
Coling 2010: Poster Volume, pages 117–125,
Beijing, August 2010

Tree Topological Features for Unlexicalized Parsing

Samuel W. K. Chan† Lawrence Y. L. Cheung# Mickey W. C. Chong†

†Dept. of Decision Sciences
Chinese University of Hong Kong

#Dept. of Linguistics & Modern Languages
Chinese University of Hong Kong

{swkchan, yllcheung, mickey_chong}@cuhk.edu.hk

Abstract

As unlexicalized parsing lacks word to-
ken information, it is important to inves-
tigate novel parsing features to improve
the accuracy. This paper studies a set of
tree topological (TT) features. They
quantitatively describe the tree shape
dominated by each non-terminal node.
The features are useful in capturing lin-
guistic notions such as grammatical
weight and syntactic branching, which
are factors important to syntactic proc-
essing but overlooked in the parsing lit-
erature. By using an ensemble classifier-
based model, TT features can signifi-
cantly improve the parsing accuracy of
our unlexicalized parser. Further, the
ease of estimating TT feature values
makes them easy to be incorporated into
virtually any mainstream parsers.

1 Introduction

Many state-of-the-art parsers work with lexical-
ized parsing models that utilize the information
and statistics of word tokens (Magerman, 1995;
Collins, 1999, 2003; Charniak, 2000). The per-
formance of lexicalized models is susceptible to
vocabulary variation as lexical statistics is often
corpus-specific (Ratnaparkhi, 1999; Gildea,
2001). As parsers are typically evaluated using
the Penn Treebank (Marcus et al., 1993), which
is based on financial news, the problems of
lexicalized parsing could easily be overlooked.
Unlexicalized models, on the other hand, are
less sensitive to lexical variation and are more
portable across domains. Though the perform-
ance of unlexicalized models was believed not
to exceed that of lexicalized models (Klein &

Manning, 2003), Petrov & Klein (2007) show
that unlexicalized parsers can match lexicalized
parsers in performance using the grammar rule
splitting technique. Given the practical advan-
tages and the latest development, unlexicalized
parsing deserves further scrutiny.

A profitable direction of research on unlexi-
calized parsing is to investigate novel parsing
features. This paper examines a set of what we
call tree topological (TT) features, including
phrase span, phrase height, tree skewness, etc.
This study is motivated by the fact that conven-
tional parsers rarely consider the shape of
subtrees dominated by these nodes and rely
primarily on matching tags. As a result, an NP
with a complicated structure is treated the same
as an NP that dominates only one word. How-
ever, our study shows that TT features are use-
ful predictors of phrase boundaries, a critical
ambiguity resolution issue. TT features have
two more advantages. First, TT features capture
linguistic properties, such as branching and
grammatical “heaviness”, across different syn-
tactic structures. Second, they are easily com-
putable without the need for extra language re-
sources.

The organization of the paper is as follows.
Section 2 reviews the features commonly used
in parsing. Section 3 provides the details of TT
features in the unlexicalized parser. The parser
is evaluated in Section 4. In Section 5, we
discuss the effectiveness and advantages of TT
features in parsing and possible enhancement.
This is followed by a conclusion in Section 6.

2 Related Work

2.1 Parsing Features

This section reviews major types of information
in parsing.

117

Tags: The dominant types of information that
drive parsing and chunking algorithms are
POS/syntactic tags, context-free grammar (CFG)
rules, and their statistical properties. Matching
tags against CFG rules to form phrases is central
to all basic parsing algorithms such as Cocke-
Kasami-Younger (CKY) algorithm, and the Ear-
ley algorithm, and the chart parsing.

Word Token-based: Machine learning and sta-
tistical modelling emerged in the 90s as an ideal
computational approach to feature-rich parsing.
Classifiers can typically capitalize on a large set
of features in decision making. Magerman
(1995), Ratnaparkh (1999) and Charniak (2000)
used classifiers to model dependencies between
word pairs. They popularized the use word to-
kens as attributes in lexicalized parsing. Collins
(1999, 2003) also integrated information like
head word and distance from head into the sta-
tistical model to enhance probabilistic chart
parsing. Since then, word tokens, head words
and their statistical derivatives have become
standard features in many parsers. Word token
information is also fundamental to dependency
parsing (Kübler et al., 2009) because depend-
ency grammar is rooted in the idea that the head
and the dependent word are related by different
dependency relations.

