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Abstract 

We conduct a series of Part-of-Speech 

(POS) Tagging experiments using Ex-

pectation Maximization (EM), Varia-

tional Bayes (VB) and Gibbs Sampling 

(GS) against the Chinese Penn Tree-

bank.  We want to first establish a base-

line for unsupervised POS tagging in 

Chinese, which will facilitate future re-

search in this area.  Secondly, by com-

paring and analyzing the results between 

Chinese and English, we highlight some 

of the strengths and weaknesses of each 

of the algorithms in POS tagging task 

and attempt to explain the differences 

based on some preliminary linguistics 

analysis.  Comparing to English, we find 

that all algorithms perform rather poorly 

in Chinese in 1-to-1 accuracy result but 

are more competitive in many-to-1 accu-

racy.  We attribute one possible explana-

tion of this to the algorithms’ inability to 

correctly produce tags that match the 

desired tag count distribution. 

1 Introduction 

Recently, there has been much work on 

unsupervised POS tagging using Hidden 

Markov Models (Johnson, 2007; Goldwater & 

Griffiths, 2007).  Three common approaches are 

Expectation Maximization (EM), Variational 

Bayes (VB) and Gibbs Sampling (GS).  EM was 

first used in POS tagging in (Merialdo, 1994) 

which showed that except in conditions where 

there are no labeled training data at all, EM 

performs very poorly.  Gao and Johnson (2008) 

compared EM, VB and GS in English against 

the Penn Treebank Wall Street Journal (WSJ) 

text.  Their experiments on English showed that 

GS outperforms EM and VB in almost all cases.  

Other notable studies in the unsupervised and 

semi-supervised POS domain include the use of 

prototype examples (Haghighi & Klien, 2006), 

dictionary constraints to guide the algorithms 

(Elworthy 1994; Banko & Moore 2004) and 

Bayseian LDA-based model (Toutanova and 

Johnson, 2007). 

   To our knowledge, little work has been done 

on unsupervised POS tagging in Chinese against 

the Chinese Penn Treebank (CTB).  The work 

in Chinese POS tagging has been predominately 

in the supervised fashion (Huang et al. 2009; 

Chang & Chen, 1993; Ng & Low, 2004) and 

achieve accuracy of 92.25% using a traditional 

ngram HMM tagger.  For English, a supervised 

trigram tagger achieves an accuracy of  96.7% 

against the Penn Treebank (Thorsten, 2000). 

   In this study, we analyze and compare the 

performance of three classes of unsupervised 

learning algorithms on Chinese and report the 

experimental results on the CTB.  We establish 

a baseline for unsupervised POS tagging in 

Chinese.  We then compare and analyze the 

results between Chinese and English, we 

explore some of the strengths and weaknesses 

of each of the algorithms in POS tagging task 

and attempt to explain the differences based on 

some preliminary linguistics analysis.   

2 Models 

In this section, we provide a brief overview of 

the three unsupervised learning methods for 

POS tagging as described in (Gao & Johnson, 

2008), which all uses a traditional bigram Hid-

den Markov Model (HMM).  HMM is a well-
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known statistical model, used for sequential 

modeling. To put it formally, let   
                      be the set of possible 

states and                    be the set 

of possible observations.  In the case for POS 

tagging using a bigram model, the set   corres-

ponds to the set of POS tags and the set   cor-

responds to the set of words in the language.  

 

 
Figure 1: Graphical model of an HMM for a 

bigram POS tagger.  The top row represents a 

sequence of hidden states where each is condi-

tionally dependent only on the previous state 

and the bottom row represents a sequence of 

observations where each is conditionally depen-

dent only on the current state. 

 

  An HMM models a sequence of discrete ob-

servations                where       

that are produced by a sequence of hidden 

states                 where       .  The  

sequence of states is produced by a first order 

Markov process such that the current state     

depends only on its previous state     ; corres-

pondingly each of the observations    depends 

only on the state   : 

 

                        
                           

 

where                 is the probability of 

transition to state       from         and 

                is the probability of observa-

tion       produced by      .  The para-

meter   for the HMM is defined by the transi-

tion probability distribution        , emission 

(observation) probability distribution           

and the initial probability            . 

