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Abstract

Recent kernel-based PPI extraction 
systems achieve promising perform-
ance because of their capability to 
capture structural syntactic informa-
tion, but at the expense of computa-
tional complexity. This paper incorpo-
rates dependency information as well 
as other lexical and syntactic knowl-
edge in a feature-based framework. 
Our motivation is that, considering the 
large amount of biomedical literature 
being archived daily, feature-based 
methods with comparable performance 
are more suitable for practical applica-
tions. Additionally, we explore the 
difference of lexical characteristics be-
tween biomedical and newswire do-
mains. Experimental evaluation on the 
AIMed corpus shows that our system 
achieves comparable performance of 
54.7 in F1-Score with other 
state-of-the-art PPI extraction systems, 
yet the best performance among all the 
feature-based ones.  

1 Introduction 

In recent years, automatically extracting 
biomedical information has been the subject of 
significant research efforts due to the rapid 
growth in biomedical development and 
discovery. A wide concern is how to 
characterize protein interaction partners since 
it is crucial to understand not only the 
functional role of individual proteins but also 

the organization of the entire biological 
process. However, manual collection of 
relevant Protein-Protein Interaction (PPI) 
information from thousands of research papers 
published every day is so time-consuming that 
automatic extraction approaches with the help 
of Natural Language Processing (NLP) 
techniques become necessary.  

Various machine learning approaches for 
relation extraction have been applied to the 
biomedical domain, which can be classified 
into two categories: feature-based methods 
(Mitsumori et al., 2006; Giuliano et al., 2006; 
Sætre et al., 2007) and kernel-based methods 
(Bunescu et al., 2005; Erkan et al., 2007; 
Airola et al., 2008; Kim et al., 2010). 

Provided a large-scale manually annotated 
corpus, the task of PPI extraction can be 
formulated as a classification problem. 
Typically, for featured-based learning each 
protein pair is represented as a vector whose 
features are extracted from the sentence 
involving two protein names. Early studies 
identify the existence of protein interactions 
by using “bag-of-words” features (usually 
uni-gram or bi-gram) around the protein 
names as well as various kinds of shallow 
linguistic information, such as POS tag, 
lemma and orthographical features. However, 
these systems do not achieve promising results 
since they disregard any syntactic or semantic 
information altogether, which are very useful 
for the task of relation extraction in the 
newswire domain (Zhao and Grishman, 2005; 
Zhou et al., 2005). Furthermore, feature-based 
methods fail to effectively capture the 
structural information, which is essential to 
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identify the relationship between two proteins 
in a syntactic representation. 

With the wide application of kernel-based 
methods to many NLP tasks, various kernels 
such as subsequence kernels (Bunescu and 
Mooney, 2005) and tree kernels (Li et al., 
2008), are also applied to PPI detection.. 
Particularly, dependency-based kernels such 
as edit distance kernels (Erkan et al., 2007) 
and graph kernels (Airola et al., 2008; Kim et 
al., 2010) show some promising results for PPI 
extraction. This suggests that dependency 
information play a critical role in PPI 
extraction as well as in relation extraction 
from newswire stories (Culotta and Sorensen, 
2004). In order to appreciate the advantages of 
both feature-based methods and kernel-based 
methods, composite kernels (Miyao et al., 
2008; Miwa et al., 2009a; Miwa et al., 2009b) 
are further employed to combine structural 
syntactic information with flat word features 
and significantly improve the performance of 
PPI extraction. However, one critical 
challenge for kernel-based methods is their 
computation complexity, which prevents them 
from being widely deployed in real-world 
applications regarding the large amount of 
biomedical literature being archived everyday.  

Considering the potential of dependency in-
formation for PPI extraction and the challenge 
of computation complexity of kernel-based 
methods, one may naturally ask the question: 
“Can the essential dependency information be 
maximally exploited in featured-based PPI 
extraction so as to enhance the performance 
without loss of efficiency?” “If the answer is 
Yes, then How?” 

