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Abstract Consider the following rule that is used to trans-

late the Chinese sentence in Figure 1 into English:
Hierarchical phrase-based models pro-

vide a powerful mechanism to capture X — (X deXg, Xgrin Xp) 1)
non-local phrase reorderings for statis-
tical machine translation (SMT). How-
ever, many phrase reorderings are arbi-
trary because the models are weak on de-
termining phrase boundaries for pattern-
matching. This paper presents a novel
approach to learn phrase boundaries di-
rectly from word-aligned corpus without
using any syntactical information. We use
phrase boundaries, which indicate the be-
ginning/ending of phrase reordering, as
soft constraints for decoding. Experi-
mental results and analysis show that the
approach yields significant improvements
over the baseline on large-scale Chinese-
to-English translation.

The rule translates the Chinese word “de” into
English word “in”, and swaps the left sub-phrase
covered byX; and the right sub-phrase covered
by Xr on the target side. Howeve; may
pattern-matcls spans on the left side of “de” and
X may pattern-match spans on the right side.
Therefore, the rule producd$ different deriva-
tions. However] 4 of them are incorrect.

The correct derivatioly. is shown in Figure 2,
while one of the wrong derivations; is shown in
Figure 3. We observe that the basic difference be-
tweensS, and.S; is the phrase boundary matched
by “Xg". In S., X matches the spd[f, 9] and
moves it as a whole unit. While ifi;, X z matches
the sparj7, 8] and left the last wordh, 9] be trans-
lated separately. Similarly, other incorrect deriva-
tions are caused by inadequate pattern-matching
of X, and/orXg.

The hierarchial phrase-based (HPB) model (Chi- Previous research showed that phrases should
ang, 2005) outperformed previous phrase-basdm constrained to some extent for improving trans-
models (Koehn et al., 2003; Och and Ney, 2004ation quality. Most of the existing approaches uti-
by utilizing hierarchical phrases consisting of botHized syntactic information to constrain phrases to
words and variables. Thus the HPB model hasespect syntactic boundaries. Chiang (2005) in-
generalization ability: a translation rule learnedroduced a constituent feature to reward phrases
from a phrase pair can be used for other phraghat match a syntactic tree but did not yield signif-
pairs with the same pattern, e.g. reordering infolicantimprovement. Marton and Resnik (2008) re-
mation of a short span can be applied for a largeised this method by distinguishing different con-
span during decoding. Therefore, the model cagstituent syntactic types, and defined features for
tures both short and long distance phrase reorderach type to count whether a phrase matches or
ings. crosses the syntactic boundary. This led to a sub-

However, one shortcoming of the HPB model isstantial improvements. Gimpel and Smith (2008)
that it is difficult to determine phrase boundariepresented rich contextual features on the source
for pattern-matching. Therefore, during decodside including constituent syntactical features for
ing, a rule may be applied for all possible sourc@hrase-based translation. Cherry (2008) utilized
phrases with the same pattern. However, incorreat dependency tree as a soft constraint to detect
pattern-matching will cause wrong translation. syntactic cohesion violations for a phrase-based
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3,5 X[7,9)
[4,5] Xirg)
‘ 0 X5 Xz,7) ‘ ‘
Uy bE M3 ERRE, B LK Hle JERA %g K4
ta jiang chengwei yindu youshiyilai de shouwei ni zongtong
Sheq willy becomes they firsts femaleg presidents ing India’sg historyig

Figure 1: An example of Chinese-English translation. The Mile> (X de Xr, Xr in X1)
pattern-matches and3 spans on the left and right of the Chinese word “de”, respectively.

S. = (Wb F BN X, She will becomeX)
= (I ¥ A X (45 1 X7, She will becomeX; ) in Xy 5)
= (MoK BN || BN A SR BICK || B || B & S S,

She will become the first female president in India’s history

Figure 2: The correct derivation with adequate pattern-matchinggof

S; (ft K BiA X .48, She will becomeX president

=
= (M ¥ BN Xpu5) 10 X(75) B 58, She will becomeX[; g in X, 5 presidenit
= (U ¥ BN || BREE A RRLK || B || EAL L || A,

