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In recent years, supervised constituent parsing h
been well studied and achieves the state-of-the-a
for many resource-rich languages (Collins, 19997
Charniak, 2000; Petrov et al., 2006).
of the cost and difficulty in treebank construc-
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Abstract

We describe an effective constituent pro-
jection strategy, where constituent pro-
jection is performed on the basis of de-
pendency projection. Especially, a novel
measurement is proposed to evaluate the
candidate projected constituents for a tar-
get language sentence, and a PCFG-style
parsing procedure is then used to search
for the most probable projected con-
stituent tree. Experiments show that, the
parser trained on the projected treebank
can significantly boost a state-of-the-art
supervised parser. When integrated into a
tree-based machine translation system, the
projected parser leads to translation per-
formance comparable with using a super-
vised parser trained on thousands of anno-
tated trees.
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the need of reliable priori knowledge in semi-
supervised methods, it seems promising to project
the syntax structures from a resource-rich lan-
guage to a resource-scarce one across a bilingual
corpus. Lots of researches have so far been de-
voted to dependency projection (Hwa et al., 2002;
Hwa et al., 2005; Ganchev et al., 2009; Smith
and Eisner, 2009). While for constituent projec-
tion there is few progress. This is due to the fact
that the constituent syntax describes the language
structure in a more detailed way, and the degree of
isomorphism between constituent structures ap-
pears much lower.

In this paper we propose for constituent pro-
jection a stepwise but totally automatic strategy,
which performs constituent projection on the ba-
sis of dependency projection, and then use a con-
straint EM optimization algorithm to optimized
the initially projected trees. Given a word-aligned
bilingual corpus with source sentences parsed, we
first project the dependency structures of these

gnstituent trees to the target sentences using a
éynamic programming algorithm, then we gener-
fte a set of candidate constituents for each target
entence and design a novel evaluation function
to calculate the probability of each candidate con-

tion, researchers have also investigated the utiIizggtueZt’ finally, we dhe\;elopha PCFG-stle)e Elarsmg
tion of unannotated text, including the unsuper_proce ure to search for the most probable pro-

vised parsing which totally uses unannotated da{gcteo_l constituent tree_ n the evalqated candldgte
(Klein and Manning, 2002; Klein and Manning constituent set. In addition, we design a constraint

2004; Bod, 2006; Seginer, 2007), and the semEM optimization procedure to decrease the noise

supervised parsing which uses both annotated aHbIthe initially projected constituent treebank.

unannotated data (Sarkar, 2001; Steedman et al.Experimental results validate the effectiveness

2003; McClosky et al., 2006). of our approach. On the Chinese-English FBIS
Because of the higher complexity and loweicorpus, we project the English parses produced

performance of unsupervised methods, as well &/ the Charniak parser across to the Chinese sen-
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tences. A berkeley parser trained on this proAlgorithm 1 Dependency projection.

jected treebank can effectively boost the superd: Input: F, andP. for all word pairs inF'

vised parsers trained on bunches of CTB treesgf for (i, j) < (1, |F) in topological ordedo

. . . buf « (
Especially, the supervised parser trained on the@:  for k< i.j —1do > all partitions
smaller CTB 1.0 benefits a significant F-measured: for I € V[i, k] andr € V[k + 1, j] do

; : . 6: insert DERIV(I, 7, P.) into buf
increment of more than 1 point from the projected. insert CERIV(r. . %) into buf

parser. When using the projected parser in atreez. vy j] « top K derivations ofbuf

based translation model (Liu et al., 2006), weg: oOutput: the best derivation ov[1,|F|]

achieve translation performance comparable witH0: function DERIV(p, ¢, Pe) o
using a state-of-the-art supervised parser train é Z:qfl’ icgviji '(2";’})“ C'm;";}vzlﬂz‘t’i"oﬂefﬁ\r’]itt'i%?]
on thousands of CTB trees. This surprising ret3:  return d o

sult gives us an inspiration that better translation

would be achieved by combining both projecte
parsing and supervised parsing into a hybrid pa
ing schema.