This paper addresses these problems, focus-
ing on the application of dependency informa-
tion to feature-based PPI extraction. Starting 
from a baseline system in which common 
lexical and syntactic features are incorporated 
using Support Vector Machines (SVM), we 
further augment the baseline with various fea-
tures related to dependency information, 
including predicates in the dependency tree. 
Moreover, in order to reveal the linguistic 
difference between distinct domains we also 
compare the effects of various features on PPI 
extraction from biomedical texts with those on 
relation extraction from newswire narratives. 
Evaluation on the AIMed and other PPI cor-

pora shows that our method achieves the best 
performance among all feature-based systems. 

The rest of the paper is organized as follows. 
A feature-based PPI extraction baseline system 
is given in Section 2 while Section 3 describes 
our dependency-driven method. We report our 
experiments in Section 4, and compare our 
work with the related ones in Section 5.  
Section 6 concludes this paper and gives some 
future directions. 

2 Feature-based PPI extraction: 
Baseline

For feature-based methods, PPI extraction task 
is re-cast as a classification problem by first 
transforming PPI instances into 
multi-dimensional vectors with various fea-
tures, and then applying machine learning ap-
proaches to detect whether the potential 
relationship exists for a particular protein pair. 
In training, a feature-based classifier learning 
algorithm, such as SVM or MaxEnt, uses the 
annotated PPI instances to learn a classifier 
while, in testing, the learnt classifier is in turn 
applied to new instances to determine their PPI 
binary classes and thus candidate PPI instances 
are extracted. 

As a baseline, various linguistic features, 
such as words, overlap, chunks, parse tree fea-
tures as well as their combined ones are ex-
tracted from a sentence and formed as a vector 
into the feature-based learner. 
1) Words 

Four sets of word features are used in our sys-
tem: 1) the words of both the proteins; 2) the 
words between the two proteins; 3) the words 
before M1 (the 1st protein); and 4) the words 
after M2 (the 2nd protein). Both the words be-
fore M1 and after M2 are classified into two 
bins: the first word next to the proteins and the 
second word next to the proteins. This means 
that we only consider the two words before M1 
and after M2. Words features include: 

MW1: bag-of-words in M1 
MW2: bag-of-words in M2 
BWNULL: when no word in between 
BWO: other words in between except 
first and last words when at least three 
words in between 
BWM1FL: the only word before M1 
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BWM1F: first word before M1 
BWM1L: second word before M1 
BWM1: first and second word before 
M1
BWM2FL: the only word after M2 
BWM2F: first word after M2 
BWM2L: second word after M2 
BWM2: first and second word after M2 

2) Overlap 

The numbers of other protein names as well as 
the words that appear between two protein 
names are included in the overlap features. 
This category of features includes: 

#MB: number of other proteins in be-
tween
#WB: number of words in between 
E-Flag: flag indicating whether the two 
proteins are embedded or not 

3) Chunks

It is well known that chunking plays an 
important role in the task of relation extraction 
in the ACE program (Zhou et al., 2005). How-
ever, its significance in PPI extraction has not 
fully investigated. Here, the Stanford Parser1

is first employed for full parsing, and then 
base phrase chunks are derived from full parse 
trees using the Perl script2. The chunking fea-
tures usually concern about the head words of 
the phrases between the two proteins, which 
are further classified into three bins: the first 
phrase head in between, the last phrase head in 
between and other phrase heads in between. In 
addition, the path of phrasal labels connecting 
two proteins is also a common syntactic 
indicator of the polarity of the PPI instance, 
just as the path NP_VP_PP_NP in the sen-
tence “The ability of PROT1 to interact with 
the PROT2 was investigated.” is likely to sug-
gest the positive interaction between two pro-
teins. These base phrase chunking features 
contain:

CPHBNULL: when no phrase in be-
tween.
CPHBFL: the only phrase head when 
only one phrase in between 
CPHBF: the first phrase head in between 
when at least two phrases in between. 