Semantic-based: Some efforts have also been
made to consider semantic features, such as
sense tags, in parsing. Words are first tagged
with semantic classes, often using WordNet-
based resources. The lexical semantic class can
be instructive to the selection of the correct
parse from a set of candidate structures. It has
been reported that the lexical semantics of
words is effective in resolving structural ambi-
guity, especially PP-attachment (Black et al.,
1992; Stetina & Nagao, 1997; Agirre et al.,
2008). Nevertheless, the use of semantic fea-
tures has still been relatively rare. They incur
overheads in acquiring semantic language re-
sources, such as sense-tagged corpora and
WordNet databases. Semantic-based parsing
also requires accurate sense-tagging.

Since substantial gain from tag features is
unlikely in the near future and deriving seman-
tic features is often a tremendous task, there is a
pressing need to seek for new features, particu-
larly in unlexicalized parsing.

2.2 Linguistic-motivated Features

In this section, a review of the linguistic motiva-
tion behind the TT features is provided.

Grammatical Weight: Apart from syntactic
categories, linguists have long observed that the
number of words (often referred to as “weight”
or “heaviness”) in a phrase can affect syntactic
processing of sentences (Quirk et al., 1985; Wa-
sow, 1997; Rosenbach, 2005). It corresponds
roughly to the span feature described in Section
3.2. The effect of grammatical weight often
manifests in word order variation. Heavy NP
shift, dative alternation, particle movement and
extraposition in English are canonical examples
where “heavy” chunks get dislocated to the end
of a sentence. In his corpus analysis, Wasow
(1997) found that weight is a very crucial factor
in determining dative alternation. Hawkins
(1994) also argued that due to processing con-
straints, the human syntactic processor tends to
group an incoming stream of words as rapidly
as possible, preferring smaller chunks on the left.

Tree Topology: CFG-based parsing approach
hides the structural properties of the dominated
subtree from the associated syntactic tag. Struc-
tural topology, or tree shape, however, can be
useful in guiding the parser to group tags into
phrases. Structures significantly deviating from
left/right branching, e.g. center embedding, are
much more difficult to process and rare in pro-
duction (Gibson, 1998). Another example is the
resolution of scope ambiguity in coordinate
structures (CSs). CSs are common but notori-
ously difficult to parse due to scope ambiguity
when the conjuncts are complex (Collins, 1999;
Kübler et al., 2009). One good cue to the prob-
lem is that humans prefer CSs with parallel in-
ternal syntactic structures (Frazier et al., 2000).
In a corpus-based study, Dubey et al. (2008)
show that structural repetition across conjuncts
is significantly more frequent. The implication
to parsing is that preference should be given to
bracketing in which conjuncts are structurally
similar. TT information can inform the parser of
the structural properties of phrases.

3 An Ensemble-based Parser

To accommodate a large set of features, we opt
for classifier-based parsing because classifiers

118

can easily handle many features, as pointed out
in Ratnaparkhi (1999). This is different from
chart parsing models popular in many parsers
(e.g. Collins, 2003) which require special statis-
tical modelling. Our parser starts from a string
of POS tags without any hints from words. As
in other similar approaches (Abney 1991; Ram-
shaw & Marcus, 1995; Sang, 2001; Sagae &
Lavie, 2005), the first and the foremost problem
that has to be resolved is to identify the bound-
ary points of phrases, without any explicit
grammar rules. Here we adopt the ensemble
learning technique to unveil boundary points, or
chunking points hereafter. Two heterogeneous
and mutually independent attribute feature sets
are introduced in Section 3.2 and 3.3.