C%D(DF]DE, A) can be factorized into each depen-
Mency edge: ~ yin Dy

. . L P(Dp|Dg, A) = H P.(x ~ y|Dg, A)
2 Stepwise Constituent Projection crweDp

We first introduce the dynamic programming pro£ €an then be obtained by simple accumulation

cedure for dependency projection, then descrigcross all possible situations of correspondence

the PCFG-style algorithm for constituent projec- P.(x ~ y|Dg, A)

tion which is conducted on projected dependent ;o

structures, and finally show the constraint EM Z Agar X Ay X 0(2,y | Dp)

: L 1<a! y'<|E|

procedure for constituent optimization.
whered(z',y'|Dg) is a 0-1 function that equals

2.1 Dependency Projection 1 only if the dependent relation’ ~ 3/ holds in

For dependency projection we adopt a dynami@E-
programming algorithm, which searches the most T he search procedure needed by the argmax op-
probable projected target dependency structuff@tion in equation 1 can be effectively solved

according to the source dependency structure alyf the Chu-Liu-Edmonds algorithm used in (Mc-
the word alignment. Donald et al., 2005). In this work, however, we

In order to mitigate the effect of word alignment2doPt & more general and simple dynamic pro-
errors, multiple GIZA++ (Och and Ney, 2000) re-gramming algorithm as shown in Algorithm 1,

sults are combined into a compact representatid Order to facilitate the possible expansions. In

called alignment matrix. Given a source sentendg/@ctice, the cube-pruning strategy (Huang and
with m words, represented d8,.,,, and a target Chiang, 2005) is used to speed up the enumera-

sentence witn words, represented a8 .., their tion of derivations (loops started by line 4 and 5).

word alignment matrixA is anm x n matrix, 22 Constituent Projection
where each elemem; ; denotes the probability
of the source wordy; aligned to the target word

Fj

The PCFG-style parsing procedure searches for
the most probable projected constituent tree in
a shrunken search space determined by the pro-

thJrf g P.(Df ’c?tE ’A)ttz deno;e the ptrOb?g“ty jected dependency structure and the target con-
ot the projected target dependency SWUCUHE i1 ent tree. The shrunken search space can be

conditioned on the source depende_ncy_ structuBeu”t as following. First, we generates the candi-
Dp, and the alignment matrix, the projection al-

thm aims to find date constituents of the source tree and the can-
gorithm aims to fin didate spans of the target sentence, so as to enu-
~ merate the candidate constituents of the target sen-
Dr = e P(Dr|Dp, A) @) tence. Then we compute the consistent degree for
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each pair of candidate constituent and span, and
further estimate the probability of each candidate
constituent for the target sentence.

2.2.1 Candidate Constituents and Spans

For the candidate constituents of the source
tree, using only the original constituents imposes
a strong hypothesis of isomorphism on the con-
stituent projection between two languages, since
it requires that each couple of constituent and span
must be strictly matched. While for the candi-
date spans of the target sentences, using all sub-
sequences makes the search procedure suffer from
more perplexity. Therefore, we expand the candi-
date constituent set and restrict the candidate span
set:

e Candidate Constituent:

has L (L. > 0) modifiers on its left andR

(R > 0) modifiers on its right, each of them
is a smaller complete dependency structure.
Then the wordp itself is a regular depen-
dency segment without any modifier, and

{cli-.cn " p~cr.cr|0 <0 < LA
0<j < RA
(t>0Vvj>0)}

is a set of regular dependency structures with
at least one modifier. The regular depen-
dency segments of the entire projected de-
pendency structure can simply be accumu-
lated across all dependency nodes.

Suppose a produ@_.z.z Span-to-Constituent Correspondence

tion in the source constituent tree, denoted as After determining the candidate constituent set
p — c162..¢h..¢p), @Ndcy is the head child of the source tree, denoted é&s;, and the can-
of the parenp. Each constitueny or ¢, is a  didate span set of the target sentence, denoted as
triple (Ib, b, nt), wherent denotes its non- ¥r, we then calculate the consistent degree for
terminal, whilelb andrb represent its left- each pair of candidate constituent and candidate
and right bounds of the sub-sequence that tHgpan.

constituent covers. The candidate constituent Given a candidate constituesit € @z and a
set of this production consists the head otandidate span € ¥, their consistent degree
the production itself, and a set of incomplete’ (¢, ¢|A) is the probability that they are aligned

constituents,
{({l,r,p - ntx) ey - 1b < 1< ey - IDA
cp b < < cpp - TOA
(I<ecp-lbVr>cy-rb)}

where the symbok indicates an incomplete
non-terminal. The candidate constituent set

to each other according té.