                                                          
1 http://nlp.stanford.edu/software/lex-parser.shtml
2 http://ilk.kub.nl/~sabine/chunklink/ 

CPHBL: the last phrase head in between 
when at least two phrase heads in be-
tween.
CPHBO: other phrase heads in between 
except first and last phrase heads when 
at least three phrases in between. 
CPP: path of phrase labels connecting 
the two entities in the chunking 

Furthermore, we also generate a set of 
bi-gram features which combine the above 
chunk features except CPP with their corre-
sponding chunk types.  
4) Parse Tree 

It is obvious that full pares trees encompass 
rich structural information of a sentence. 
Nevertheless, it is much harder to explore 
such information in featured-based methods 
than in kernel-based ones. Thus so far only 
the path connecting two protein names in the 
full-parse tree is considered as a parse tree 
feature.

PTP: the path connecting two protein 
names in the full-parse tree. 

 Again, take the sentence “The ability of 
PROT1 to interact with the PROT2 was 
investigated.” as an example, the parse path 
between PROT1 and PROT2 is 
NP_S_VP_PP_NP, which is slightly different 
from the CPP feature in the chunking feature 
set.

3 Dependency-Driven PPI Extraction 

The potential of dependency information for 
PPI extraction lies in the fact that the depend-
ency tree may well reveal non-local or 
long-range dependencies between the words 
within a sentence. In order to capture the 
necessary information inherent in the 
depedency tree for identifying their 
relationship, various kernels, such as edit 
distance kernel based on dependency path 
(Erkan et al., 2007), all-dependency-path 
graph kernel (Airola et al., 2008), and 
walk-weighted subsequence kernels (Kim et 
al., 2010) as well as other composite kernels 
(Miyao et al., 2008; Miwa et al., 2009a; Miwa 
et al., 2009b), have been proposed to address 
this problem. It’s true that these methods 
achieve encouraging results, neverthless, they 
suffer from prohibitive computation burden. 
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Thus, our solution is to fold the structural 
dependency information back into flat 
features in a feature-based framework so as to 
speed up the learning process while retaining 
comparable performance. This is what we 
refer to as dependency-driven PPI extraction. 

 First, we construct dependency trees from 
grammatical relations generated by the Stan-
ford Parser. Every grammatical relation has the 
form of dependent-type (word1, word2),
Where word1 is the head word, word2 is de-
pendent on word1, and dependent-type denotes 
the pre-defined type of dependency. Then, 
from these grammatical relations the following 
features called DependenecySet1 are taken 
into consideration as illustrated in Figure 1: 

DP1TR: a list of words connecting 
PROT1 and the dependency tree root. 
DP2TR: a list of words connecting 
PROT2 and the dependency tree root. 
DP12DT: a list of dependency types 
connecting the two proteins in the 
dependency tree. 
DP12: a list of dependent words com-
bined with their dependency types con-
necting the two proteins in the depend-
ency tree. 
DP12S: the tuple of every word com-
bined with its dependent type in DP12. 
DPFLAG: a boolean value indicating 
whether the two proteins are directly 
dependent on each other. 

The typed dependencies produced by the 
Stanford Parser for the sentence “PROT1 
contains a sequence motif binds to PROT2.” 
are listed as follows: 

nsubj(contains-2,PROT1-1)
det(motif-5, a-3) 
nn(motif-5, sequence-4) 
nsubj(binds-6, motif-5) 
ccomp(contains-2, binds-6) 
prep_to(binds-6, PROT2-8) 

Each word in a dependency tuple is fol-
lowed by its index in the original sentence, 
ensuring accurate positioning of the head 
word and dependent word. Figure 1 shows the 
dependency tree we construct from the above 
grammatical relations.  

contains 

PROT1 

motif 

binds 

PROT2

a sequence 

nsubj ccomp 

prep_to
nsubj 

det nn 

Figure 1: Dependency tree for the sentence 
“PROT1 contains a sequence motif binds to 
PROT2.” 

Erkan et al. (2007) extract the path 
information between PROT1 and PROT2 in 
the dependency tree for kernel-based PPI 
extraction and report promising results, 
neverthless, such path is so specific for 
feature-based methods that it may incure 
higher precision but lower recall. Thus we 
alleviate this problem by collapsing the feature 
into multiple ones with finer granularity, 
leading to the features such as DP12S. 

