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Abstract

In this paper we look at the problem of
cleansing noisy text using a statistical ma-
chine translation model. Noisy text is pro-
duced in informal communications such
as Short Message Service (SMS), Twit-
ter and chat. A typical Statistical Ma-
chine Translation system is trained on par-
allel text comprising noisy and clean sen-
tences. In this paper we propose an un-
supervised method for the translation of
noisy text to clean text. Our method has
two steps. For a given noisy sentence, a
weighted list of possible clean tokens for
each noisy token are obtained. The clean
sentence is then obtained by maximizing
the product of the weighted lists and the
language model scores.

1 Introduction

Noisy unstructured text data is found in informal
settings such as Short Message Service (SMS),
online chat, email, social message boards, news-
group postings, blogs, wikis and web pages. Such
text may contain spelling errors, abbreviations,
non-standard terminology, missing punctuation,
misleading case information, as well as false
starts, repetitions, and special characters.

We define noise in text as any kind of difference
between the surface form of a coded representa-
tion of the text and the correct text. The SMS “u
kno whn is d last train of delhi metro” is noisy
because several of the words are not spelled cor-
rectly and there are grammar mistakes. Obviously

the person who wrote this message intended to
write exactly what is there in the SMS. But still it
is considered noisy because the message is coded
using non-standard spellings and grammar.

Current statistical machine translation (SMT)
systems rely on large parallel and monolingual
training corpora to produce high quality transla-
tions (Brown et al., 1993). Most of the large paral-
lel corpora available comprise newswire data that
include well formed sentences. Even when web
sources are used to train a SMT system, noisy por-
tions of the corpora are eliminated (Imamura et
al., 2003) (Imamura and Sumita, 2002) (Khadivi
and Ney, 2005). This is because it is known that
noise in parallel corpora results in incorrect train-
ing of models thus degrading the performance.

We are not aware of sufficiently large paral-
lel datasets comprising noisy and clean sentences.
In fact, even dictionaries comprising of noisy to
clean mappings in one language are very limited
in size.

With the increase in noisy text data generated
in various social communication media, cleans-
ing of such text has become necessary. The lack
of noisy parallel datasets means that this prob-
lem cannot be tackled in the traditional SMT way,
where translation models are learned based on the
parallel dataset. Consider the problem of translat-
ing a noisy English sentence e to a clean English
sentence h. SMT imagines that e was originally
conceived in clean English which when transmit-
ted over the noisy channel got corrupted and be-
came a noisy English sentence. The objective of
SMT is to recover the original clean sentence.
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The goal of this paper is to analyze how noise
can be tackled. We present techniques to trans-
late noisy text sentences e to clean text sentences
h. We show that it is possible to clean noisy text
in an unsupervised fashion by incorporating steps
to construct ranked lists of possible clean English
tokens and then searching for the best clean sen-
tence. Of course as we will show for a given noisy
sentence, several clean sentences are possible. We
exploit the statistical machine learning paradigm
to let the decoder pick the best alternative from
these possible clean options to give the final trans-
lation for a given noisy sentence.

The rest of the paper is organized as follows.
In section 2 we state our contributions and give
an overview of our approach. In Section 3 we
describe the theory behind clean noisy text using
MT. In Section 4 we explain how we use a weigh-
ing function and a plain text dictionary of clean
tokens to guess possible clean English language
tokens. Section 5 describes our system along with
our results. We have given an analysis of the kind
of noise present in our data set in section 5.2

2 Our Approach

In this paper we describe an unsupervised method
to clean noisy text. We formulate the text cleans-
ing problem in the machine translation framework
using translation model 1 (Brown et al., 1993).
We clean the text using a pseudo-translation
model of clean and noisy words along with a lan-
guage model trained using a large monolingual
corpus. We use a decoder to search for the best
clean sentence for a noisy sentence using these
models.

We generate scores for the pseudo translation
model using a weighing function for each token in
an SMS and use these scores along with language
model probabilities to hypothesize the best clean
sentence for a given noisy SMS. Our approach can
be summarized in the following steps:

• Tokenize noisy SMS S into n tokens s1, s2 ...
sn. For each SMS token si create a weighted
list based on a weighing function. These lists
along with their scores corresponds to the
translation probabilities of the SMT transla-
tion model.