She will become the first female in India’s history president

Figure 3: A wrong derivation with inadequate pattern-matching gf

system. Xiong et al. (2009) presented a syntaxdle of a phrase,¢” indicates the end of a phrase,
driven bracketing model to predict whether twd's” indicates a single-word phrase.
phrases are translated together or not, using syn-We use phrase boundaries as soft constraints for
tactic features learned from training corpus. Aldecoding. To do this, we incorporate our classifier
though these approaches differ from each otheass a feature into the HPB model and propose an
the main basic idea is the utilization of syntacticefficient decoding algorithm.
information. Compared to the previous work, out approach
In this paper, we present a novel approach tbas the following advantages:
learn phrase boundaries for hierarchical phrase-
based translation. A phrase boundary indicates the
beginning or ending of a phrase reordering. Moti-
vated by Ng and Low (2004) that built a classifier
to predict word boundaries for word segmenta-
tion, we build a classifier to predict phrase bound-
aries. We classify each source word into one of the e The training instances are directly learned
4 boundary tags: 8" indicates the beginning of a from a word-aligned bilingual corpus, rather
phrase, fn” indicates a word appears in the mid- than from manually annotated corpus.

e Our approach maintains the strength of the
phrase-based models since it does not re-
quire any syntactical information. There-
fore, phrases do not need to respect syntactic
boundaries.
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e The decoder outputs phrase segmentation in- Chiang (2007) used the standard log-linear
formation as a byproduct, in addition toframework (Och and Ney, 2002) to combine var-

translation result. ious features:
We evaluate our approach on large-scale Pr(e[f)aZ)\ihi(a,v) (3)
Chinese-to-English translation. Experimental re- i

sults and analysis show that using phrase bound-

: . . o . Where h;(«,7) is a feature function and; is
aries as soft constraints achieves significant m}'he weight of .. Analocous to the Drevious
provements over the baseline system. g N 9 P

phrase-based model, Chiang defined the follow-

2 Previous Work ing features: translation probabilitie$y|«) and
p(aly), lexical weightspy(v|e) and puw(aly),
2.1 Learning Word Boundaries word penalty, rule penalty, and a targeigram

In some languages, such as Chinese, words are Hgfguage model.
demarcated. Therefore, it is a preliminary task to !N this paper, we integrate a phrase boundary

determine word boundaries for a sentence, whicHassifier as an additional feature into the log-
is the so-called word segmentation. linear model to provide soft constraint for pattern-

Ng and Low (2004) regarded word Segmen[natchir_lg_during decoding. The feature weights
tation as a classification problem. They labelle@'® OPtimized by MERT algorithm (Och, 2003).

each Chinese character with one of 4 possiblg
boundary tags: 8", “m”, “¢” respectively indi-
cates the begin, the middle and the end of a wordlye build a phrase boundary classifier (PBC)
and “s” indicates a single-character word. Theirwithin a maximum entropy framework. The PBC
segmenter was built within a maximum entropypredicts a boundary tag for each source word, con-
framework and trained on manually segmentedidering contextual features:
sentences.

Learning phrase boundaries is analogous to Prag (] f5, FY) =
word boundaries. The basic difference is that exp(Y"; Nihi(t, £, FY))
the unit for learning word boundaries is charac- Sexp(d; )\ihi(t,fj,F{)
ter while the unit for learning phrase boundaries
is word. In this paper, we adopt the boundaryvhere,t € {b,m,e, s}, f; is the jth word in
tags presented by Ng and Low (2004) and build §ource sentence!, h; is a feature function and
classifier to predict phrase boundaries within max2: iS the weight ofh;.
imum entropy framework. We train it directly ona 10 build PBC, we first present a method to rec-
word-aligned bilingual corpus, without any man-09nize phrase boundaries and extract training ex-

ually annotation and syntactical information. ~ @mples from word-aligned bilingual corpus, then
we define contextual feature functions.

Learning Phrase Boundaries

(4)

2.2 The Hierarchical Phrase-based Model
3.1 Phrase Boundary

We built a hierarchical phrase-based MT system . ) . L
(Chiang, 2007) based on weighted SCFG. ThRuring decoding, intuitively, words within a

translation knowledge is represented by rewritin§"ase should be translated or moved together.
rules: herefore, a phrase boundary should indicate re-

ordering information. We assign one of the
boundary tag$b, m, e, s) to each word in source
where X is a non-terminaty and~ are source and sentences. Thus the word with thge or sis a
target strings, respectively. Both of them contaiphrase boundary. One question is that how to as-
words and possibly co-indexed non-terminals. sign boundary tag to a word? In this paper, we
describes a one-to-one correspondence betweratognize the largest source span which has the
non-terminals inv and-y. monotone translation. Then we assign boundary