We display the derivations from bottom to up.
First, we define the alignment probability from a
word in the spany to the constituen as

AL
P(i s ¢|A) = Z¢~lbzg:]§j.'ré ;
j A

of the entire source tree is the unification ofrhen we define the alignment probability from the
the sets extracted from all productions of thepany to the constitueny as

tree.

e Candidate Span: A candidate span of the tar-
get sentence is a tupléb, rb), wherelb and

P ¢lA) =

I

Y lb<i<ap-rb

P(i— ¢|A)

rb indicate the same as in a constituent. Wijote that we uséto denote both aword and its in-
define the candidate span set as the spans @fx for simplicity without causing confusion. Fi-
all regular dependent segments in the corre- npa|ly, we define(¢, v|A) as

sponding projected dependency structure. A

regular dependency segment is a dependepty, p|A) = P(yp — ¢|A) x P(¢ — v|AT) (2)

segment that every modifier of the root is a

complete dependency structure. Suppose\here P(¢ +— 1|AT) denotes the alignment

dependency structure rooted at wgrdde-
noted asc..ciaci1 v P N Cr1Cro..CrR, 1t
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can be calculated in the same manner.



2.2.3 Constituent Projection Algorithm Algorithm 2 Constituent projection.

The purpose of constituent projection is to find 1 Input: ¥r, @5, andP for all spans ind
. . 2: for (i, ) € ¥ in topological ordedo
the most probable projected constituent tree fol. ;¢ ¢

the target sentence conditioned on the source co:  for p € ®r s.t.9(p) = (i, ) do

; ; 5: for k +i..j —1do > all partitions
stituent tree and the word alignment o for 1 € V[i, k| andr € VI[k + 1, ] do
- 7 insert CERIV(I, 7, p, Py ) into buf
I = ?“gg)aXP(TF]TE, A) @) s Vi, j] + top K derivations ofbuf
F=%F

9: Output: the best derivation oV [1, |F|]

. 10: function DERIV((, 7, p, Py)
Here, we usebr to denote the set of candldaten: de1UrU{p} > new derivation

constituents of the target sentence 12 d-evl + EVAL(d, Py) > evaluation function
13: return d

= {0rl¥(¢r) € Tr Ant(or) € NT(®R)} o o\, Optimization

where(-) andni(-) represent the span and thesince the constituent projection is conducted on
non-terminal of a constituent respectively, angach sentence pair separately, the projected tree-
NT(-) represents the set of non-terminals expank is apt to suffer from more noise caused by
tracted from a constituent set. Note tat is @ free translation and word alignment error. It can
subset of® - if we treat a tree as a set of con-pe expected that an EM iteration over the whole

stituents. projected treebank will lead to trees with higher
The probability of the projected tre- can be ~gnsistence.

factor'ized into the probabilities of the projected \y adopt the inside-outside algorithm to im-
constituents that composes the tree prove the quality of the initially projected tree-
bank. Different from previous works, all expecta-
tion and maximization operations for a single tree
are performed in a constrained space determined
while the probability of the projected source conby the candidate span set of the projected target
stituent can be defined as a statistics of span-téependency structure. That is to say, all the sum-
constituent- and constituent-to-constituent consignation operations, both for calculating3 values

P(Tp|Te, A) = [] Po(dr|Te, A)
or€Tr

tent degrees and for re-estimating the rule probabilities, only
consider the spans in the candidate span set. This
Py(¢rp|TE, A) = Zd@e@E C(or, orlA) means that the projected dependency structures
’ Yopedy C(W(OF), dE|A) are supposed believable, and the noise is mainly

introduced in the following constituent projection
whereC(¢r, 9| A) in the numerator denotes theprocedure.

