r from
the representative example laser printer, the set
of constraints {h.cat = nc, h1.cat = noun, h2 =
noun} ⊂ Φc4 are the constraints corresponding
to category attributes. In the second step, the con-
straints corresponding to variable attributes are
fully determined by the variables in the substitu-
tion ν that also appear as values of variable at-
tributes hi.vi, hj .vj , where 0 ≤ i, j ≤ n and
i 6= j. In Figure 2, only {X2/A,X3/A} ⊂ ν
will be used, generating the set of constraints
{h.head = h1.mod, h.head = h2.head} ⊂ Φc4 .
In the third step, the values of the feature at-
tributes which obey Principles 4 and 5 are gen-
eralized — agr(cs, ci) is the predicate which gives
us the agreement between the categories cs and
ci (e.g., the subject agrees with the verb), and
agrFeatures(cs, ci) gives us the set of feature at-
tributes that participate in agreement (e.g., nr,
pers, case). In Figure 2, the set of constraints
{h.nr = h2.nr} ⊂ Φc4 represents the general-
ization of the feature attribute values for nr, using
Principle 4 . For all features attributes besides the
ones that obey the above two principles, the gener-
ated constraints keep the particular values of these
attributes (step 4 of Alg 1).

6 Examples

The LWFG formalism allows us to learn gram-
mars for deep language understanding from ex-
amples. Instead of writing syntactic-semantic
grammar by hand (both rules and constraints),
we need to provide only a small set of repre-
sentative examples — strings and their semantic
molecules. Qualitative experiments on learning
LWFGs showed that complex linguistic construc-
tions can be learned and covered, such as com-
plex noun phrases, relative clauses and reduced
relative clauses, finite and non-finite verbal con-
structions (including, tense, aspect, negation, and
subject-verb agreement), and raising and control
constructions (Muresan and Rambow, 2007). In
Figure 3 we show an example of learning a LWFG
grammar for noun-noun compounds. The first
four examples (1-4) are representative examples,
while the last four examples are used for gener-

891

A. Learning Examples:
1. (laser,

0BBBBB@

264cat na
head A
mod B

375
D

A.isa = laser, B.P1=A
E

1CCCCCA
) 5. (laser printer manual,

0BBBBB@

264cat na
head A
mod B

375
D

C.isa = laser, D.P1=C, D.isa=printer,A.P2=D, A.isa=manual, B.P3=A
E

1CCCCCA
)

2. (laser printer,
0BBBBB@

264cat na
head A
mod B

375
D

C.isa = laser, A.P1=C, A.isa=printer, B.P2=A
E

1CCCCCA
) 6. (desktop laser printer,

0BBBBB@

264cat na
head A
mod B

375
D

C.isa = desktop, A.P1=C, D.isa=laser,A.P2=D, A.isa=printer, B.P3=A
E

1CCCCCA
)

3. (printer,
0BBBBB@

264cat nc
nr sg
head A

375
D

A.isa = printer
E

1CCCCCA
) 7. (laser printer manual,

0BBBBB@

264cat nc
nr sg
head A

375
D

B.isa = laser, C.P1=B, C.isa=printer, A.P2=C, A.isa=manual
E

1CCCCCA
)

4. (laser printer,
0BBBBB@

264cat nc
nr sg
head A

375
D

B.isa = laser, A.P1=B, A.isa=printer
E

1CCCCCA
) 8. (desktop laser printer,

0BBBBB@

264cat nc
nr sg
head A

375
D

B.isa = desktop, A.P1=B, C.isa=laser, A.P2=C, A.isa=printer
E

1CCCCCA
)

B. Learned LWFG Rules:

NA(w,
“
h
b

”
)→ Noun(w1 ,

“
h1
b1

”
) : Φc1

(h, h1) , where Φc1
(h, h1) =

8>><>>:
h.cat = na
h1.cat = noun
h.head = h1.head
h.mod = h1.mod

9>>=>>;

NA(w,
“
h
b

”
)→ NA(w1,

“
h1
b1

”
), NA(w2,

“
h2
b2

”
) : Φc2

(h, h1, h2) where Φc2
(h, h1, h2) =

8>>>>><>>>>>:

h.cat = na
h1.cat = na
h2.cat = na
h.head = h1.mod
h.head = h2.head
h.mod = h2.mod

9>>>>>=>>>>>;
NC(w,

“
h
b

”
)→ Noun(w1,

“
h1
b1

”
) : Φc3

(h, h1) , where Φc3
(h, h1) =

8>><>>:
h.cat = nc
h1.cat = noun
h.head = h1.head
h.nr = h1.nr

9>>=>>;

