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Abstract

Word co-occurrence networks are one
of the most common linguistic networks
studied in the past and they are known
to exhibit several interesting topological
characteristics. In this article, we inves-
tigate the global topological properties of
word co-occurrence networks and, in par-
ticular, present a detailed study of their
spectrum. Our experiments reveal cer-
tain universal trends found across the net-
works for seven different languages from
three different language families, which
are neither reported nor explained by any
of the previous studies and models of
word-cooccurrence networks. We hy-
pothesize that since word co-occurrences
are governed by syntactic properties of
a language, the network has much con-
strained topology than that predicted by
the previously proposed growth model. A
deeper empirical and theoretical investiga-
tion into the evolution of these networks
further suggests that they have a core-
periphery structure, where the core hardly
evolves with time and new words are only
attached to the periphery of the network.
These properties are fundamental to the
nature of word co-occurrence across lan-
guages.

1 Introduction

In a natural language, words interact among them-
selves in different ways — some words co-occur

with certain words at a very high probability
than other words. These co-occurrences are non-
trivial, as in their patterns cannot be inferred from
the frequency distribution of the individual words.
Understanding the structure and the emergence of
these patterns can present us with important clues
and insights about how we evolved this extremely
complex phenomenon, that is language.

In this paper, we present an in-depth study of
the word co-occurrence patterns of a language in
the framework of complex networks. The choice
of this framework is strongly motivated by its
success in explaining various properties of word
co-occurrences previously (Ferrer-i-Cancho and
Solé, 2001; Ferrer-i-Cancho et al, 2007; Kapustin
and Jamsen, 2007). Local properties, such as
the degree distribution and clustering coefficient
of the word co-occurrence networks, have been
thoroughly studied for a few languages (Ferrer-
i-Cancho and Solé, 2001; Ferrer-i-Cancho et al,
2007; Kapustin and Jamsen, 2007) and many in-
teresting conclusions have been drawn. For in-
stance, it has been found that these networks are
small-world in nature and are characterized by a
two regime power-law degree distribution. Efforts
have also been made to explain the emergence of
such a two regime degree distribution through net-
work growth models (Dorogovstev and Mendes,
2001). Although it is tempting to believe that a
lot is known about word co-occurrences, in or-
der to obtain a deeper insight into how these co-
occurrence patterns emerged there are many other
interesting properties that need to be investigated.
One such property is the spectrum of the word co-
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occurrence network which can provide important
information about its global organization. In fact,
the application of this powerful mathematical ma-
chinery to infer global patterns in linguistic net-
works is rarely found in the literature (few excep-
tions are (Belkin and Goldsmith, 2002; Mukher-
jee et al, 2009)). However, note that spectral anal-
ysis has been quite successfully applied in the
analysis of biological and social networks (Baner-
jee and Jost, 2007; Farkas et al, 2001).

The aim of the present work is to investigate
the spectral properties of a word co-occurrence
network in order to understand its global struc-
ture. In particular, we study the properties of
seven different languages namely Bangla (Indo-
European family), English (Indo-European fam-
ily), Estonian (Finno-Ugric family), French (Indo-
European family), German (Indo-European fam-
ily), Hindi (Indo-European family) and Tamil
(Dravidian family). Quite importantly, as we shall
see, the most popular growth model proposed by
Dorogovtsev and Mendes (DM) (Dorogovstev and
Mendes, 2001) for explaining the degree distribu-
tion of such a network is not adequate to repro-
duce the spectrum of the network. This observa-
tion holds for all the seven different languages un-
der investigation. We shall further attempt to iden-
tify the precise (linguistic) reasons behind this dif-
ference in the spectrum of the empirical network
and the one reproduced by the model. Finally, as
an additional objective, we shall present a hitherto
unreported deeper analysis of this popular model
and show how its most important parameter is cor-
related to the size of the corpus from which the
empirical network is constructed.

The rest of the paper is laid out as follows.
In section 2, we shall present a brief review of
the previous works on word co-occurrence net-
works. This is followed by a short primer to spec-
tral analysis. In section 4, we outline the construc-
tion methodology of the word co-occurrence net-
works and present the experiments comparing the
spectrum of these real networks with those gen-
erated by the DM model. Section 5 shows how
the most important parameter of the DM model
varies with the size of the corpus from which the
co-occurrence networks are constructed. Finally,
we conclude in section 6 by summarizing our con-

tributions and pointing out some of the implica-
tions of the current work.