• Use the lists generated in the step above
along with clean text language model scores,
in a decoder to hypothesize the best clean
sentence

• At the end of the search choose the highest
scoring sentence as the clean translation of
the noisy sentence

In the above approach we do not learn the trans-
lation model but emulate the translation model
during decoding by analyzing the noise of the to-
kens in the input sentence.

3 Noisy sentence translation

Statistical Translation models were invented by
Brown, et al (Brown et al., 1993) and are based
on the source-channel paradigm of communica-
tion theory. Consider the problem of translating a
noisy sentence e to a clean sentence h. We imag-
ine that e was originally conceived cleanly which
when transmitted over the noisy communication
channel got corrupted and became a noisy sen-
tence. The goal is to get back the original clean
sentence from the noisy sentence. This can be ex-
pressed mathematically as

ĥ = argmax
h

Pr(h|e)

By Bayes’ Theorem

ĥ = argmax
h

Pr(e|h)Pr(h)

Conceptually, the probability distribution
P (e|h) is a table which associates a probability
score with every possible pair of clean and noisy
sentences (e, h). Every noisy sentence e is a
candidate translation of a given clean sentence h.
The goodness of the translation h⇒ e is given by
the probability score of the pair (e, h). Similarly,
Pr(h) is a table which associates a probability
score with every possible clean sentence h and
measures how well formed the sentence h is.

It is impractical to construct these tables exactly
by examining individual sentences (and sentence
pairs) since the number of conceivable sentences
in any language is countably infinite. Therefore,
the challenge in Statistical Machine Translation
is to construct approximations to the probability
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distributions P (e|h) and Pr(h) that give an ac-
ceptable quality of translation. In the next section
we describe a model which is used to approximate
P (e|h).

3.1 IBM Translation Model 2
IBM translation model 2 is a generative model,
i.e., it describes how a noisy sentence e could be
stochastically generated given a clean sentence h.
It works as follows:

• Given a clean sentence h of length l, choose
the length (m) for the noisy sentence from a
distribution ε(m|l).

• For each position j = 1, 2, . . .m in the noisy
string, choose a position aj in the clean string
from a distribution a(aj |j, l,m). The map-
ping a = (a1, a2, . . . , am) is known as align-
ment between the noisy sentence e and the
clean sentence h. An alignment between e
and h tells which word of e is the corrupted
version of the corresponding word of h.

• For each j = 1, 2, . . .m in the noisy string,
choose an noisy word ej according to the dis-
tribution t(ej |haj ).

It follows from the generative model that prob-
ability of generating e = e1e2 . . . em given h =
h1h2 . . . hl with alignment a = (a1, a2, . . . , am)
is

Pr(e, a|h) = ε(m|l)
m∏

j=1

t(ej |haj )a(aj |j,m, l).

It can be easily seen that a sentence e could be
produced from h employing many alignments and
therefore, the probability of generating e given
h is the sum of the probabilities of generating
e given h under all possible alignments a, i.e.,
Pr(e|h) = ∑

a Pr(e, a|h). Therefore,

Pr(e|h) =

ε(m|l)
l∑

a1=0

..
l∑

am=0

m∏

j=1

t(ej |haj )a(aj |j,m, l).

The above expression can be rewritten as follows:

Pr(e|h) = ε(m|l)
m∏

j=1

l∑

i=0

t(ej |hi)a(i|j,m, l).

Typical statistical machine translation systems
use large parallel corpora to learn the transla-
tion probabilities (Brown et al., 1993). Tradi-
tionally such corpora have consisted of news ar-
ticles and other well written articles. Therefore
in theory P (e|h) should be constructed by ex-
amining sentence pairs of clean and noisy sen-
tences. There exists some work to remove noise
from SMS (Choudhury et al., 2007) (Byun et al.,
2008) (Aw et al., 2006) (Neef et al., 2007) (Kobus
et al., 2008). However, all of these techniques re-
quire an aligned corpus of SMS and conventional
language for training.

