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Abstract

Recent work on distributional methods for
similarity focuses on using the context
in which a target word occurs to derive
context-sensitive similarity computations.
In this paper we present a method for com-
puting similarity which builds vector rep-
resentations for words in context by mod-
eling senses as latent variables in a large
corpus. We apply this to the Lexical Sub-
stitution Task and we show that our model
significantly outperforms typical distribu-
tional methods.

1 Introduction

Distributional methods for word similarity ((Lan-
dauer and Dumais, 1997), (Schuetze, 1998)) are
based on co-occurrence statistics extracted from
large amounts of text. Typically, each word is
assigned a representation as a point in a high-
dimensional space, where the dimensions rep-
resent contextual features such as co-occurring
words. Following this, meaning relatedness
scores are computed by using various similarity
measures on the vector representations.

One of the major issues that all distributional
methods have to face is sense ambiguity. Since
vector representations reflect mixtures of uses ad-
ditional methods have to be employed in order to
capture specific meanings of a word in context.
Consider the occurrence of verb shed in the fol-
lowing SemEval 2007 Lexical Substitution Task
(McCarthy and Navigli, 2007) example:

Cats in the latent phase only have the virus internally ,

but feel normal and do not shed the virus to other cats and

the environment .

Human participants in this task provided words
such as transmit and spread as good substitutes
for shed in this context, however a vector space
representation of shed will not capture this infre-
quent sense.

For these reasons, recent work on distributional
methods for similarity such as (Mitchell and La-
pata, 2008) (Erk and Padó, 2008) (Thater et al.,
2009) focuses on using the context in which a tar-
get word occurs to derive context-sensitive simi-
larity computations.

In this paper we present a method for comput-
ing similarity which builds vector representations
for words in context. Most distributional methods
so far extract representations from large texts, and
only as a follow-on step they either 1) alter these
in order to reflect a disambiguated word (such
as (Erk and Padó, 2008)) or 2) directly asses the
appropriateness of a similarity judgment, given a
specific context (such as (Pantel et al., 2007)). Our
approach differs from this as we assume ambigu-
ity of words at the, initial, acquisition step, by en-
coding senses of words as a hidden variable in the
text we process.

In this paper we focus on a particular distribu-
tional representation inspired by (Lin and Pantel,
2001a) and induce context-sensitive similarity be-
tween phrases represented as paths in dependency
graphs. It is inspired by recent work on topic mod-
els and it deals with sense-ambiguity in a natural
manner by modeling senses as latent variables in
a large corpus. We apply this to the Lexical Sub-
stitution Task and we show that our model outper-
forms the (Lin and Pantel, 2001a) method by in-
ducing context-appropriate similarity judgments.
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2 Related work

Discovery of Inference Rules from Text (DIRT)
A popular distributional method for meaning re-
latedness is the DIRT algorithm for extracting in-
ference rules (Lin and Pantel, 2001a). In this al-
gorithm a pattern is a noun-ending path in a de-
pendency graph and the goal is to acquire pairs of
patterns for which entailment holds (in at least one
direction) such as (X solve Y, X find solution to Y).

The method can be seen a particular instance
of a vector space. Each pattern is represented by
the sets of its left hand side (X) and right hand
side (Y) noun fillers in a large corpus. Two pat-
terns are compared in the X-filler space, and cor-
respondingly in the Y-filler space by using the Lin
similarity measure:

simLin(v, w) =

∑
i∈I(v)∩I(w)(vi + wi)∑

i∈I(v) vi +
∑

l∈I(w)wi

where values in v and w are point-wise mutual
information, and I(·) gives the indices of positive
values in a vector.

The final similarity score between two patterns
is obtained by multiplying the X and Y similarity
scores. Table 1 shows a fragment of a DIRT-like
vector space.

.. case problem ..
(X solve Y, Y) .. 6.1 4.4 ..
(X settle Y, Y) .. 5.2 5.9 ..

Table 1: DIRT-like vector representation in the Y-filler
space. The values represent mutual information.