2  Word Co-occurrence Networks

In this section, we present a short review of the
earlier works on word co-occurrence networks,
where the nodes are the words and an edge be-
tween two words indicate that the words have co-
occurred in a language in certain context(s). The
most basic and well studied form of word co-
occurrence networks are the word collocation net-
works, where two words are linked by an edge if
they are neighbors (i.e., they collocate) in a sen-
tence (Ferrer-i-Cancho and Solé, 2001).

In (Ferrer-i-Cancho and Solé, 2001), the au-
thors study the properties of two types of col-
location networks for English, namely the unre-
stricted and the restricted ones. While in the unre-
stricted network, all the collocation edges are pre-
served, in the restricted one only those edges are
preserved for which the probability of occurrence
of the edge is higher than the case when the two
words collocate independently. They found that
both the networks exhibit small-world properties;
while the average path length between any two
nodes in these networks is small (between 2 and
3), the clustering coefficients are high (0.69 for the
unrestricted and 0.44 for the restricted networks).
Nevertheless, the most striking observation about
these networks is that the degree distributions fol-
low a two regime power-law. The degree distribu-
tion of the 5000 most connected words (i.e., the
kernel lexicon) follow a power-law with an expo-
nent —3.07, which is very close to that predicted
by the Barabdasi-Albert growth model (Barabdasi
and Albert, 1999). These findings led the au-
thors to argue that the word usage of the human
languages is preferential in nature, where the fre-
quency of a word defines the comprehensibility
and production capability. Thus, higher the us-
age frequency of a word, higher is the probability
that the speakers will be able to produce it eas-
ily and the listeners will comprehend it fast. This
idea is closely related to the recency effect in lin-
guistics (Akmajian, 1995).

Properties of word collocation networks have
also been studied for languages other than En-
glish (Ferrer-i-Cancho et al, 2007; Kapustin and
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Jamsen, 2007). The basic topological characteris-
tics of all these networks (e.g., scale-free, small
world, assortative) are similar across languages
and thus, point to the fact that like Zipf’s law,
these are also linguistic universals whose emer-
gence and existence call for a non-trivial psycho-
linguistic account.

In order to explain the two regime power-
law in word collocation networks, Dorogovtsev
and Mendes (Dorogovstev and Mendes, 2001)
proposed a preferential attachment based growth
model (henceforth referred to as the DM model).
In this model, at every time step ¢, a new word
(i.e., a node) enters the language (i.e., the net-
work) and connects itself preferentially to one of
the pre-existing nodes. Simultaneously, ct (where
c is a positive constant and a parameter of the
model) new edges are grown between pairs of
old nodes that are chosen preferentially. Through
mathematical analysis and simulations, the au-
thors successfully establish that this model gives
rise to a two regime power-law with exponents
very close to those observed in (Ferrer-i-Cancho
and Solé, 2001). In fact, for English, the val-
ues keross (i.e., the point where the two power
law regimes intersect) and k., (i.e., the point
where the degree distribution cuts the x-axis) ob-
tained from the model are in perfect agreement
with those observed for the empirical network.

Although the DM model is capable of explain-
ing the local topological properties of the word
collocation network, as we shall see in the forth-
coming sections, it is unable to reproduce the
global properties (e.g., the spectrum) of the net-
work.

3 A Primer to Spectral Analysis

Spectral analysis' is a powerful mathematical
method capable of revealing the global structural
patterns underlying an enormous and complicated
environment of interacting entities. Essentially, it
refers to the systematic investigation of the eigen-
values and the eigenvectors of the adjacency ma-
trix of the network of these interacting entities.
In this section, we shall briefly outline the basic

'"The term spectral analysis is also used in the context
of signal processing, where it refers to the study of the fre-
quency spectrum of a signal.

concepts involved in spectral analysis and discuss
some of its applications (see (Chung, 1994) for
details).

A network consisting of n nodes (labeled as
1 through n) can be represented by an n X n
square matrix A, where the entry a;; represents
the weight of the edge from node ¢ to node 5. Note
that A, which is known as the adjacency matrix,
is symmetric for an undirected graph and have
binary entries for an unweighted graph. A is an
eigenvalue of A if there is an n-dimensional vec-
tor x such that

Ax = x

Any real symmetric matrix A has n (possibly non-
distinct) eigenvalues \g < A} < ... < A,_1,
and corresponding n eigenvectors that are mutu-
ally orthogonal. The spectrum of a network is
the set of the distinct eigenvalues of the graph and
their corresponding multiplicities. It is a distribu-
tion usually represented in the form of a plot with
the eigenvalues in x-axis and their multiplicities in
the y-axis.