It is widely acknowledged that predicates 
play an important role in PPI extraction. For 
example, the change of a pivot predicate 
between two proteins may easily lead to the 
polarity reversal of a PPI instance. Therefore, 
we extract the predicates and their positions in 
the dependency tree as predicate features 
called DependencySet2:  

FVW: the predicates in the DP12 feature 
occurring prior to the first protein. 
LVW: the predicates in the DP12 feature 
occurring next to the second entity. 
MVW: other predicates in the DP12 
features. 
#FVW: the number of FVW 
#LVW: the number of LVW 
#MVW: the number of MVW 

4 Experimentation

This section systematically evaluates our fea-
ture-based method on the AIMed corpus as 
well as other commonly used corpus and re-
ports our experimental results. 
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4.1 Data Sets 

We use five corpora3 with the AIMed corpus 
as the main experimental data, which contains 
177 Medline abstracts with interactions be-
tween two interactions, and 48 abstracts with-
out any PPI within single sentences. There are 
4,084 protein references and around 1,000 
annotated interactions in this data set.  

For corpus pre-procession, we first rename 
two proteins of a pair as PROT1 and PROT2 
respectively in order to blind the learner for 
fair comparison with other work.  Then, all 
the instances are generated from the sentences 
which contain at least two proteins,  that is, if 
a sentence contains n different proteins, there 
are n

2 different pairs of proteins and these 
pairs are considered untyped and undirected. 
For the purpose of comparison with previous 
work, all the self-interactions (59 instances) 
are removed, while all the PPI instances with 
nested protein names are retained (154 in-
stances). Finally, 1002 positive instances and 
4794 negative instances are generated and 
their corresponding features are extracted.  

We select Support Vector Machines (SVM) 
as the classifier since SVM represents the 
state-of-the-art in the machine learning re-
search community. In particular, we use the 
binary-class SVMLigh 4 developed by 
Joachims (1998) since it satisfies our require-
ment of detecting potential PPI instances. 

Evaluation is done using 10-fold docu-
ment-level cross-validation. Particularly, we 
apply the extract same 10-fold split that was 
used by Bunescu et al. (2005) and Giuliano et 
al. (2006). Furthermore, OAOD (One Answer 
per Occurrence in the Document) strategy is 
adopted, which means that the correct interac-
tion must be extracted for each occurrence. 
This guarantees the maximal use of the avail-
able data, and more important, allows fair 
comparison with earlier relevant work.  

The evaluation metrics are commonly used 
Precision (P), Recall (R) and harmonic 
F1-score (F1). As an alternative to F1-score, 
the AUC (area under the receiver operating 
characteristics curve) measure is proved to be 
invariant to the class distribution of the train-
ing dataset. Thus we also provide AUC scores 
                                                          
3 http://mars.cs.utu.fi/PPICorpora/GraphKernel.html 
4 http://svmlight.joachims.org/

for our system as Airola et al. (2008) and 
Miwa et al. (2009a). 

4.2 Results and Discussion 

Features P(%) R(%) F1 
Baseline features 
Words 59.4 40.6 47.6
+Overlap 60.4 39.9 47.4
+Chunk 59.2 44.5 50.6
+Parse 60.9 44.8 51.4
Dependency-driven features 
+Dependency Set1 62.9 48.0 53.9
+Dependency Set2 63.4 48.8 54.7
Table 1: Performance of PPI extraction with vari-
ous features in the AIMed corpus 

We present in Table 1 the performance of our 
system using document-wise evaluation 
strategies and 10-fold cross-validation with 
different features in the AIMed corpus, where 
the plus sign before a feature means it is 
incrementally added to the feature set. Table 1 
reports that our system achieves the best per-
formance of 63.4/48.8/54.7 in P/R/F scores. It 
also shows that: 