consistent degree for each pair of constituents, Here we give an overall description of the tree-
which can be calculated based on that of span afghnk optimization procedure. First, an initial

constituent described in Formula 2 PCFG grammag. is estimated from the original
0 if o -nt # ép-nt projected treebank. Then several iterationsusf
C(or, op) = { C(61), 61) olse calculation and rule probability re-estimation are

performed. For example in thiethe iterationo/3

Algorithm 2 shows the pseudocode for convalues are calculated based on the current gram-
stituent projection. A PCFG-style parsing pro-marGi: !, afterwards the optimized gramma@t,
cedure searches for the best projected constituastobtained based on thesés values. The itera-
tree in the constrained space determinedify. tive procedure terminates when the likelihood of
Note that the projected trees are binarized, and cavhole treebank increases slowly. Finally, with the
be easily recovered according to the asterisks aptimized grammar, a constrained PCFG parsing
the tails of non-terminals. procedure is conducted on each of the initial pro-
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jected trees, so as to obtain an optimized treebanéf the baseline parser, while the remaining fea-
tures are integer-valued guide features, and each
of them represents the guider parser’s predication

The most direct contribution of constituent pro_result for a particular configuration in candidate
jection is pushing an initial step for the statis-ParseT’, so as to utilize the projected parser's
tical constituent parsing of resource-scarce larfknowledge to guide the parsing procedure of the
guages. It also has some meaningful applicdtaditional parser.

tions even for the resource-rich languages. For !N our work a guide feature is composed of two
instances, the projected treebank, due to its largirts, the non-terminal of a certain constituent
scale and high coverage, can used to boost an ti8-the candidate parsg,* and the non-terminal
ditional supervised-trained parser. And, the parséit the corresponding spap(¢) in the projected
trained on the projected treebank can adopted RrseZc. Note that in the projected parse this
conduct tree-to-string machine translation, sincéPan does not necessarily correspond to a con-
it give parsing results with larger isomorphismstituent. In such situations, we simply use the
with the target language than a supervised—trainé&P”‘termi”al of the constituent that just be able

3 Applications of Constituent Projection

parser dose. to cover this span, and attach a asterisk at the tail
of this non-terminal. Here is an example of the
3.1 Boost an Traditional Parser guide features

We first establish a unified framework forthe en- (7 7.y = VP e T o PP+ € Tg

hanced parser where a projected parser is adopted ) .

to guide the parsing procedure of the baseling represents that &7 in the caqd|date parse cor-

parser. responds to a segment offaP in the projected
For a given target sentenc, the enhanced parse. The quantity of its weighml_oo indicatgs

parser selected the best pafEeamong the set how probably a span can be predicated/as if

of candidates2(S) according to two evaluation f[he span corresponds to a partial” in the pro-
functions, given by the baseline pard&and the

jected parse.
projected guide parsez, respectively. We adopt the perceptron algorithm to train

the reranker. To reduce overfitting and pro-

T = argmax P(T|B) x P(T|G)* (4) duce a more stable weight vector, we also use
Teq(S) a refinement strategy called averaged parameters
These two evaluation functions can be integrate{JCO"mS’ 2002).

deeply into the decoding procedure (Carreras &2 Using in Machine Translation
al,, 2008; zhang and Clark, 2008; Huang, 2008)po5earchers have achieved promising improve-

or can be integratgd at a shallow Ieyel ina reranks,onts in tree-based machine translation (Liu et
ing manner (Collins, 2000; Charniak and ‘]Ohnél., 2006; Huang et al., 2006). Such models use

son, 2005). For- simplicity and generability, We, parsed tree as input and converts it into a target
adopt the reranking strategy. kabest reranking,

(9" is simpl ‘ did q tree or string. Given a source language sentence,
(?% IS ;lmpy a set of candidate parses, denotegi; o yse a traditional source language parser
as|ii,19,..

, » Tk}, and we use the single parse (,)tto parse the sentence to obtain the syntax Tree
ghe guide parls et tobre—e\éaI:atZ these candi-5g then use the translation decoder to search for
ates. Formula 4 can be redefined as the best derivatiod, where a derivatior is a se-
T(Tg) = argmaxw - £(T, Tis) (5) auence of transformations that converts the source
TEN(S) tree into the target language string

Here, f(T,T;) and w represent a high dimen- d= argg)axP(le) (6)
sional feature representation and a correspone-—— ) _ _