X — <Oé7 Y, N> (2)
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A 2 1 R Vi because there is a cross link between the upper

N M bound of ‘& %" and the lower bound of #fj j”
on the target side. However, it is a PM span ac-
Jointly held by a short visit cording to the definition. Note that in some cases,
(a) (b) a source word may not be contained in any phrase

pair, therefore we consider a single word span as

. : PM span, specificly.
Figure 4: lllustration for monotone span (a) anda P pectiicly

PM span (b). An interesting feature of PM span is that if two
PM spans are consecutive on both source side and
Eheir corresponding target side, the two PM spans

o

tags to each word in the source span, accordin )
g P g can be combined as a larger PM span. Formally,

their position.
To do this, we first introduce some notations.

Given a bilingual sentendd}, E{ ) together with . T o

word alignment matrixA, we useL(A;) and (Fjl’EZﬁ)@(Fﬁl’Eiil) - (ij’Eif) ©)

H(A;) to represent the lowest and highest tar-

get word position which links to the source word

[, respectively. Since the word alignment ftr where[j1, 7] and[j + 1, jo] are PM spangjy, i

maybe “one-to-many”, all the corresponding tarand|i + 1,i,] are the target spans corresponding

getwords will appear in the spah(A;), H(A;)].  to[j1, 4] and[j+1, jo], respectively. For example,
we define a source spéf, jo] (1 < j1 < j2 < Figure 4 (a) shows a PM phrase pair that consists

J) amonotonespan, iff: of two small PM pairs ¥4, jointly” and “%% 7
L V(i) € Ajy < < o o L(Ay) < i< 10 hedby
H(Aj,) In this paper, we are interested in phrase re-

o ordering boundaries for a source sentence. We de-
2. Vki,ky € [ji,jol ke < ke = H(Aw) < finetranslation spar(TS) the largest possible PM
L(A,) span. A TS may consist of one or more PM spans.
The first condition indicates that According to our definition, cross links may ap-
(F2, Ef((fim))) is a phrase pair as describegPear within PM spans but do not appear between
1 M spans withina TS. Therefore, TS is the largest

previously in phrase-based SMT models. Whil | X X
the second condition indicates that the IowePOSS'ble span that will be translated as a unit and

target bound linked to a source word cannot bBNrase reorderings may occur between TSs during

lower than any target word position linked to thed€coding.

previous source word. Therefore, a monotone To obtain phrase boundary examples from
span does not contain crossed links or internalord-aligned bilingual sentences, we first find all
reorderings. possible TSs and then assign boundary tags to
Considering that word alignments could beeach word. Fora T§1, j2] (j1 < j2) that contain
very noisy and complex in real-world data, we demore than two words, we assign “b” to the first
fine pseudo-monoton@®M) span by loosening the word f;, and “e” to the last word’j,, and “m” to
second condition: the middle wordsf; (j1 < j < j2). For a single

o word span TS, j|, we assign “s” to the wordf;.
Vk1, k2 € [J1, jo), k1 < ko — L(Ay,) < L(Ayg,) pan T3, J1 J ¢

(5) Figure 5 shows an example of labelling source
This condition allows crossed links to some exwords with boundary tags. The source sentence is
tent by loosening the bound of;, from upper segmented intd TSs. Using the phrase boundary
to lower. Figure 4 (a) shows an examp|e ofnformation to guide deCOding, the decoder will
monotone span, in which the translation is monoProduce the correct derivation and translation as
tone. While Figure 4 (b) is not a monotone spaghown in Figure 2.
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=l i o N
ﬁi Epﬁj o b| 0.78 [ 0.10] 1.2e-5
. — m | 6.4e-8| 0.75| 5.4e-5
it ¥ A B R B AL L G e | 21e-8/ 0111 087
TAG[b blels|b - ' '
[blm[e|ble[s|blm]e] s| 022 |0.04| 013
She
will Table 1: The TPM for a source sentence. The
become L highest probability of each word is in bold.
the first
female
preﬁderiﬁ E 4 Phrase Boundary Constrained
Ludia’s g Decoding
history Give a source sentence, we can assign boundary

tags to each word by running the PBC. During

Figure 5: lllustration for labelling the sourcedecoding, a rule is prohibited to pattern-match
words with boundary tags. The solid boxesacross phrase boundaries. By doing this, the PBC
present word alignments. The bordered boxes ai® integrated as a hard constraint. However, this
TSs. method will invalidate a large number of rules and
the decoder suffers from a risk that there are not
enough rules to cover the source sentence.