Further on, this similarity method is used for
the task of paraphrasing. A total set of patterns
is extracted from a large corpus and each of them
can be paraphrased by returning its most similar
patterns, according to the similarity score. Al-
though relatively accurate1, it has been noted (Lin
and Pantel, 2001b) that the paraphrases extracted
this way reflect, as expected, various meanings,
and that a context-sensitive representation would
be appropriate.

1Precision is estimated to lie around 50% for the most
confident paraphrases

Context-sensitive extensions of DIRT (Pantel
et al., 2007) and (Basili et al., 2007) focus on mak-
ing DIRT rules context-sensitive by attaching ap-
propriate semantic classes to the X and Y slots of
an inference rule. For this purpose, the initial step
in their methods is to acquire an inference rule
database, using the DIRT algorithm. Following
this, given an inference rule, they identify seman-
tic classes for the X and Y fillers which make the
application of the rule appropriate. For this (Pan-
tel et al., 2007) build a set of semantic classes us-
ing WordNet in one case and CBC clustering al-
gorithm in the other; for each rule, they use the
overlap of the fillers found in the input corpus as
an indicator of the correct semantic classes. The
same idea is used in (Basili et al., 2007) where,
this time, the X and Y fillers are clustered for each
rule individually; these nouns are clustered us-
ing an LSA-vector representation extracted from
a large corpus.

(Connor and Roth, 2007) take a slightly differ-
ent approach as they attempt to classify the con-
text of a rule as appropriate or not, again using
the overlap of fillers as an indicator. They all
show improvement over DIRT by evaluating on
occurrences of rules in context which are anno-
tated as correct/incorrect by human participants.
On a common data set (Pantel et al., 2007) and
(Basili et al., 2007) achieve significant improve-
ments over DIRT at 95% confidence level when
employing the clustering methods. (Szpektor et
al., 2008) propose a general framework for these
methods and show that some of these settings ob-
tain significant (level 0.01) improvements over the
DIRT algorithm on data derived from the ACE
2005 event detection task.

Related work on topic models Topic models
have been previously used for semantic tasks.
Work such as (Cai et al., 2007) or (Boyd-Graber et
al., 2007) use the document-level topics extracted
with Latent Dirichlet Allocation (LDA) as indi-
cators of meanings for word sense disambigua-
tion. More related to our work are (Brody and
Lapata, 2009) or (Toutanova and Johnson, 2008)
who use LDA-based models which induce latent
variables from task-specific data rather than from
simple documents.
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(Brody and Lapata, 2009) apply such a model
for word sense induction on a set of 35 target
nouns. They assume senses as latent variables and
context features as observations; unlike our model
they induce local senses specific to every target
word by estimating separate models with the final
goal of explicitly inducing word senses.

(Toutanova and Johnson, 2008) use an LDA-
based model for semi-supervised part-of-speech
tagging. They build a word context model in
which each token involves: generating a distri-
bution over tags, sampling a tag, and finally gen-
erating context words according to a tag-specific
word distribution (context words are observa-
tions). Their model achieves highest performance
when combined with a ambiguity class compo-
nent which uses a dictionary for possible tags of
target words.

Both these papers show improvements over
state-of-the-art systems for their tasks.

3 Generative model for similarity in
context

We develop a method for computing similarity of
patterns in context, i.e. patterns with instantiated
X and Y values. We do not enhance the repre-
sentation of an inference rule with sense (context-
appropriateness) information but rather focus on
the task of assigning similarity scores to such pairs
of instantiated patterns. Unlike previous work, we
do not employ any other additional resources, in-
vestigating this way whether structurally richer in-
formation can be learned from the same input co-
occurrence matrix as the original DIRT method.

Our model, as well as the DIRT algorithm,
uses context information extracted from large
corpora to learn similarities between patterns;
however ideally we would like to learn contex-
tual preferences (or, in general, some form of
sense-disambiguation) for these patterns. This is
achieved in our model by assuming an intermedi-
ate layer consisting of meanings (senses): the con-
text surrounding a pattern is indicative of mean-
ings, and preference for some meanings gives the
characterization of a pattern.