Aligned parallel corpora for noisy sentence is
difficult to obtain. This lack of data for a lan-
guage and the domain dependence of noise makes
it impractical to construct corpus from which
P (e|h) can be learnt automatically. This leads
to difficulty in learning P (e|h). Fortunately the
alignment between clean and noisy sentences are
monotonic in nature hence we assume a uniform
distribution for a(i|j,m, l) held fixed at (l+1)−1.
This is equivalent to model 1 of IBM translation
model. The translation models t(ej |haj ) can be
thought of as a ranked list of noisy words given
a clean word. In section 4.2 we show how this
ranked list can be constructed in an unsupervised
fashion.

3.2 Language Model

The problem of estimating the sentence forma-
tion distribution Pr(h) is known as the lan-
guage modeling problem. The language mod-
eling problem is well studied in literature par-
ticularly in the context of speech recognition.
Typically, the probability of a n-word sentence
h = h1h2 . . . hn is modeled as Pr(h) =
Pr(h1|H1)Pr(h2|H2) . . . P r(hn|Hn), where Hi

is the history of the ith word hi. One of the most
popular language models is the n-gram model
(Brown et al., 1993) where the history of a word
consists o f the word and the previous n−1 words
in the sentence, i.e., Hi = hihi−1 . . . hi−n+1. In
our application we use a smoothed trigram model.

3.3 Decoding

The problem of searching for a sentence h which
minimizes the product of translation model prob-
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ability and the language model probability is
known as the decoding problem. The decoding
problem has been proved to be NP-complete even
when the translation model is IBM model 1 and
the language model is bi-gram (K Knight., 1999).
Effective suboptimal search schemes have been
proposed (F. Jelinek, 1969), (C. Tillman et al.,
1997).

4 Pseudo Translation Model

In order to be able to exploit the SMT paradigm
we first construct a pseudo translation model. The
first step in this direction is to create noisy token
to clean token mapping. In order to process the
noisy input we first have to map noisy tokens in
noisy sentence, Se, to the possible correct lexical
representations. We use a similarity measure to
map the noisy tokens to their clean lexical repre-
sentations .

4.1 Similarity Measure

For a term te ∈ De, where De is a dictionary of
possible clean tokens, and token si of the noisy
input Se, the similarity measure γ(te, si) between
them is

γ(te, si) =





LCSRatio(te,si)
EditDistanceSMS(te,si)

if te and si share

same starting

character

0 otherwise

(1)

where LCSRatio(te, si) =
length(LCS(te,si))

length(te)
and

LCS(te, si) is the Longest common subsequence
between te and si. The intuition behind this mea-
sure is that people typically type the first few char-
acters of a word in an SMS correctly. This way we
limit the possible variants for a particular noisy to-
ken.

The Longest Common Subsequence Ratio (LC-
SRatio) (Melamed et al., 1999) of two strings is
the ratio of the length of their LCS and the length
of the longer string. Since in the SMS scenario,
the dictionary term will always be longer than the

SMS token, the denominator of LCSR is taken as
the length of the dictionary term.

The EditDistanceSMS (Figure 1) compares
the Consonant Skeletons (Prochasson et al., 2007)
of the dictionary term and the SMS token. If the
Levenshtein distance between consonant skele-
tons is small then γ(te, si) will be high. The intu-
ition behind using EditDistanceSMS can be ex-
plained through an example. Consider an SMS
token “gud” whose most likely correct form is
“good”. The two dictionary terms “good” and
“guided” have the same LCSRatio of 0.5 w.r.t
“gud”, but the EditDistanceSMS of “good” is
1 which is less than that of “guided”, which has
EditDistanceSMS of 2 w.r.t “gud”. As a re-
sult the similarity measure between “gud” and
“good” will be higher than that of “gud” and
“guided”. Higher the LCSRatio and lower the
EditDistanceSMS , higher will be the similarity
measure. Hence, for a given SMS token “byk”,
the similarity measure of word “bike“ is higher
than that of “break”.