. ight t tivelv. The first feat Using non-terminals as features brings no improvement
INng weignt vector, respectively. e lirst featurgy, e reranking experiments, so as to examine the impact of

fi(T,Tg) = logP(T|B) is the log probability the projected parser.
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Here D is the candidate set af and it is deter- Thresc | #Resrv. Cons#y  Span-Fy
) h h ¢ ) 05 12.6K 239 327
mined by the source treé and the transformation 0.4 17.8K 239 33.4
rules. 0.3 27.2K 25.4 35.7
; ) 0.2 45.1K 26.6 38.0
Since the tree-based models are based on o1 87 0K 578 104

the synchronous transformational grammars, they
suffer much from the isomerism between théfable 1: Performances of the projected parsers
source syntax and the target sentence structuin the CTB test set. #Resrv denotes the amount
Considering that the parsed tree produced by @& reserved trees within threshotd Cons# is
projected parser may have larger isomorphisrhe traditional F-measure, while Sp#h-is the F-
with the target language, it would be a promismeasure without consideration of non-terminals.
ing idea to adopt the projected parser to parse the

input sentence for the subsequent translation de-

coding procedure. nese treebanks with different scales are obtained
by specifying different as the filtering threshold.
4 Experiments The state-of-the-art Berkeley Parser is adopted to

In this section, we first invalidate the effect of con—traln on these treebanks because of its high per-

: I . . &ormance and independence of head word infor-
stituent projection by evaluating a parser trained” .

on the projected treebank. Then we investigat@at'on'

two applications of the projected parser: boosting Table 1 shows the performances of these pro-
an traditional supervised-trained parser, and inté€cted parsers on the standard CTB test set, which
gration in a tree-based machine translation sy4s composed of sentences in chapters 271-300.
tem. Following the previous works, we depict the/Ve find that along with the decrease of the filter-
parsing performance by F-score on sentences withd thresholde, more projected trees are reserved
no more than 40 words, and evaluate the trans|@d the performance of the projected parser con-
tion quality by the case-sensitive BLEU-4 metricstantly increases. We also find that the traditional

(Papineni et al., 2002) with 4 references. F-value, ConsF1, is obviously lower than the one
_ o without considering non-terminals, Spah- This
4.1 Constituent Projection indicates that the constituent projection procedure

We perform constituent projection from Englishintroduces more noise because of the higher com-
to Chinese on the FBIS corpus, which containglexity of constituent correspondence. In all the
239K sentence pairs with about 6.9M/8.9M wordgest experiments, however, we simply use the pro-
in Chinese/English. The English sentences aiécted treebank filtered by threshald= 0.1 and
parsed by the Charniak Parser and the dependerég not try any smaller thresholds, since it already
structures are extracted from these parses accotékes more than one weak to train the Berkeley
ing to the head-finding rules of (Yamada andParser on the 87 thousands trees resulted by this
Matsumoto, 2003). The word alignment matrixeghreshold.
are obtained by combining thk)-best results of  The constrained EM optimization procedure
GIZA++ according to (Liu et al., 2009). described in section 2.3 is used to alleviate the
We first project the dependency structures fromoise in the projected treebank, which may be
English to Chinese according to section 2.1, andaused by free translation, word alignment errors,
then project the constituent structures accordingnd projection on each single sentence pair. Fig-
to section 2.2. We define an assessment criterize 1 shows the log-likelihood on the projected
to evaluate the confidence of the final projectetteebank after each EM iteration. Itis obvious that
constituent tree the log-likelihood increases very slowly after 10
iterations. We terminate the EM procedure after
40 iterations.

wheren is the word count of a Chinese sentence Finally we train the Berkeley Parser on the op-
in our experiments. A series of projected Chitimized projected treebank, and test its perfor-

¢ = Y/ P(Dp|Dg, A) x P(Tp|Tg, A)
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Figure 1. Log-likelihood of the 87K-projected Figure 2: Boosting performance of the projected
treebank after each EM interation.

Train Set Cons-f;  Span-I
Original 87K 27.8 40.4
Optimized 87K 22.8 40.2

parser on a series of baseline parsers that are
trained on treebanks of different scales.

based on Collins model 2 (Collins, 1999) as the

Table 2: Performance of the parser trained on theaseline parseér.
optimized projected treebank, compared with that The baseline parser is respectively trained on
of the original projected parser.