For this we use a generative model inspired
by Latent Dirichlet Allocation (Blei et al., 2003)
(Griffiths and Steyvers, 2004) which is success-

X solve Y
we-X:122, country-X:89, government-X:82,
it-X:69,..., problem-Y:1088, issue-Y:134,
crisis-Y:99, dispute-Y:78,...

Table 2: Fragments of the document associated
to X solve Y. we-X: 122 indicates that X solve Y
occurs 122 times with we as an X filler.

fully employed for modeling collections of doc-
uments and the underlying topics which occur in
them. The statistical model is characterized by the
following distributions:

wi|zi, φzi Discrete(φzi)
φz Dirichlet(β)

zi|θp Discrete(θp)
θp Dirichlet(α)

θp is the distribution over meanings associated
to a pattern p and φz is the distribution over words
associated to a meaning z. The occurrence of
each filler word wi with a pattern p, is then gener-
ated by sampling 1) a meaning conditioned on the
meaning distribution associated to p: zi|θp and 2)
a word conditioned on the word distribution asso-
ciated to the meaning zi: wi|zi, φzi . θp and φz are
assumed to be Dirichlet distributions with param-
eters α and β.

The set of context words (X and Y fillers) oc-
curring with a pattern p form the document (in
LDA terms) associated to a pattern p. Table 2 lists
a fragment of the document associated to pattern
X solve Y. These are built simply by listing for
each pattern, occurrence counts with specific filler
words. Since we want our model to differentiate
between X and Y fillers, words occurring as fillers
are made disjoint by adding a corresponding suf-
fix.

The total set of such documents extracted from
a large corpus is then used for estimating the
model. We use Gibbs sampling2 and the result
is a set of samples from P (z|w) (i.e. mean-
ing assignments for each occurring filler word)
from which θp (pattern-meaning distributions)
and φz(meaning-word distributions) can be esti-
mated.

Our model has the advantage that, once these

2http://gibbslda.sourceforge.net/
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distributions are estimated, given a pattern p and a
context wn, in-context vector representations can
be built in a straightforward manner.

Meaning representation in-context Let K be
the assumed number of meanings, (z1, ..., zK).
We associate to a pattern in context (p,wn), the
K-dimensional vector containing for each mean-
ing zi (i : 1..K), the probability of zi, conditioned
on pattern p and context word wn:

vec(p, wn) = (P (z1|wn, p), ..., P (zK |wn, p))
(1)

where,

P (zi|wn, p) =
P (zi, p)P (wn|zi)

ΣK
i=1P (zi, p)P (wn|zi)

(2)

This is the probability that wn is generated by
meaning zi conditioned on p, therefore, the proba-
bility that pattern p has meaning zi in context wn,
exactly the concept we want to model.

Meaning representation out-of-context We
can also associate to pattern p an out-of-context
vector representation: the K-dimensional vector
representing its distribution over meanings:

vec(p) = (P (z1|p), ..., P (zK |p)) (3)

This can be seen as a dimensionality reduction
method, since we bring vector representations to a
lower dimensional space over (ideally) meaning-
ful concepts.

From the generative model we obtain the de-
sired distributions P (zi|p) = θpi and P (wn|zi) =
φzin .3

Computing similarity between patterns The
similarity between patterns occurring with X and
Y filler-words is computed following (Lin and
Pantel, 2001a) by multiplying the similarities ob-
tained separately in the X and Y spaces.:

sim((wX1, p1, wY 1)(wX2, p2, wY 2)) =

sim(vec(p1, wX1), vec(p2, wX2))∗
sim(vec(p1, wY 1), vec(p2, wY 2))

(4)

3For similarity in context, we use the conditional P (zi|p)
instead of the joint P (zi, p) which is computationally equiv-
alent for the paraphrasing setting.