In the next section we show how we use
this similarity measure to construct ranked lists.
Ranked lists of clean tokens have also been used
in FAQ retrieval based on noisy queries (Kothari
et al., 2009).

Procedure EditDistanceSMS(te, si)
Begin

return LevenshteinDistance(CS(si), CS(te)) + 1
End

Procedure CS (t): // Consonant Skeleton Generation
Begin

Step 1. remove consecutive repeated characters in t
// (fall → fal)

Step 2. remove all vowels in t
//(painting → pntng, threat → thrt)

return t
End

Figure 1: EditDistanceSMS

4.2 List Creation
For a given noisy input string Se, we tokenize it
on white space and replace any occurrence of dig-
its to their string based form (e.g. 4get, 2day) to
get a series of n tokens s1, s2, . . . , sn. A list Le

i

is created for each token si using terms in a dic-
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hv u cmplted ure prj rprt
d ddline fr sbmission of d rprt hs bn xtnded
i wil be lte by 20 mns
d docs shd rech u in 2 days
thnk u for cmg 2 d prty

Figure 2: Sample SMS queries

tionary De consisting of clean english words. A
term te from De is included in Le

i if it satisfies the
threshold condition

γ(te, si) > φ (2)

Heuristics are applied to boost scores of some
words based on positional properties of characters
in noisy and clean tokens. The scores of the fol-
lowing types of tokens are boosted:

1. Tokens that are a substring of a dictionary
words from the first character.

2. Tokens having the same first and last charac-
ter as a dictionary word.

3. Token that are dictionary words themselves
(clean text).

The threshold value φ is determined experimen-
tally. Thus we select only the top scoring possible
clean language tokens to construct the sentence.

Once the list are constructed the similarity mea-
sure along with the language model scores is used
by the decoding algorithm to find the best possi-
ble English sentence. It is to be noted that these
lists are constructed at decoding time since they
depend on the noisy surface forms of words in the
input sentence.

5 Experiments

To evaluate our system we used a set of 800 noisy
English SMSes sourced from the publicly avail-
able National University of Singapore SMS cor-
pus1 and a collection of SMSes available from the
Indian Institute of Technology, Kharagpur. The
SMSes are a collection of day-to-day SMS ex-
changes between different users. We manually

1http://wing.comp.nus.edu.sg/downloads/smsCorpus

Figure 3: System implementation

BLEU scores 1-gram 2-gram 3-gram 4-gram
Noisy text 40.96 63.7 45.1 34.5 28.3

Cleaned text 53.90 77.5 58.7 47.4 39.5

Table 1: BLEU scores

generated a cleaned english version of our test set
to use as a reference.

The noisy SMS tokens were used to generate
clean text candidates as described in section 4.2.
The dictionary De used for our experiments was a
plain text list of 25,000 English words. We cre-
ated a tri-gram language model using a collec-
tion of 100,000 clean text documents. The docu-
ments were a collection of articles on news, sport-
ing events, literature, history etc. For decoding
we used Moses2, which is an open source decoder
for SMT (Hoang et al., 2008), (Koehn et al.,
2007). The noisy SMS along with clean candi-
date token lists, for each SMS token and language
model probabilities were used by Moses to hy-
pothesize the best clean english output for a given
noisy SMS. The language model and translation
models weights used by Moses during the decod-
ing phase, were adjusted manually after some ex-
perimentation.

We used BLEU (Bilingual evaluation under-
study) and Word error rate (WER) to evaluate the
performance of our system. BLEU is used to

2http://www.statmt.org/moses/
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Figure 4: Comparison of BLEU scores

establish similarity between a system translated
and human generated reference text. A noisy
SMS ideally has only one possible clean transla-
tion and all human evaluators are likely to provide
the same translation. Thus, BLEU which makes
use of n-gram comparisons between reference and
system generated text, is very useful to measure
the accuracy of our system. As shown in Fig 4
, our system reported significantly higher BLEU
scores than unprocessed noisy text.