Direct calculation of the likelihood          is 

computationally inefficient, and we can use dy-

namic programming techniques to speed up the 

calculation by calculating the forward probabili-

ty: 

 

                      
 

and backward probability  

                     . 

See (Mannings & Schutze, 1999) for details on 

the calculation. 

2.1 Expectation Maximization (EM) 

EM is a general class of algorithms for finding 

the maximum likelihood estimator of 

parameters in probabilistic models.  It is an 

iterative algorithm where we alternate between 

calculating the expectation of the log likelihood 

of the model given the parameters: 

 

                             

and then finding the parameters that maximizes 

the expected log likelihood.  Using Lagrange 

multipliers with constraint that each parameter 

is a probability distribution, we have these 

update steps for the well-known forward-

backward Algorithm for EM HMM: 

 

                    

 

          
                       

            
 
   

 

 

          
                          

           
 
   

 

   

 

 

where          
       

      
 . 

2.2 Variational Bayes (VB) 

One of the drawbacks of EM is that the result-

ing distribution is very uniform; that is, EM ap-

plies roughly the same number of observations 

for each state.  Instead of using only the best 

model for decoding, the Bayesian approach uses 

and considers all the models; that is, the model 

is treated as a hidden variable.  This is done by 

assigning a probability distribution over the 

model parameters as a prior distribution,      . 
   In HMM, we calculate the probability of the 

observation by considering all models and inte-

grating over the distribution over the priors:  

(5) 

(1) 

(2) 

(3) 

(4) 
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where                  . 
 

As with the standard in the literature, we use 

Dirichlet Prior as it allows us to model the tag 

distribution more closely and because they are 

in the same conjugate exponential family as the 

log likelihood.  The Dirichlet distribution is pa-

rameterized by a vector of real values   (hyper-

parameters).  There are two ways that we can 

view the vector  .  First, the parameter controls 

the sharpness of distribution for each of the 

components.  This is in contrast to the EM mod-

el where we essentially have a uniform prior.  

Thus, we can view   as our prior beliefs on the 

shape of the distribution and we can make our 

choices based on our linguistics knowledge.  

Second, we can view the role of   in terms of 

predictive distribution based on the statistics 

from observed counts.  For HMM, we can set a 

separate prior for each state-state transition and 

word-state emission distribution, effectively 

giving us control over the distribution of each 

entry in the transition matrix.  However, to sim-

plify the model and without the need to fine 

tune each parameters, we use two fixed hyper-

parameters: all of the state-state probability will 

have the hyper-parameter      and all of the 

word-state probability will have hyper-

parameter    .    

   To begin our estimation and maximization 

procedure, we create            
            as an approximation of the post-

erior of the log likelihood: 

 

         

              
                  

         
  

 

 

 

By taking the functional derivative with respect 

to      to find the distribution that maximizes 

the log likelihood, and following the derivation 

from (Beal, 2003), we arrive at the following 

EM-like procedure: 

 

               

                                     

         
                   

           
 
   

 

                            

 
                           

           
 
   

 

 

This is the Expectation step where   and   is 

the forward and backward probabilities and 

         is the indicator function as in EM. 

   The Maximization step is as follows: 

 

        

 
                            

                           
 
     

 

 

        

  
                    

 
     

                     
 
   

 
     

 

 

        

 
                     

 
    

                      
 
   

 
     

 

   

where                                     , 

                                   and    is 

the digamma function.  

2.3 Gibbs Sampling (GS) 

Gibbs sampling (Geman & Geman, 1984) is a 

widely used MCMC algorithm designed espe-

cially for cases where we can sample from the 

conditional probability easily. It is a 

straightforward application of the Metropolis 

Hasting algorithm where we sample a variable 

   while keeping     constant where     

                     .  We set the proposal 

distribution to  

 

    
               .   

 

So the sampling procedure is the following:  

initialize the components of             .  

Then sample    from              ,    from 

                , and so on for each compo-

nent of  .  For POS tagging, the main idea is 

that we sample the tag   based on the         
and        distribution.  

   The main idea for using GS for POS tagging 

is that in  each iteration, we sample the tag   
based on the         and        distribution.  

(7) 

(6) 

(8) 

(9) 

(10) 
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Then from the samples, we count the number 

for each state-state and word-state pairs and up-

date the probabilities accordingly.  How we 

sample the data depends on whether we are us-

ing word based or sentence based sampling (the 

Expectation Step).  Whereas how we update the 

probabilities depend on whether we are using a 

collapsed or explicit Gibbs sampler (the Max-

imization Step).  