Alternatively, inspired by previous approaches,
The features we used for the PS model are anal€ integrate the phrase boundary classifier as a
ogous to (Ng and Low, 2004). For a woFt, soft constraint by incorporating it as a feature into
we define the following contextual features with dhe HPB model:
window of “n: J

hoe(F{') = log(] | Prag (1115, F)) (@)
e The word featuréV,,, which denotes the left j=1
(right) n words of the current word/;

3.2 Feature Definition

To perform translation, for each worgd; in
_ a source sentencg;’, we first compute all tag
e The part-of-speech (POS) featufrg, which probabilities Py (t|f;), wheret € (b,m, e, s),
denotes the POS tag of the wdid,. j € [1,J], according to Equation 4. Therefore, we
build a4 x J tag-word probability matrix (TPM).
For example, the tag of the word® &y (be- T PM][i,j| indicates the probability of the word
come)” in Figure 5 is ¢”, indicating that it is f; labelled with the tag;. Table 1 shows the
the end of a phrase. If we set the context windowWPM for a source textih ¥ A"
n = 2, the features of the word#’ (become)” Then we select rule options from the rule ta-
are: ble that can be used for translating the source text.
Since each rule optio(f, ¢, a) ! can be regarded
o W_oo=llh W_ =¥ Wo=pk N Wi=E i as a bilingual sentence with word alignments, thus
Wo=A 1 LAk we find all TS inf and assign amitial tag (IT)
for each source word. This procedure is analogous
to label phrase boundary tags for a word-aligned
bilingual sentence. For example, the following

rules are used for translating the Chinese sentence
We collect TSs from bilingual sentences to4in Table 1:

i ax i,
gether with t.he contextual featureg and used We keep word alignments of a rule when it is extracted

o P o=r Pflzd P0=V P1=nsP2=I
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The decoding algorithm is efficient since the
. computing of the PBC score is a procedure of
X = <ﬁﬂ3bX1’ SheX,) (8) tablep-loolgup. P
X, — (B Bk, will become 9)

_ _ 5 Experiments
Since both the source sides of these two rules

are PM spans according to the word alignment§.1 Experimental Setup
the IT sequences for rule (8) and (9) are "**" o experiments were on Chinese-to-English

and.“t_)'e", respectively. According to Table 1,i.onclation. The training corpus (77M+81M) we
the initial /. score for these two rules can be,gaq are from LDCE. The evaluation metric is
computed as follows: BLEU (Papineni et al., 2002), as calculated by

R0 — 10g(Prag (b]1h)) = log(TPM]1,1]) (10) mteval-v11lb.pl with case-insensitive matching of
(8’)’bc I ’ n-grams, where, = 4.
hope = 109(Prag(b]#4)) + log(Prag (| ) To obtain word alignments, we first ran

= log(TPM]J1,2]) + log(TPM][3,3]) (11) GIZA++ (Och and Ney, 2002) in both translation

_ directions and then refined it by “grow-diag-final”
Note that to keep the tag sequence valid, €.%ethod (Koehn et al., 2003).

“m” follows * b rather than %", the ITs maybe For the language model, we used the SRI Lan-

updated during decod_ing. Th_e__tag—updatin%uage Modeling Toolkit (Stolcke, 2002) to train
should be consistent with the definition of TS ag, 4-gram models on xinhua portion of Giga-

described in Section 3.1. Specifically, when thgy, 4 corpus and the English side of the training
non-terminal symbolX is derived from its cov- corpus.

ered sparf(X), the boundary tags should be up- The NIST MTO03 test set is used to tune the fea-

dated. ture weights of the log-linear model by MERT

When a tag of wordf; is updated from,,, to Och, 2003). We tested our system on the NIST
tk,, the PBC score should also be updated accorflzros and MTOS test sets

ing to TPM:

APBC = log(TPM[ky, j]) — log(TPM[ky, j]) -2 Results
(12) The results are shown in Table 2. We tested vari-

The following is a derivation of the source sen-OuUs settings of the context window. It is observed
tence in Table 1: that the small values of (n = 1,2) drop the
by BLEU score, suggesting that perhaps there are not
§ = (X7, SheX) enough contextual information. With more con-

= (WB"¥"7™ BN, She will become  textual information is used, the BLEU scores are
improved over all test sets. When= 3, the most
significant improvements are obtained on MT06G
and MT08. The improvements over the baseline
3re statistically significant ai < 0.01 by using
the significant test method described in (Koehn,
2004). While for MTO6N, the optimized context
window size isn = 4 but the improvement is
hpbc(Flg) — 1D L p® L APBC (13) not statistically significant. In most cases, with

When X is derived, the tag of its left boundary
word “¥” is updated from 8" to “m”. The reason
is that after derivation, the combined span form
a larger PM span and the left boundary fafX; )
should be updated.