Words features alone achieve a relatively 
low performance of 59.4/40.9/47.6 in 
P/R/F, particularly with fairly low recall 
score. This suggests the difficulty of PPI 
extraction and words features alone can’t 
effectively capture the nature of protein 
interactions.
Overlap features slightly decrease the per-
formance. Statistics show that both the 
distributions of #MB and #WB between 
positives and negatives are so similar that 
they are by no means the discriminators for 
PPI extraction. Hence, we exclude the 
overlap features in the succeeding experi-
ments.
Chunk features significantly improves the 
F-measure by 3 units largely due to the in-
crease of recall by 3.9%, though at the 
slight expense of precision. This suggests 
the effectiveness of shallow parsing infor-
mation in the form of headwords captured 
by chunking on PPI extraction.  
The usefulness of the parse tree features is 
quite limited. It only improves the 
F-measure by 0.8 units. The main reason 
may be that these paths are usually long 
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and specific, thus they suffer from the 
problem of data sparsity. Furthermore, 
some of the parse tree features are already 
involved in the chunk features.  
The DependencySet1 features are very 
effective in that it can increase the preci-
sion and recall by 2.0 and 3.2 units 
respectively, leading to the increase of F1 
score by 2.5 units. This means that the de-
pendency-related features can effectively 
retrieve more PPI instances without intro-
ducing noise that will severely harm the 
precision. According to our statistics, there 
are over 60% sentences with more than 5 
words between their protein entities in the 
AIMed corpus. Therefore, dependency in-
formation exhibit great potential to PPI 
extraction since they can capture 
long-range dependencies within sentences. 
Take the aforementioned sentence 
“PROT1 contains a sequence motif binds 
to PROT2.” as an example, although the 
two proteins step over a relatively long 
distance, the dependency path between 
them is concise and accurate, reflecting the 
essence of the interaction. 
The predicate features also contribute to 
the F1-score gain of 0.8 units. It is not 
surprising since some predicates, such as 
“interact”, “activate” and “inhibit” etc, are 
strongly suggestive of the interaction 
polarity between two proteins. 

We compare in Table 2 the performance of 
our system with other systems in the AIMed 
corpus using the same 10-fold cross validation 
strategy. These systems are grouped into three 
distinct classes: feature-based, kernel-based 
and composite kernels. Except for Airola et al. 
(2008) Miwa et al. (2009a) and Kim et al. 
(2010), which adopt graph kernels, our system 
performs comparably with other systems. In 
particular, our dependency-driven system 
achieves the best F1-score of 54.7 among all 
feature-based systems. 

In order to measure the generalization abil-
ity of our dependency-driven PPI extraction 
system across different corpora, we further 
apply our method to other four publicly avail-
able PPI corpora: BioInfer, HPRD50, IEPA 
and LLL.  

Table 2: Comparison with other PPI extraction 
systems in the AIMed corpus 

The corresponding performance of 
F1-score and AUC metrics as well as their 
standard deviations is present in Table 3.  
Comparative available results from Airola et 
al. (2008) and Miwa et al. (2009a) are also 
included in Table 3 for comparison. This table 
shows that our system performs almost 
consistently with the other two systems, that is, 
the LLL corpus gets the best performance yet 
with the greatest variation, while the AIMed 
corpus achieves the lowest performance with 
reasonable variation. 

It is well known that biomedical texts ex-
hibit distinct linguistic characteristics from 
newswire narratives, leading to dramatic per-
formance gap between PPI extraction and 
relation detection in the ACE corpora. How-
ever, no previous work has ever addressed this 
problem and empirically characterized this 
difference. In this paper, we devise a series of 
experiments over the ACE RDC corpora using 
our dependency-driven feature-based method 
as a touchstone task. In order to do that, a sub-
                                                          
5 Airola et al. (2008) repeat the method published by 
Giuliano et al. (2006) with a correctly preprocessed 
AIMed and reported an F1-score of 52.4%. 
6 The results from Table 1 (Miyao et al., 2009) with the 
most similar settings to ours (Stanford Parser with SD 
representation) are reported. 