 

Word Based vs. Sentence Based: Word-based 

and sentence-based approaches to GS determine 

how we sample the each tag   at position   in 

the data set.  For the word-based approach, in-

stead of going through sentence by sentence (as 

in EM and VB procedures), we pick a word po-

sition in the corpus at random (without repeti-

tion) and sample a new tag    at position   using 

the probability: 

 

        
                                    

  

    

Notice that since we are selecting each position 

at random, the tag      at position n-1 and      

at position n+1 are our samples at the previous 

iteration or an already updated samples at the 

current iteration.   

   The sentence-based approach use the forward 

and backward probability to sample the tag 

based on the sentence (Besag, 2004). Specifical-

ly, we use the backward probability       
                to sample the sentence from 

start (     to finish (    .  We sample a 

new tag    at position   using the probability: 

 

                            
                                    

 

where the transition and emission probability 

distribution are from the current model parame-

ters.  Again      is our “guess” at the previous 

sampling step of the tag of     . 

 

Explicit vs. Collapsed Based: We use the tags 

estimated at the previous step to maximize the 

parameters.  Our choice of using Dirichlet dis-

tributions over the parameters      and      
give us some nice mathematical properties.  We 

show that           and           also calcu-

late to be Dirichlet distributions.  Following  

(MacKay & Peto, 1994), the posterior probabili-

ty of   can be derived as follows: 

 

          
             

       

  
 

       
         

 

   

  
   
         

         

 

 

 

 

   
 
  

                             

                   

 

   

 

   

                        

 

 

where          is the number of times    is fol-

lowed by    in the sample from the previous 

iteration.   

 

Similarly, we can define           using the 

count          to show that: 

 

                                 

 

 

 

For the collapsed Gibbs sampler, we want to 

integrate over all possible model parameters   

to maximize the new transition probabilities 

using Maximum a posteriori (MAP) estimator: 

 

                                           

                             

 

   

 
            

                

 

 

The last equality uses the following result: 

 

             
 

    
 

 

We can derive a similar result for 

             .  Then we can use the sample 

count to update the new parameter values.   

   An explicit sampler samples the HMM para-

meters   in addition to the states.  Specifically, 

in the Bayesian model, we will need to sample 

from the Dirichlet distribution for the parame-

ters  

 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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derived above.  An  -dimensional Dirichlet dis-

tribution variable can be generated from gamma 

variate (Wolfram Mathematica, 2009): 

 

                        

                 
                  

               
 

 

we can update the transition probability by ge-

nerating the gamma variate for the Dirichlet 

distribution:  

    
   

     
. 

 

Similarly, we sample the emission probability 

using the count for word-tag with          

    as the hyper-parameter. 

3 Experiment Setup 

Our experiment setup is similar to the ones used 

in (Gao & Johnson, 2007).  They are summa-

rized in Table 1: 

 

Parameters Values 

Data Size 24k, 120k, 500k 

Algorithm EM, VB, GS(c,w), GS(c,s), 

GS(e,s), GS(e,w) 

# of states Chinese: 33  English: 50 

    0.0001, 0.1, 0.5, 1 

    0.0001, 0.1, 0.5, 1 

Table 1: The list of experiments conducted.  For 

the hyper-parameters          , we try the 

combination of the adjacent pairs – 

(0.0001,0.0001), (0.1,0.0001), (0.0001,0.1), (0.1, 

0.1), (0.1, 0.5), etc.  

3.1 Data  

For our experiments, we use the data set Chi-

nese Penn Treebank (CTB) v5.0.  The Chinese 

Treebank project began at the University of 

Pennsylvania in 1998 and the team created a set 

of annotation guidelines for word segmentation, 

POS tagging and bracketing (Xia, 2000; Xue et 

al., 2002; Xue et al., 2005).  The version used in 

this paper is the Chinese Treebank 5.0 which 

consists of over 500k words and over 800k Chi-

nese characters.  The text comes from various 

sources including newswire, magazine articles, 

website news, transcripts from various broad-

cast news program.   