we
subj←−−− make

dobj−−−→statement

we
subj←−−− give

dobj−−−→statement good

we
subj←−−− prepare

dobj−−−→statement bad

Table 3: Development set: good/bad substitutes
for we

subj←−−− make
dobj−−−→statement

Out-of-context similarity is defined in a straight-
forward manner:

sim(p1, p2) = sim(vec(p1, ), vec(p2)) (5)

4 Evaluation setup

In this paper we evaluate our model on
computing similarities between pairs of the
type (X, pattern, Y ), (X, pattern′, Y ) where
two different patterns are compared in identical
contexts. For this we use the Semeval Lexical
Substitution dataset, which requires human par-
ticipants to provide substitutes for a set of target
words occurring in different contexts. This sec-
tion describes the evaluation methodology for this
data as well as the automatically generated data
set we use for development.

Development set For finding good model pa-
rameters, we use the SemCor corpus providing
text in which all content words are tagged with
WordNet 1.6 senses. We used this data in the fol-
lowing manner: We parse the text using Stanford
parser and extract occurrences of triples (X, pat-
tern, Y). Given these triples we generate good and
bad substitutes for them: the good substitutes are
generated by replacing the words occurring in the
patterns with sense-appropriate synonyms, while
bad ones are obtained by substitution with syn-
onyms corresponding to the rest of the senses (the
wrong senses). The synonyms are extracted from
WordNet 1.6 synsets using the sense annotation
present in the text.

For evaluation we feed the models pairs of in-
stantiated patterns. One of them is the original
phrase encountered in the data, and the other one
is a good/bad substitute for it. Table 3 shows an
example of the data.

We evaluate the output of a system by requir-
ing that, for each instance, every good substitute
is scored more similar to the original phrase than
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every bad substitute. This leads to an accuracy
score which can be compared against a random
baseline of 50%.

The data set obtained is far from being a very
reliable resource for the task of lexical substitu-
tion, however this method of generating data has
the advantage of producing a large number of in-
stances which can be easily acquired from any
sense-annotated data set. In our experiments we
use the Brown2 fragment from which we extract
over 3000 instances of patterns in context.

Lexical substitution task The Lexical Substitu-
tion Task (McCarthy and Navigli, 2007) presents
5 annotators with a set of target words, each in
different context sentences. The task requires
the participants to provide appropriate substitute
words for each occurrence of the target words.

We use this data similarly to (Erk and Padó,
2008) and (Thater et al., 2009) and for each target
word, we pool together all the substitutes given
for all context sentences. Similarly to the Sem-
Cor data, we do not use the entire sentence as a
context as we extract only patterns containing tar-
get words together with their X and Y fillers. The
models assign similarity scores to each candidate
by comparing them to the pattern occurring in the
original sentence. A ranked list of candidates is
obtained which in turn is compared with the sub-
stitutes provided by the participants. Table 4 gives
an example of this data set (for each substitute we
list the number of participants providing it).

To evaluate the performance of a model we em-
ploy two similarity measures, which capture dif-
ferent aspects of the task. Kendall τ rank coeffi-
cient measures the correlation between two ranks;
since the gold ranking is usually only a partial or-
der, we use τb which makes adjustments for ties.
We employ a second evaluation measure: Gener-
alized Average Precision (Kishida, 2005). This is
a measure inspired from information retrieval and
has been previously used for evaluating this task
(Thater et al., 2009). It evaluates a system on its
ability to retrieve correct substitutes using the gold
ranking together with the associated confidence
scores. The confidence scores are in turn deter-
mined by the number of people providing each
substitute.

pattern human substitutes

study
subj←−−− shed

dobj−−−→light throw 3, reveal 2,
shine 1

cat
subj←−−− shed

dobj−−−→virus spread 2, pass 2,
transmit 2, emit 1

Table 4: Lexical substitution data set: target verb
shed

5 Experiments

5.1 Model selection
The data we use to estimate our models is ex-
tracted from a GigaWord fragment containing ap-
proximately 100 million tokens. We parse the
text with Stanford dependency parser to obtain de-
pendency graphs from which we extract paths to-
gether with counts of their left and right fillers.
We extract paths containing at most four words,
including the two noun anchors. Furthermore
we impose a frequency threshold on patterns and
words, leading us to a collection of≈80 000 paths,
with filler nouns over a vocabulary of ≈40 000
words.