Systems P(%) R(%) F1

Feature-based methods 

Our system 63.4 48.8 54.7

Giuliano et al., 20065 60.9 57.2 59.0

Sætre et al., 2007 64.3 44.1 52.0

Mitsumori et al., 2006 54.2 42.6 47.7

Yakushiji et al., 2005 33.7 33.1 33.4

Kernel-based methods 

Kim et al., 2010 61.4 53.3 56.7

Airola et al., 2008 52.9 61.8 56.4

Bunescu et al., 2006  65.0 46.4 54.2

Composite kernels 

Miwa et al., 2009a - - 62.0

Miyao et al., 20086 51.8 58.1 54.5
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set of 5796 relation instances is randomly 
sampled from the ACE 2003 and 2004 cor-
pora respectively.  The same cross-validation 

and evaluation metrics are applied to these 
two sets as PPI extraction in the AIMed cor-
pus.

Our system Airola et al. (2008) 7 Miwa et al. (2009a) 
Corpus F1 F1 AUC AUC F1 F1 AUC AUC F1 F1 AUC AUC

AIMed 54.7 4.5 82.4 3.5 56.4 5.0 84.8 2.3 60.8 6.6 86.8 3.3
BioInfer 59.8 3.5 80.9 3.3 61.3 5.3 81.9 6.5 68.1 3.2 85.9 4.4
HPRD50 64.9 13.4 79.8 8.5 63.4 11.4 79.7 6.3 70.9 10.3 82.2 6.3
IEPA 62.1 6.2 74.8 6.6 75.1 7.0 85.1 5.1 71.7 7.8 84.4 4.2
LLL 78.1 15.8 85.1 8.3 76.8 17.8 83.4 12.2 80.1 14.1 86.3 10.8

Table 3: Comparison of performance across the five PPI corpora 

AIMed ACE2003 ACE2004 Features P(%) R(%) F1 P(%) R(%) F1 P(%) R(%) F1 
Words 59.4 40.6 47.6 66.5 51.6 57.9 68.1 59.6 63.4
+Overlap +1.0 -0.7 -0.2 +5.4 +1.8 +3.2 +4.6 +1.2 +2.7
+Chunk -1.7 +4.6 +3.2 +2.3 +5.1 +4.0 +1.5 +1.9 +1.7
+Parse +1.7 +0.3 +0.8 +0.3 +0.6 +0.5 +0.6 +0.4 +0.5
+Dependency Set1 +2.0 +3.2 +2.5 +0.8 +0.7 +0.7 +0.5 +0.9 +0.7
+Dependency Set2 +0.5 +0.8 +0.8 +0.3 +0.2 +0.3 +0.2 +0.4 +0.3

Table 4: Comparison of contributions of different features to relation detection across multiple domains 

Table 4 compares the performance of our 
method over different domains. The table re-
ports that the words features alone achieve the 
best F1-score of 63.4 in ACE2004 but the low-
est F1-score of 47.6 in AIMed. This suggests 
the wide difference of lexical distribution be-
tween these domains. We extract the words 
appearing before the 1st mention, between the 
two mentions and after the 2nd mention from 
the training sets of these corpora respectively, 
and summarize the statistics (the number of 
tokens, the number of occurrences) in Table 5, 
where the KL divergence between positives 
and negatives is summed over the distribution 
of the 500 most frequently occurring words. 

                                                          
7 The performance results of F1 and AUC on the BioInfer corpus are slightly adjusted according to Table 3 in Miwa et 
al. (2009b) 

Table 5: Lexical statistics on three corpora 

The table shows that AIMed uses the most 
kinds of words and the most words around the 
two mentions than the other two. More impor-
tant, AIMed has the least distribution differ-
ence between the words appearing in positives 

and negatives, as indicated by its least KL 
divergence. Therefore, the lexical words in 
AIMed are less discriminative for relation 
detection than they do in the other two. This 
naturally explains the reason why the perform-
ance by words feature alone is 
AIMed<ACE2003<ACE2004. In addition, 
Table 4 also shows that: 

The overlap features significantly improve 
the performance in ACE while slightly 
deteriorating that in AIMed. The reason is 
that, as indicated in Zhou et al. (2005), most 
of the positive relation instances in ACE 
exist in local contexts, while the positive 
interactions in AIMed occur in relative 
long-range just as the negatives, therefore 
these features are not discriminative for 
AIMed.