   Chinese POS tagging faces additional chal-

lenges because it has very little, if any, inflec-

tional morphology. Words are not inflected with 

number, gender, case, or tense. For example, a 

word such as 毁灭 in Chinese corresponds to 

destroy /destroys /destroyed/destruction in Eng-

lish. This fuels the discussion in Chinese NLP 

communities on whether the POS tags should be 

based on meaning or on syntactic distribution 

(Xia, 2000). If only the meaning is used, 毁灭 

should be a verb all the time. If syntactic distri-

bution is used, the word is a verb or a noun de-

pending on the context.  For the CTB, syntactic 

distribution is used, which complies with the 

principles of contemporary linguistics theories. 

   Following the experiment done for English in 

(Gao & Johnson, 2008), we split the data into 

three sizes: 24k words, 120k words and all 

words (500k), and used the same data set for 

training and testing. The idea is to track the ef-

fectiveness of an algorithm across different cor-

pus sizes.  Instead of using two different tag set 

sizes (17 and 50) as it is done for English POS 

tagging, we opt to keep the original 33 tag set 

for Chinese without further modification.  In 

addition to reporting the results for English 

from (Gao & Johnson, 2008), we run additional 

experiments on English using only 500k words 

for comparison. 

3.2 Decoding 

For decoding, we use max marginal likelihood 

estimator (as opposed to using Viterbi algorithm) 

to assign a tag for each word in the result tag. 

(Gao & Johnson, 2008) finds that max marginal 

decoder performs as well as Viterbi algorithm 

and runs significantly faster as we can reuse the 

forward and backwards probabilities already 

calculated during the estimation and update step.   

3.3    Hyperparameters 

For the Bayesian approaches (VB and GS), we 

have a choice of hyperparameters. We choose 

uniform hyperparameters     and     instead 

(17) 

(18) 

(19) 
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of choosing a specific hyper-parameter for each 

of the tag-tag and word-tag distribution.  The 

values for the hyper-parameters are chosen such 

that we can see more clearly the interactions 

between the two values.  For GS, we use the 

notation GS(c,s) to denote collapsed sentence-

based approach, GS(e,s) for explicit sentence 

based, GS(c,w) for collapsed word-based and 

GS(e,w) for explicit word based. 

3.4   Evaluation Metrics 

We use POS tagging accuracy as our primary 

evaluation method. There are two commonly 

used methods to map the state sequences from 

the system output to POS tags.  In both methods, 

we first create a matrix where each row corres-

ponds to a hidden state, each column corres-

ponds to a POS tag, and each cell       

represents the number of times a word position 

in the test data comes from the hidden state    
according to the system output and the position 

has tag    according to the gold standard.  In 

greedy 1-to-1 mapping, we find the largest val-

ue in the table – suppose the value is for the cell 

     . We map state i to tag j, and remove both 

row i and column j from the table. We repeat 

the process until all the rows have been re-

moved. Greedy many-to-1 allow multiple hid-

den states to map to a single POS tag. That is, 

when the highest value in the table is found, 

only the corresponding row is removed. In other 

words, we simply map each hidden state to the 

POS tag that the hidden state co-occurs with the 

most.   

4 Results and Analysis 

We compare and analyze the results between 

the different algorithms and between Chinese 

and English using Greedy 1-to-1 accuracy, 

Greedy many-to-1 accuracy.  

4.1 Greedy 1-to-1 accuracy 

When measure using 1-to-1 mapping, the best  

algorithm – Collapsed word based Gibbs Sam-

pling GS(c,w) - achieve 0.358 in Chinese on the 

full data set but remains close to 0.499 in Eng-

lish for the full dataset.  GS(c,w) outperforms 

other algorithm in almost all categories.  But 

EM posts the highest  relative improvement 

with an increase of 70% when the data size in-

creases  from  24k to 500k words.  The full re-

sult is listed in Table 2. 
 Greedy 1-to-1 

 24k 120k 500k 

C
h

in
es

e
 

EM 0.1483 0.1838 0.2406 

VB 0.1925 0.2498 0.3105 

GS(e,w) 0.2167 0.3108 0.3475 

GS(e,s) 0.2262 0.2596 0.3572 

GS(c,s) 0.2351 0.2931 0.3577 

GS(c,w) 0.2932 0.3289 0.3558 

E
n

g
 EM 0.1862 0.2930 0.3837 

VB 0.2382 0.3468 0.4327 

GS(c,w) 0.3918 0.4276 0.4348 

Table 2: Tagging accuracy for Chinese and 

English with greedy 1-to-1 mapping.  The Eng-

lish 24k and 120k results are taken from (Gao & 

Johnson 2008) with the 50-tag set.  