The spectrum of real and random networks dis-
play several interesting properties. Banerjee and
Jost (Banerjee and Jost, 2007) report the spectrum
of several biological networks and show that these
are significantly different from the spectrum of ar-
tificially generated networks. It is worthwhile to
mention here that spectral analysis is also closely
related to Principal Component Analysis and Mul-
tidimensional Scaling. If the first few (say d)
eigenvalues of a matrix are much higher than the
rest of the eigenvalues, then one can conclude that
the rows of the matrix can be approximately rep-
resented as linear combinations of d orthogonal
vectors. This further implies that the correspond-
ing graph has a few motifs (subgraphs) that are re-
peated a large number of time to obtain the global
structure of the graph (Banerjee and Jost, 2009).

In the next section, we shall present a thorough
study of the spectrum of the word co-occurrence
networks across various languages.

4 Experiments and Results

For the purpose of our experiments, we con-
struct word collocation networks for seven dif-
ferent languages namely, Bangla, English, Esto-
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Figure 1: Cumulative degree distributions for Bangla, English, Estonian, French, German, Hindi and
Tamil respectively. Each red line signifies the degree distribution for the empirical network while each
blue line signifies the one obtained from the DM model.

Lang. ‘ Tokens (Mill.) Words KLD ¢ Max. Eig. (Real) Max. Eig. (DM)
English 325 97144 021 5.0e-4 849.1 756.8
Hindi 20.2 99210 0.32 2.3e4 472.5 329.5
Bangla 12.7 100000 0.29 2.0e-3 326.2 245.0
German 5.0 159842 0.19 6.3e-5 192.3 110.7
Estonian 4.0 100000 025 1.le-4 158.6 124.0
Tamil 23 75929 024 9.9e-4 116.4 73.06
French 1.8 100006 0.44 8.0e-5 236.1 170.1

Table 1: Summary of results comparing the structural properties of the empirical networks for the seven
languages and the corresponding best fits (in terms of KLLD) obtained from the DM model.

nian, French, German, Hindi and Tamil. We used
the corpora available in the Lipezig Corpora Col-
lection (http://corpora.informatik.uni-leipzig.de/)
for English, Estonian, French and German. The
Hindi, Bangla and Tamil corpora were collected
by crawling some online newspapers. In these net-
works, each distinct word corresponds to a ver-
tex and two vertices are connected by an edge

if the corresponding two words are adjacent in
one or more sentences in the corpus. We assume
the network to be undirected and unweighted (as
in (Ferrer-i-Cancho and Solé, 2001)).

As a following step, we simulate the DM model
and reproduce the degree distribution of the col-
location networks for the seven languages. We
vary the parameter c in order to minimize the KL
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divergence (KLD) (Kullback and Leibler, 1951)
between the empirical and the synthesized dis-
tributions and, thereby, obtain the best match.
The results of these experiments are summarized
through Figure 1 and Table 1. The results clearly
show that the DM model is indeed capable of gen-
erating the degree distribution of the collocation
networks to a very close approximation for cer-
tain values of the parameter c (see Table 1 for the
values of ¢ and the corresponding KLD).

Subsequently, for the purpose of spectral anal-
ysis, we construct subgraphs induced by the top
5000 nodes for each of the seven empirical net-
works as well as those generated by the DM model
(i.e., those for which the degree distribution fits
best in terms of KLLD with the real data). We then
compute and compare the spectrum of the real
and the synthesized networks (see Figure 2 and
Table 1). It is quite apparent from these results
that the spectra of the empirical networks are sig-
nificantly different from those obtained using the
DM model. In general, the spectral plots indicate
that the adjacency matrices for networks obtained
from the DM model have a higher rank than those
for the empirical networks. Further, in case of the
synthesized networks, the first eigenvalue is sig-
nificantly larger than the second whereas for the
empirical networks the top 3 to 4 eigenvalues are
found to dominate. Interestingly, this property is
observed across all the languages under investiga-
tion.