We estimate a total number of 20 models. We
set β = 0.01 as previous work (Wang et al., 2009)
reports good results with this value. For parame-
ter α we test 4 settings: α1 = 2

K and α4 = 50
K

which are reported in the literature as good ((Por-
teous et al., 2008) and (Griffiths and Steyvers,
2004)), as well as 2 intermediate values: α2 = 5

K
and α3 = 10

K . We test a set of 5 K values:
{800, 1000, 1200, 1400, 1600}. These are chosen
to be large since they represent the global set of
meanings shared by all the patterns in the collec-
tion.

As vector similarity measure we test scalar
product (sp), which in our model is interpreted
as the probability that two patterns share a com-
mon meaning. Additionally we test cosine (cos)
similarity and inverse Jensen-Shannon (JS) diver-
gence, which is a popular measure for comparing
probability distributions:

JSD(v, w) =
1

2
KLD(v|m) +

1

2
KLD(w|m)

with m = 1
2(v + w) and KLD the stan-

dard Kullback-Leibler divergence: KLD(v|w) =
Σivilog( vi

wi
).
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We perform both in-context (using eq. (4))
as well as out-of-context computations (eq. (5)).
Similarly to previous work (Erk and Padó, 2008),
we observe that comparing a contextualized repre-
sentation against a non-contextualized one brings
significant improvements over comparing two
representations in context. We assume this is spe-
cific to the type of data we work with, in which
two patterns are compared in an identical context,
rather than across different contexts; we therefore
compute context-sensitive similarities by contex-
tualizing just the target word.

Number of topics Although the parameters
cover relatively large ranges the models perform
surprisingly similar across different α and K val-
ues, as well as across all three similarity measures.
For sp similarity, the accuracy scores we obtain
are in the range [56.5-59.5] with a average devi-
ation from the mean of just 0.8%; similar figures
are obtained using the other similarity measures.
Figure 1 plots the average of the accuracy scores
using sp as similarity measure, across different
number of topics. A small preference for higher
K values is observed, all models performing con-
sistently good at 1200, 1400 and 1600 topics.

Figure 1: Average accuracy across the 5 K values.

Mixture models This leads us to attempting a
very simple mixture model, which computes the
similarity score between two patterns as the aver-
age similarity obtained across a number of mod-
els. For each α setting, we mix models across the
three best topic numbers: {1200, 1400, 1600}. In
Figure 2 we plot this mixture model together with
the three single ones, at each α value. It can be

Figure 2: Mixture model {1200, 1400, 1600}
(bold) vs. the three individual models, across the
4 α values.

noticed that the mixture model improves over all
three single models for three out of the four α val-
ues.

In-context vs. out-of-context computations
Further on we compare in-context versus out-of-
context computations. The similarity measures
exhibit significant differences in regard to this as-
pect. In Figure 3 we plot in-context vs. out-of-
context computations using scalar product (left)
and JS (right) with the mixture model previously
defined, plotted at different α values. For sp
in-context computations significantly outperform
out-of-context ones and the two intermediate al-
pha values seem to be the best. However for JS
similarity the out-of-context computations are sig-
nificantly better and a clear preference for smaller
α values can be observed.

Finally, on the test data, we use the following
models (where GMmixt/sing,sim stands for a mix-
ture or single model with similarity measure sim):

• GMmixt,sp/cos

mixt({1200, 1400, 1600}x{α2, α3})

• GMmixt,js

mixt({1200, 1400, 1600}x{α1, α2})

• GMsing,sp: (1600, α2)

• GMsing,cos/js: (1200, α1)

The mixture models are build based on the ob-
servations previously made while the single mod-
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Model In-context Out-of-context
GMmixt,sp 59.89 58.68
GMmixt,cos 59.50 58.67
GMmixt,js 59.73 60.68
GMsing,sp 59.48 58.86
GMsing,cos 59.43 57.87
GMsing,js 58.65 59.36

Table 5: Accuracy results on development set

els are the best performing ones, for each similar-
ity measure. The accuracy scores obtained with
these models are given in Table 5. Mixture models
generally outperform single ones and in-context
computations outperform out-of-context ones for
sp and cos. The best results on the development
set are however achieved by out-of-context mod-
els using JS as similarity measure.