Statistics AIMed ACE2003 ACE2004
# of tokens 2,340 2,064 2,099
# of occurrences 69,976 53,744 49,570
KL divergence  0.22 0.28 0.33 

The chunk features consistently greatly 
boost the performance across multiple cor-
pora. This implies that the headwords in 
chunk phrases can well capture the partial 
nature of relation instances regardless of 
their genre. 
It’s not surprising that the parse feature 
attain moderate performance gain in all do-
mains since these parse paths are usually 
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long and specificity, leading to data 
sparseness problem. 
It is interesting to note that the depend-
ency-related features exhibit more signifi-
cant improvement in AIMed than that in 
ACE. The reason may be that, these 
dependency features can effectively cap-
ture long-range relationships prevailing in 
AIMed, while in ACE a large number of 
local relationships dominate the corpora. 

5 Related Work 

Among feature-based methods, the PreBIND 
system (Donaldson et al., 2003) uses words and 
word bi-grams features to identify the existence 
of protein interactions in abstracts and such 
information is used to enhance manual expert 
reviewing for the BIND database. Mitsumori et 
al. (2006) use SVM to extract protein-protein 
interactions, where bag-of-words features, spe-
cifically the words around the protein names, 
are employed. Sugiyama et al. (2003) extract 
various features from the sentences based on 
the verbs and nouns in the sentences such as the 
verbal forms, and the part-of-speech tags of the 
20 words surrounding the verb. In addition to 
word features, Giuliano et al. (2006) extract 
shallow linguistic information such as POS tag, 
lemma, and orthographic features of tokens for 
PPI extraction. Unlike our dependency-driven 
method, these systems do not consider any 
syntactic information.  

For kernel-based methods, there are several 
systems which utilize dependency information. 
Erkan et al. (2007) defines similarity functions 
based on cosine similarity and edit distance 
between dependency paths, and then incorpo-
rate them in SVM and KNN learning for PPI 
extraction. Airola et al. (2008) introduce 
all-dependency-paths graph kernel to capture 
the complex dependency relationships between 
lexical words and attain significant perform-
ance boost at the expense of computational 
complexity. Kim et al. (2010) adopt 
walk-weighted subsequence kernel based on 
dependency paths to explore various substruc-
tures such as e-walks, partial match, and 
non-contiguous paths. Essentially, their kernel 
is also a graph-based one. 

For composite kernel methods, Sætre et al. 
(2007) combine a “bag-of-words” kernel with 

dependency and PAS (Predicate Argument 
Structure) tree kernels to exploit both the words 
features and the structural syntactic information. 
Hereafter, Miyao et al. (2008) investigate the 
contribution of various syntactic features using 
different representations from dependency 
parsing, phrase structure parsing and deep 
parsing by different parsers. Miwa et al. 
(2009a) integrate “bag-of-words” kernel, PAS 
tree kernel and all-dependency-paths graph 
kernel to achieve the higher performance. They 
(Miwa et al., 2009b) also use similar compos-
ite kernels for corpus weighting learning 
across multiple PPI corpora.  

6 Conclusion and Future Work 

In this paper, we have combined various lexical 
and syntactic features, particularly dependency 
information, into a feature-based PPI extraction 
system. We find that the dependency informa-
tion as well as the chunk features contributes 
most to the performance improvement.  The 
predicate features involved in the dependency 
tree can also moderately enhance the perform-
ance. Furthermore, comparative study between 
biomedical domain and the ACE newswire 
domain shows that these domains exhibit 
different lexical characteristics, rendering the 
task of PPI extraction much more difficult than 
that of relation detection from the ACE cor-
pora.

In future work, we will explore more syntac-
tic features such as PAS information for fea-
ture-based PPI extraction to further boost the 
performance. 
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