We believe that the difference in the spectra is
due to the fact that the ordering of the words in
a sentence are strongly governed by the grammar
or the syntax of the language. Words belong to
a smaller set of lexico-syntactic categories, which
are more commonly known as the parts-of-speech
(POS). The co-occurrence patterns of the words
are influenced, primarily, by its POS category. For
instance, nouns are typically preceded by articles
or adjectives, whereas verbs might be preceded by
auxiliary verbs, adverbs or nouns, but never ar-
ticles or adjectives. Therefore, the words “car”
and “camera” are more likely to be structurally
similar in the word co-occurrence network, than
“car” and “‘jumped”. In general, the local neigh-
borhoods of the words belonging to a particular
POS is expected to be very similar, which means

that several rows in the adjacency matrix will be
very similar to each other. Thus, the matrix is ex-
pected to have low rank.

In fact, this property is not only applicable to
syntax, but also semantics. For instance, even
though adjectives are typically followed by nouns,
semantic constraints make certain adjective-noun
co-occurrences (e.g., “green leaves”) much more
likely than some others (e.g., “green dreams” or
“happy leaves”). These notions are at the core of
latent semantics and vector space models of se-
mantics (see, for instance, Turney and Pantel (Tur-
ney and Pantel, 2010) for a recent study). The DM
model, on the other hand, is based on the recency
effect that says that the words which are produced
most recently are easier to remember and there-
fore, easier to produce in the future. Preferential
attachment models the recency effect in word pro-
duction, which perhaps is sufficient to replicate
the degree distribution of the networks. However,
the model fails to explain the global properties,
precisely because it does not take into account
the constraints that govern the distribution of the
words.

It is quite well known that the spectrum of a net-
work can be usually obtained by iteratively pow-
ering the adjacency matrix of the network (aka
power iteration method). Note that if the adja-
cency matrices of the empirical and the synthe-
sized networks are powered even once (i.e., they
are squared)?, their degree distributions match no
longer (see Figure 3). This result further cor-
roborates that although the degree distribution of
a word co-occurrence network is quite appropri-
ately reproduced by the DM model, more global
structural properties remain unexplained. We be-
lieve that word association in human languages
is not arbitrary and therefore, a model which ac-
counts for the clustering of words around their
POS categories might possibly turn out to present
a more accurate explanation of the spectral prop-
erties of the co-occurrence networks.
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Figure 2: The spectrum for Bangla, English, Estonian, French, German, Hindi and Tamil respectively.
The last plot shows a portion of the spectrum for English magnified around O for better visualization.
All the curves are binned distributions with bin size = 100. The blue line in each case is the spectrum
for the network obtained from the DM model while each red line corresponds to the spectrum for the

empirical network.

5 Reinvestigating the DM Model

In this section, we shall delve deeper into explor-
ing the properties of the DM model since it is one
of the most popular and well accepted models for
explaining the emergence of word associations in
a language. In particular, we shall investigate the
influence of the model parameter ¢ on the emer-
gent results.

If we plot the value of the parameter ¢ (from
Table 1) versus the size of the corpora (from Ta-
ble 1) used to construct the empirical networks for
the different languages we find that the two are
highly correlated (see Figure 4).

2Note that this squared network is weighted in nature. We
threshold all edges below the weight 0.07 so that the resultant
network is neither too dense nor too sparse. The value of the
threshold is chosen based on the inspection of the data.

In order to further check the dependence of ¢
on the corpus size we perform the following ex-
periment. We draw samples of varying corpus
size and construct empirical networks from each
of them. We then simulate the DM model and at-
tempt to reproduce the degree distribution for each
of these empirical networks. In each case, we note
the value c for which the KLD between the empir-
ical and the corresponding synthesized network is
minimum. Figure 5 shows the result of the above
experiment for English. The figure clearly indi-
cates that as the corpus size increases the value of
the parameter ¢ decreases. Similar trends are ob-
served for all the other languages.

In general, one can mathematically prove that
the parameter c is equal to the rate of change of
the average degree of the network with respect to
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Figure 3: Cumulative degree distribution for the
squared version of the networks for English. The
red line is the degree distribution for the squared
version of the empirical network while the blue
line is degree distribution of the squared version
of the network obtained from the DM model. The
trends are similar for all the other languages.

the time ¢. The proof is as follows.

At every time step ¢, the number of new edges
formed is (1+ct). Since each edge contributes to
a total degree of 2 to the network, the sum of the
degrees of all the nodes in the network (k) is

T
kot =2 (L+ct) =2T + cT(T + 1)
t=1

(D

At every time step, only one new node is added
to the network and therefore the total number of
nodes at the end of time 7' is exactly equal to 7.
Thus the average degree of the network is

2T +I(T +1)

(k) T =2+c(T+1) (2
The rate of change of average degree is
d(k)
bl U 3
T ¢ 3)

and this completes the proof.