CTB 1.0 and CTB 5.0. For both corpora we
follow the traditional corpus splitting: chapters

(_':?'E'; fgt Be;sseg”e B;g';f“ Bs;‘ggt 271-300 for testing, chapters 301-325 for devel-
CTB5.0 852 855 857 opment, and else for training. Experimental re-

sults are shown in Table 3. We find that both
Table 3: Performance improvement brought byyojected parsers bring significant improvement to
the projected parser to the baseline parsers trainggh paseline parsers. Especially the later, although
on CTB 1.0 and CTB 5.0, respectively. Bst-pnerforms worse on CTB standard test set, gives a
Ini/Bst-Opt: boosted by the parser trained on thgyrger improvement than the former. This to some
initial/optimized projected treebank. degree confirms the previous assumption. How-

ever, more investigation must be conducted in the

mance on the standard CTB test set. Table BHtUre.

shows the performance of the parser trained on We also observe that for the baseline parser
the optimized projected treebank. Unexpectedlyrained on the much larger CTB 5.0, the boost-
we find that the constituer; -value of the parser ing performance of the projected parser is rela-
trained on the optimized treebank drops sharplfjvely lower. To further investigate the regularity
from the baseline, although the spAn-value re- that the boosting performance changes according
mains nearly the same. We assume that the EM the scale of training treebank of the baseline
procedure gives the original projected treebanRarser, we train a series of baseline parsers with
more consistency between each single tree whiféfferent amounts of trees, then use the projected
the revised treebank deviates from the CTB anndr@rser trained on the optimized treebank to en-

tation standard, but it needs to be validated by thigance these baseline parsers. Figure 2 shows the
following experiments. experimental results. From the curves we can see

that the smaller the training corpus of the baseline
parser, the more significant improvement can be

The projected parser is used to help the rerankirgPt@ined- This is a good news for the resource-
carce languages that have no large treebanks.

of the k-best parses produced by another state-of:
the-art parser, which is called the baseline parser; _ _
The Berkeley Parser fails to givebest parses for some

for conyenlencg. In-our experlments We CNOOSE,ntences when trained on small treebanks, and these sen-
the revised Chinese parser (Xiong et al., 2005gnces have to be deleted in #hdest reranking experiments.

4.2 Boost an Traditional Parser
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4.3 Using in Machine Translation 0.270

C'II'B 5.0
We investigate the effect of the projected parser 0.260 | .

in the tree-based translation model on Chinese-to-
English translation. A series of contrast transla-
tion systems are built, each of which uses a super-
vised Chinese parser (Xiong et al., 2005) trained
on a particular amount of CTB trees. use supervised parsers —+—
We use the FBIS Chinese-English bitext as the 0220 " I5000
training corpus, the 2002 NIST MT Evaluation Scale of treebank (log)

test set as our development set, and the 2005 NIST i
MT Evaluation test set as our test set. We first e>f igure 3: Performances of the translation systems,

tract the tree-to-string translation rules from the/ h'c_h use the prOJegted parser and a series of su-

training corpus by the algorithm of (Liu et al., pervised parsers trained CTB trees.

2006), and train a 4-gram language model on

the Xinhua portion of GIGAWORD corpus with translation performance comparable with using a

Kneser-Ney smoothing using the SRI Languagsupervised parser trained on thousands of human-

Modeling Toolkit (Stolcke and Andreas, 2002).annotated trees.

Then we use the standard minimum error-rate As far as we know, this is the first time that

training (Och, 2003) to tune the feature weightshe experimental results are systematically re-

to maximize the systems BLEU score. ported about the constituent projection and its ap-
Figure 3 shows the experimental results. Wglications. However, many future works need

find that the translation system using the projectet® do. For example, more energy needs to be

parser achieves the performance comparable wigevoted to the treebank optimization, and hy-

the one using the supervised parser trained diid parsing schema that integrates the strengths

CTB 1.0. Considering that the F-score of the proof both supervised-trained parser and projected

jected parser is only 22.8%, which is far below ofoarser would be valuable to be investigated for

the 75.6% F-score of the supervised parser traindigtter translation.

on CTB 1.0, we can give more confidence to the

assumption that the projected parser is apt to décknowledgments
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