 

 
Figure 2: Tag distribution for 1-to-1 greedy 

mapping in Chinese 500k.  Only the top 18 tags 

are shown.  The figure compares the tag distri-

bution between the gold standard for Chinese 

(33 tags) and the algorithm’s results.  The gold 

tags are shown as lines, and each algorithm’s 

result is shown as bar graphs.   

 

As expected, the increase in data size improves 

the accuracy as EM algorithm optimizes the 

likelihood better with more data.  We ran addi-

tional experiments on English using a reduced 

500k dataset to match the dataset used for Chi-

nese; EM in this setting achieve an accuracy of 

0.384 on average for 50 tags (down from 

0.405).  So even in the reduced data size setting, 

EM on English performs better than Chinese 

although the difference is reduced.  We analyze 

the tag distribution of the 1-to-1 mapping.  

(Johnson, 2007) finds that EM generally assigns 

roughly as equal number of words for each 

state.  In Figure 2, we find the same phenome-

non for Chinese.  

0

50000
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150000
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   One of the advantages of Bayesian approaches 

(VB and GS) is that we can assign a prior to 

attempt to encourage a sparse model distribu-

tion.  Despite using small values 0.0001 as 

hyperparameters, we find that the resulting dis-

tribution for number of words mapping to a par-

ticular state is very different  from the gold 

standard. 

4.2 Greedy many-to-1 accuracy 

Collapsed Word Based Gibbs Sampler GS(c,w) 

is the clear winner for both English and Chinese 

unsupervised POS tagging.  Table 3 shows the 

result of Greedy many-to-1 mapping for Chi-

nese in different data size as well as English 

with the full data set.  In Greedy many-to-1 

mapping, GS(c,w) in both Chinese and English 

achieve 60%+ accuracy.  In addition, the size of 

the dataset does not affect GS(c,w) as much as 

the other algorithms.  In fact, the change from 

24k to 500k dataset only increases the relative 

accuracy by less than 6%.   

 
 Greedy many-to-1 

 24k 120k 500k 

C
h

in
es

e
 

EM 0.4049 0.4564 0.4791 

VB 0.4411 0.5023 0.5390 

GS(e,w) 0.4758 0.4969 0.5499 

GS(e,s) 0.4904 0.5369 0.5658 

GS(c,s) 0.5070 0.5701 0.5757 

GS(c,w) 0.5874 0.6180 0.6213 

E
n

g
 EM 0.2828 0.44135 0.5872 

VB 0.3595 0.48427 0.6025 

GS(c,w) 0.5815 0.6529 0.6644 

Table  3: Many-to-1 accuracy for Chinese and 

English. The English 24k and 120k results are 

taken from (Gao & Johnson 2008) with the 50-

tag set.  

 

However, despite the relatively high  accuracy, 

when analyzing the result, we notice that there 

are overwhelmingly many states which maps to 

a single POS tag (NN).  Figure 3 shows the 

number of states mapping to different POS tags 

in Chinese over the 500k data size.  There are a 

large number of states mapping to relatively few 

POS tags.  In the most extreme example, for the 

POS tag NN, GS(e,s) assigns 18 (the most) hid-

den states, accounts for 44% of the word tokens 

mapping to NN whereas GS(e,w) assigns 13 

states, which is actually the least among all the 

algorithms and accounts for 31% of the word 

tokens mapping to NN.  Notice that we have 

only a total of 33 hidden states in our model.  

This means that over half the states are mapped 

to NN, which is a rather disappointing result.  

The actual empirical result for the gold standard 

in CTB is that only 27% of the word should be 

mapped to NN.  For EM in particular, we see 17 

states accounting for 42% of the words tagged 

as NN.  

 

 
Figure 3: The distribution of POS tags based on 

the output EM algorithm in Chinese using the  

500k dataset.  Tag T-N-y% means that there are 

N hidden states mapped to the specific POS tag 

T accounting for y% of word tokens tagged with 

these N states by the EM algorithm. 