In fact, it is also possible to make a precise
empirical estimate of the value of the parameter
c. One can express the average degree of the co-
occurrence networks as the ratio of twice the bi-
gram frequency (i.e., twice the number of edges
in the network) to the unigram frequency (i.e., the

x 10"

45

35

251

1.5

05 . . . . .
0 5 10 15 20 25 30 35
Corpus Size(Across Languages)

Figure 4: The parameter c versus the corpus size
for the seven languages.

Figure 5: The parameter c versus the corpus size
for English.

number of nodes or unique words in the network).
Therefore, if we can estimate this ratio we can eas-
ily estimate the value of ¢ using equation 3. Let
us denote the total number of distinct bigrams and
unigrams after processing a corpus of size N by
B(N) and W (V) respectively. Hence we have

_ 2B(N)

“

Further, the number of distinct new unigrams after

Language | B(N) W(N) c

English | 292N07 593N 009N—20
Hindi 26.2N% 49 7N46  009N—-26
Tamil IONT  64N7T 207N

Table 2: Summary of expressions for B(N),
W (N) and ¢ for English, Hindi and Tamil.
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Figure 6: Variation of B(N) and W () with N
for English (in doubly-logarithmic scale). The
blue dots correspond to variation of B(N) while
the red dots correspond to the variation of W (N).

processing a corpus of size IV is equivalent to T’
and therefore
T =W(N) (5)

Sampling experiments across different languages
demonstrate that W (V) and B(N) are of the form
nN® (a < 1) where 7 and « are constants. For
instance, Figure 6 shows in doubly-logarithmic
scale how B(NN) and W(N) varies with N for
English. The R? values obtained as a result of
fitting the B(NN) versus N and the W (V) ver-
sus N plots using equations of the form nN® for
English, Hindi and Tamil are greater than 0.99.
This reflects the high accuracy of the fits. Similar
trends are observed for all the other languages.
Finally, using equations 3, 4 and 5 we have

_d{k) _ d(k)dN
~ dT  dN dT

and plugging the values of B(/N) and W(N) in
equation 6 we find that ¢ has the form kN7 (8 <
1) where « and (3 are language dependent positive
constants. The values of ¢ obtained in this way
for three different languages English, Hindi and
Tamil are noted in Table 5.

Thus, we find that as N — oo, ¢ — 0. In
other words, as the corpus size grows the number
of distinct new bigrams goes on decreasing and
ultimately reaches (almost) zero for a very large
sized corpus. Now, if one plugs in the values of ¢
and 7" obtained above in the expressions for kcyoss
and k., in (Dorogovstev and Mendes, 2001), one

(6)

observes that limpy_, o ]‘ﬁ:ﬁ = 0. This implies
that as the corpus size becomes very large, the
two-regime power law (almost) converges to a sin-
gle regime with an exponent equal to -3 as is ex-
hibited by the Barabdasi-Albert model (Barabasi
and Albert, 1999). Therefore, it is reasonable to
conclude that although the DM model provides a
good explanation of the degree distribution of a
word co-occurrence network built from a medium
sized corpora, it does not perform well for very
small or very large sized corpora.

6 Conclusions

In this paper, we have tried to investigate in de-
tail the co-occurrence properties of words in a
language. Some of our important observations
are: (a) while the DM model is able to reproduce
the degree distributions of the word co-occurrence
networks, it is not quite appropriate for explaining
the spectrum of these networks; (b) the parameter
c in the DM model signifies the rate of change of
the average degree of the network with respect to
time; and (c) the DM model does not perform well
in explaining the degree distribution of a word co-
occurrence network when the corpus size is very
large.

It is worthwhile to mention here that our analy-
sis of the DM model leads us to a very important
observation. As N grows, the value of k.,; grows
at a much faster rate than the value of k.,,ss and
in the limit N — oo the value of k., is so high as
compared to k.55 that the ratio % becomes
(almost) zero. In other words, the kernel lexicon,
formed of the words in the first regime of the two
regime power-law and required to “say everything
or almost everything” (Ferrer-i-Cancho and Solé,
2001) in a language, grows quite slowly as new
words creep into the language. In contrast, the pe-
ripheral lexicon making the other part of the two
regime grows very fast as new words enter the lan-
guage. Consequently, it may be argued that since
the kernel lexicon remains almost unaffected, the
effort to learn and retain a language by its speak-
ers increases only negligibly as new words creep
into the language.
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