As aresult, théy,,. score is recomputed:

pbe © Tpbe n larger than 3, we do not obtain further improve-
where, ments because of the data sparseness for training
APBC = log(TPM|[2,2]) — log(TPM]1,2]) 3_DC2002E18,  LDC2002L27,  LDC2002T01,

(14) LDC2003E07, LDC2003E14, LDC2004T07, LDC2005E83,

- LDC2005T06, LDC2005T10, LDC2005T34, LDC2006E24,

2\We use “*" as a tag of the non-terminal symbaXs”  LDC2006E26, LDC2006E34, LDC2006E86, LDC2006E92,
since it has not been derived. LDC2006E93, LDC2004T08(HKNews, HK Hansards).
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System MTO6G | MTO6N | MTO8 whole unit. However, the baseline translates the
baseline | 14.66 | 34.42 | 26.29 spans|6, 7] and [8, 8] separately. It movef, 7]
+PBC (n=1)| 13.78 33.20 | 24.58 before “visit China” and[8, 8] after “concern”.
+PBC (n=2)| 14.34 | 34.21 | 25.87 This makes an mistake on phrase reordering. We
+PBC (n=3)| 15.19* | 34.63 | 27.25* observe that the “+PBC” system produces a bet-
+PBC (n=4)| 14.76 | 34.73 | 26.70 ter translation. After incorporating the PBC as
a soft constraint, the system assigns a boundary
Table 2: Results on the test sets with different corfag to each source word and segments the source
text window (n) of the phrase boundary classifiersentence into three TSs. According to our defi-
The largest BLEU score on each test set is in boldhition, TSs are encouraged as pseudo-monotone
MTO6G: MT06 GALE set. MTO6N: MT06 NIST translation unit during decoding. As a result, the
set. *: significantly better than the baseline at*PBC” system discourages some arbitrary re-

p < 0.01. ordering rules and produces more fluent transla-
tion.

the classifier. 7 Conclusion and Future Work

6 Discussion This paper presented a phrase boundary con-

The experimental results show that the phras%(ra"}eq met;odh for hti)erar;hica! g_hrase-k;asgd
boundary constrained method improves the BLElHanS ation. phrase boundary indicates begin

score over the baseline system. Furthermore, A end of a phrase reordering. We built a phrase

are interested in how the PBC affects the transl _oundarykclassl?er W':jhmha ma>l;|mur(;1 entropy
tion results? We compared the outputs generat [gmework and learned phrase boundary exam-
by the baseline and “+PBGi(= 3)" system and ples directly from word-aligned bilingual corpus.

found some interesting translations. For examplé(,ve proposed an efficient decoding method to in-

the translations of a source sentence of NIsTog9rate the PBC into the decoder as a soft con-
are as follows?: straint. Experiments and analysis show that the

phrase boundary constrained method achieves sig-
e Src: 8 WK Ky FEP Yillg || H4RE  nificant improvements over the baseline system.
HmaraRe || &S Kbim g, The most advantage of the PBC is that it han-
dles both syntactic and non-syntactic phrases. In
e Ref: US Treasury-SecretagyArrives-iny  the future, We would like to try different meth-
Ching, for-a-Visit-with; Environmen§ andr s to determine more informative phrase bound-
Exchange-Ratgas Focuso,1i aries, e.g. Xiong et al. (2010) proposed a method
to learn translation boundaries from a hierarchical
tree that decomposed from word alignments using
a shift-reduce algorithm. In addition, we will try
more features as described in (Chiang et al., 2008;
e +PBC: US Treasury arrived-ip Ching, Chiang et al., 2009), e.g. the length of the phrases
for-a-visit; environmental-protectignand,  that covered by non-terminals.
exchange-rate isy concerned-aboyf the-
key

e HPB: US Treasury in-environmental-
protectiog and; visit; China, isy keyi
to-the-concern-qf) the-exchange-rage
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