Figure 3: In-context (bold) vs. out-of-context
computations across the 4 α values using scalar
product (left) and JS (right)

5.2 Results
Table 6 shows the results for the Lexical Substitu-
tion data set. We use the subset of the data con-
taining sentences in which the target word is part
of a syntactic path which is present in the total col-
lection of patterns. This leads to a set containing
165 instances of patterns in context, most of these
containing target verbs.

Since sp and cos measures perform very sim-
ilarly we only list results with cosine similarity
measure. In addition to the models with settings
determined on the development set, we also test
a very simple mixture model: GMmixt−all,sim.
This simply averages over all 20 configurations
and its purpose is to investigate the necessity of a
carefully selected mixture model.

It can be noticed that all GM mixture mod-
els outperform DIRT, which is reflected in both

Model τb GAP
Random 0.0 34.91
DIRT 14.53 48.06
GMmixt,cos 22.35 52.04
GMmixt,js 18.17 50.80
GMmixt−all,cos 20.42 51.13
GMmixt−all,js 19.03 51.15
GMsing,cos 15.10 48.20
GMsing,js 14.17 47.97

Table 6: Results on Lexical Substitution data

similarity measures. Notably the very simple
model which averages all the configurations im-
plemented is surprisingly performant. Using ran-
domized significance testing we obtained that
GMmixt,cos is significantly better than DIRT at p
level 1e-03 on both GAP and τb. GMmixt−all,cos
outperforms DIRT at level 0.05.

In terms of similarity measures, the observa-
tions made on the development set hold, as for
the in-context computations cos and sp outper-
form JS. However, unlike on the development
data, the single models perform much worse than
the mixture ones which can indicate that the de-
velopment set is not perfectly suited for choosing
model parameters.

Out-of-context computations for all models and
all similarity measures are significantly outper-
formed, leading to scores in ranges [11-14] τb and
[45-48] GAP.

In Table 7 we list the rankings produced by
three models for the target word shed in con-
text virus

obj←−− shed
prep−−−→ to

pobj−−−→ cat. As it
can be observed, the model performing context-
sensitive computations GMmixt,cos-in-context re-
turns a better ranking in comparison to theDIRT
and GMmixt,cos-out-of-context models.

6 Conclusion

We have addressed the task of computing meaning
similarity in context using distributional methods.
The specific representation we use follows (Lin
and Pantel, 2001a): we extract patterns (paths
in dependency trees which connect two nouns)
and we use the co-occurrence with these nouns
to build high-dimensional vectors. Using this data
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virus
obj←−− shed

prep−−−→ to
pobj−−−→ cat

GMmixt,cos GMmixt,cos DIRT GOLD
in-context out-of-context
lose lose drop pass 2
drop drop lose spread 2

transmit relinquish give transmit 2
spread reveal transmit
pass pass spread

relinquish throw reveal
reveal spread relinquish
throw transmit throw
give give pass

Table 7: Ranks returned for virus
obj←−− shed

prep−−−→ to
pobj−−−→ cat

we develop a principled method to induce context-
sensitive representations by modeling the mean-
ing of a pattern as a latent variable in the input
corpus. We apply this model to the task of Lex-
ical Substitution and we show it allows the com-
putation of context-sensitive similarities; it signif-
icantly outperforms the original method, while us-
ing the exact same input data.

In future work, we plan to use our model for
generating paraphrases for patterns occurring in
context, a scenario closer to real applications than
out-of-context paraphrasing.

Finally, a formulation of our model in a typical
bag-of-words semantic space for word similarity
can be employed in a wider range of applications
and will allow comparison with other methods for
building context-sensitive vector representations.
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