NC(w,
“
h
b

”
)→ NA(w1,

“
h1
b1

”
), NC(w2,

“
h2
b2

”
) : Φc4

(h, h1, h2) where Φc4
(h, h1, h2) =

8>>>>><>>>>>:

h.cat = nc
h1.cat = na
h2.cat = nc
h.head = h1.mod
h.head = h2.head
h.nr = h2.nr

9>>>>>=>>>>>;
Figure 3: Learning LWFG Rules for Noun-Noun Compounds

alization (5-8). The learned grammar rules, in-
cluding the learned composition constraints are
also shown. The first two LWFG rules ground de-
rive syntagmas for noun adjuncts, while the last
two rules ground derive syntagmas for noun com-
pounds. For example, ”desktop laser printer” can
be either a fully-formed noun compound (cate-
gory nc), or it can be further combined with the
noun ”invoice” to obtain ”desktop laser printer in-
voice”, case in which it is a noun adjunct (cate-
gory na). The learned rule for noun adjuncts is
both left and right recursive, accounting for both
left and right-branching noun compounds. Even
though we can obtain overgeneralization in syn-
tax, the ontology-based interpretation constraint
at the rule level will prune some erroneous parses.
Preliminary results in the medical domain show
that Φonto can help remove erroneous parses even
when using just a weak ontological model (se-
mantic roles of verbs, prepositions, attributes of
adjectives and adverbs, but no synonymy, or hi-

erarchy of concepts or roles). However, more ex-
periments need to be run for reporting quantitative
results.

7 Conclusions

We have presented the properties and princi-
ples that the semantic representation integrated
in LWFG requires so that the semantic compo-
sitional constraints are learnable from examples.
These properties together with Alg 1 give a the-
oretical result that in conjunction with the learn-
ability result of Muresan and Rambow (2007)
show that LWFG is a learnable constraint-based
grammar formalism that can be used for deep lan-
guage understanding. Instead of writing grammar
rules and constraints by hand, one needs to pro-
vide only a small set of annotated examples.4

4The author acknowledges the support of the NSF (SGER
grant IIS-0838801). Any opinions, findings, or conclusions
are those of the author, and do not necessarily reflect the
views of the funding organization.

892

References
Dzeroski, Saso. 2007. Inductive logic programming in

a nutshell. In Getoor, Lise and Ben Taskar, editors,
Introduction to Statistical Relational Learning. The
MIT Press.

Ge, Ruifang and Raymond J. Mooney. 2005. A statis-
tical semantic parser that integrates syntax and se-
mantics. In Proceedings of CoNLL-2005.

Kay, M. 1986. Algorithm schemata and data struc-
tures in syntactic processing. In Readings in natural
language processing, pages 35–70. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA.

Lloyd, John W. 2003. Logic for Learning: Learn-
ing Comprehensible Theories from Structured Data.
Springer, Cognitive Technologies Series.

Muggleton, Stephen. 1995. Inverse Entailment and
Progol. New Generation Computing, Special Issue
on Inductive Logic Programming, 13(3-4):245–286.

Muresan, Smaranda and Owen Rambow. 2007. Gram-
mar approximation by representative sublanguage:
A new model for language learning. In Proceedings
of the 45th Annual Meeting of the Association for
Computational Linguistics (ACL).

Muresan, Smaranda. 2008. Learning to map text
to graph-based meaning representations via gram-
mar induction. In Coling 2008: Proceedings of
the 3rd Textgraphs workshop on Graph-based Al-
gorithms for Natural Language Processing, pages
9–16, Manchester, UK, August. Coling 2008 Orga-
nizing Committee.

Neumann, Günter and Gertjan van Noord. 1994. Re-
versibility and self-monitoring in natural language
generation. In Strzalkowski, Tomek, editor, Re-
versible Grammar in Natural Language Processing,
pages 59–96. Kluwer Academic Publishers, Boston.

Pollard, Carl and Ivan Sag. 1994. Head-Driven
Phrase Structure Grammar. University of Chicago
Press, Chicago, Illinois.

Shieber, Stuart, Hans Uszkoreit, Fernando Pereira,
Jane Robinson, and Mabry Tyson. 1983. The
formalism and implementation of PATR-II. In
Grosz, Barbara J. and Mark Stickel, editors, Re-
search on Interactive Acquisition and Use of Knowl-
edge, pages 39–79. SRI International, Menlo Park,
CA, November.

Shieber, Stuart, Yves Schabes, and Fernando Pereira.
1995. Principles and implementation of deductive
parsing. Journal of Logic Programming, 24(1-2):3–
36.

Steedman, Mark. 1996. Surface Structure and Inter-
pretation. The MIT Press.

van Noord, Gertjan. 1993. Reversibility in Natural
Language Processing. Ph.D. thesis, University of
Utrecht.

Wong, Yuk Wah and Raymond Mooney. 2007. Learn-
ing synchronous grammars for semantic parsing
with lambda calculus. In Proceedings of the 45th
Annual Meeting of the Association for Computa-
tional Linguistics (ACL-2007).

Zettlemoyer, Luke S. and Michael Collins. 2005.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. In Proceedings of UAI-05.

Zettlemoyer, Luke and Michael Collins. 2009. Learn-
ing context-dependent mappings from sentences to
logical form. In Proceedings of the Association for
Computational Linguistics (ACL’09).

893