 

 
Figure 4: English tag distribution for EM using 

500k dataset with 50 states mapping to the 17 

pos tag set. Tag T-N-y% means that there are N 

hidden states mapped to the specific POS tag T 

accounting for y% of word tokens tagged with 

these N states. 

 

We also ran additional experiments on the algo-

rithms for English using a reduced data size of 

500k to match that of our Chinese experiment to 

see whether we see the same phenomena.  We 

notice that the tag distribution for English EM is 

more consistent to the empirical distribution 

found in the gold standard. 

AD-3 
state(s)

9%

NN-17 
state(s)

42%
NR-2 

state(s)
8%

PU-3 
state(s)

14%

VV-3 
state(s)

10%

N-16 
state(s)

37%

DET-7 
state(s)

15%

V-7 
state(s)

12%

PREP-4 
state(s)

10%

ADJ-7 
state(s)

6%

141



With the English 50 tag set with 500k words, 

we experiment with mapping the English 50 tag 

set result to the 17 tag set, we see that in Figure 

4, 16 (of 50) states mapped to the N tag, ac-

counting for 37% of the words in the dataset.  

This is close to the actual empirical distribution 

for English for 17 tags where N accounts for 

about 32%. 

4.3 Convergence 

We analyze how each algorithm converges to its 

local maxima.  Figure 5 shows the change in 

greedy 1-to-1 accuracy over the 50% of the run.   

 

 
Figure 5: Greedy 1-to-1 accuracy of EM, VB 

and GS(c,w) over the first 50% of the algo-

rithms' iterations for the Chinese 500k dataset.  

Note: the percentage of iterations is used here 

because each algorithms converge at a different 

number of iterations, thus the progress is scaled 

accordingly. 

 

The greedy 1-to-1 accuracy actually fluctuates 

through the run.  VB has an interesting dip at 

around 80% of its iteration before climbing to 

its max (not showing in the graph).  All the 

Gibbs sampling variations follow a relatively 

steady hill climb before converging (only 

GS(c,w) is shown in Figure 5).  EM is particu-

larly interesting; Looking at the initial 15% of 

the algorithm’s run, we can see that EM climbs 

to a “local” max very quickly before dropping 

and then slowly improving in its accuracy.  The 

greedy 1-to-1 accuracy in the initial top is ac-

tually higher than the final convergence value in 

most runs.  This initial peak in value following 

by a drop and then a slow hill climb in EM for 

Chinese POS tagging is consistent with the find-

ing in (Johnson, 2007) for English POS tagging.  

5 Conclusion and Future Work 

We have only scratched the surface of the re-

search in unsupervised techniques in Chinese 

NLP.  We have established a baseline of EM, 

VB and GS against the CTB 5.0.  The experi-

ment shows that for both Chinese and English, 

GS(c,w) produces the best result.  We have also 

found that Chinese performs rather poorly in the 

1-to-1 accuracy  when comparing against Eng-

lish in the same data size.  We find that in 

many-to-1 mapping, we have a disproportionate 

large number of states mapping to individual 

POS tags comparing to the gold distribution and 

also in comparison to English against its gold 

distribution.   

   Graça et al. (2009) addresses the problem we 

observe in our resulting tag distributions in our 

model where EM, VB and GS fails to capture 

the shape of the true distribution.  They propose 

a Posterior Regularization framework where it 

poses linear constraints on the posterior expec-

tation.  They define a set distributions Q over 

hidden states with a constraint on the expecta-

tion over the features.  The log likelihood is pe-

nalized using the KL-divergence between the Q 

distribution and the model.  The distributions 

that their model predicted are far more similar 

to the gold standard than traditional EM.   

   Liang and Klein (2009) propose some inter-

esting error analysis techniques for unsuper-

vised POS tagging.  One of their analyses on 

EM is done by observing the approximation 

errors being created during each iteration of the 

algorithm’s execution.  We can also perform 

these analyses on VB and GS and observe the 

changes of output tags by starting from the Gold 

Standard distribution in EM and VB, and gold 

standard tags in GS.  We can then follow how 

and which set of tags start to deviate from the 

gold standard.  This will allow us to see which 

categories of errors (ex. noun-verb, adj-adv er-

rors) occur most in these algorithms and how 

the error progresses. 
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