The word error rate is defined as

WER =
S +D + I

N
(3)

where S is the number of substitutions, D is the
number of the deletions, I is the number of the in-
sertions and N is the number of words in the refer-
ence The WER can be thought of as an execution
of the Levenstein Edit distance algorithm at the
token level instead of character level.

Fig 5 shows a comparison of the WER. Sen-
tences generated from our system had 10 % lower
WER as compared to the unprocessed noisy sen-
tences. In addition, the sentences generated by our
system match a higher number of tokens (words)
with the reference sentences, as compared to the
noisy sentences.

5.1 System performance

Unlike standard MT system when P (e|h) is pre-
computed during the training time, list generation
in our system is dynamic because it depends on
the noisy words present in the input sentence. In
this section we evaluate the computation time for
list generation along with the decoding time for
finding the best list. We used an Intel Core 2
Duo 2.2 GHz processor with 3 GB DDR2 RAM

Figure 5: Word error rates

Figure 6: Execution time slices

to implement our system. As shown in Fig 6 the
additional computation involving list creation etc
takes up 56% (90 milliseconds) of total translation
time. 43% of the total execution time is taken by
the decoder, while I/O operations take only 1% of
the total execution time. The decoder execution
time slices reported above exclude the time taken
to load the language model. Moses took approxi-
mately 10 seconds to load our language model.

5.2 Measuring noise level in SMS queries

The noise in the collected SMS corpus can be cat-
egorized as follows

1. Removal of characters : The commonly ob-
served patterns include deletion of vowels
(as in “msg” for “message”), deletion of re-
peated character (as in ”happy” for “hapy”)
and truncation (as in “tue” for “tuesday”)

Type of Noise % of Total Noisy Tokens
Deletion of Characters 48%
Phonetic Substitution 33%

Abbreviations 5%
Dialectical Usage 4%
Deletion of Words 1.2%

Table 2: Measure of Types of SMS Noise
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Clean (Reference) text Noisy text Output text
Perplexity 19.61 34.56 21.77

Table 3: Perplexity for Reference, Noisy Cleaned
SMS

2. Phonetic substitution: For example, “2” for
“to” or “too”, “lyf”’ for “life”, “lite” for
“light” etc.

3. Abbreviation: Some frequently used abbre-
viations are “tb” for “text back”, “lol” for
“laughs out loud”, “AFAICT” for “as far as
i can tell” etc.

4. Dialectal and informal usage: Often multiple
words are combined into a single token fol-
lowing certain dialectal conventions. For ex-
ample, “gonna” is used for “going to”, “aint”
is used for “are not”, etc.

5. Deletion of words: Function words (e.g. ar-
ticles) and pronouns are commonly deleted.
“I am reading the book” for example may be
typed as “readin bk”.

Table 2 lists statistics on these noise types from
101 SMSes selected at random from our data set.
The average length of these SMSes was 13 words.
Out of the total number of words in the SMSes,
52% were non standard words. Table 2 lists the
statistics for the types of noise present in these non
standard words.

Measuring character level perplexity can be an-
other way of estimating noise in the SMS lan-
guage.The perplexity of a LM on a corpus gives
an indication of the average number of bits needed
per n-gram to encode the corpus. Noise results
in the introduction of many previously unseen
n-grams in the corpus. Higher number of bits
are needed to encode these improbable n-grams
which results in increased perplexity.

We built a character-level language model (LM)
using a document collection (vocabulary size is
20K) and computed the perplexity of the language
model on the noisy and the cleaned SMS test-set
and the SMS reference data.

From Table 3 we can see the difference in per-
plexity for noisy and clean SMS data. Large per-
plexity values for the SMS dataset indicates a high

level of noise. The perplexity evaluation indicates
that our method is able to remove noise from the
input queries as given by the perplexity and is
close to the human correct reference corpus whose
perplexity is 19.61.

6 Conclusion

We have presented an inexpensive, unsupervised
method to clean noisy text. It does not require
the use of a noisy to clean language parallel cor-
pus for training. We show how a simple weigh-
ing function based on observed heuristics and a
vocabulary file can be used to shortlist clean to-
kens. These tokens and their weights are used
along with language model scores, by a decoder
to select the best clean language sentence.
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