3.1 Basic Architecture of the Parser

Our parser has two modules, namely, a chunker
and a phrase recognizer. The chunker locates
the boundaries of chunks while the phrase rec-
ognizer predicts the non-terminal syntactic tag
of the identified chunks, e.g. NP, VP, etc. In the
chunker, we explore a new approach that aims
at identifying chunk boundaries. Assume that
the input of the chunker is a tag sequence <x0 …
xn … xm> where 0 ≤ n ≤ m. Let yn be the point of
focus between two consecutive tags xn and xn+1.
The chunker classifies all focus points as either
a chunking point or a merging point at the rele-
vant level. A focus point yn is a merging point if
xn and xn+1 are siblings of the same parent node
in the target parse tree. Otherwise, yn is a chunk-
ing point. Consider the tag sequence and the
expected classification of points in the example
below. Chunking points are marked with “%”
and merging points with “+”.

PRP % VBZ % DT % RB + JJ % NN
He is a very nice guy

The point between RB and JJ is a merging
point because they are siblings of the parent
node ADJP in the target parse tree. The point
between DT and RB is a chunking point since
DT and RB are not siblings and do not share the
same parent node. Chunks are defined as the
consecutive tag sequences not split up by %.
When a focus point yn is classified as a chunk-
ing point, it effectively means that no fragment
preceding yn can combine with any fragment
following yn to form a phrase, i.e. a distituent.

Both the chunker and the recognizer are
trained using the Penn Treebank (Marcus et al.,
1993). In addition, we adopt the ensemble tech-
nique to combine two sets of heterogeneous fea-
tures. The method yields a much more accurate
predictive power (Dietterich, 2000). One neces-
sary and sufficient condition for an ensemble of
classifiers to be more accurate than any of its
individual members is that the classifiers must
be diverse. Table 1 summaries the basic ration-
ale of the parser. The two feature sets will be
further explained in Section 3.2 and 3.3.

� Prepare training data from the Treebank based
on topological & information-theoretic features

� Train the chunker and phrase recognizer using
the ensemble technique

� For any input tag sequence l,
WHILE l contains more than one element DO

IDENTIFY the status, + or %, of each focus
point in l

RECOGNIZE the syntactic tag (ST) of each
identified chunk

UPDATE l with the new ST sequence
ENDWHILE

� Display the parse tree
Table 1. Basic rationale of the parser

The learning module acquires the knowledge
encoded in the Penn Treebank to support vari-
ous classification tasks. The input tag sequence
is first fed into the chunker. The phrase recog-
nizer then analyzes the chunker’s output and
assigns non-terminal syntactic tags (e.g. NP, VP,
etc.) to identified chunks. The updated tag se-
quence is fed back to the chunker for processing
at the next level. The iteration continues until a
complete parse is formed.

3.2 Tree Topological Feature Set

Tree topological (TT) features describe the
shape of subtrees quantitatively. Our approach
to addressing this problem involves examining a
set of topological features, without any assump-
tion of the word tokens. They all have been im-
plemented for chunking.

Node Coordinates (NCs): NCs include the level
of focus (LF) and the relative position (RP) of
the target subtree. The level of focus is defined
as the total number of levels under the target
node, with the terminal level inclusive while the
RP indicates the linear position of the target
node in that level. As in Figure 1, the LF for

119

subtree A and B are the same; however, the RP
for subtree A is smaller than that for subtree B.

Span Ratio (SR): The SR is defined as the total
number of terminal nodes spanned under the
target node and is divided by the length of the
sentence. In Figure 1, the span ratio for the tar-
get node VP at subtree B is 5/12. This ratio il-
lustrates not only how many terminal nodes are
covered by the target node, but also how far the
target node is from the root S.

Aspect Ratio (AR): The AR of a target node in a
subtree is defined as the ratio of the total num-
ber of non-terminal nodes involved to the total
number of terminal nodes spanned. The AR is
also indicative of the average branching factor
of the subtree.

Skewness Measure (SM): The SM estimates the
degree to which the subtree leans towards either
left or right. In this research, the SM of a subtree
is evaluated by the distribution of the length of
the paths connecting the target node and each
terminal node it dominates. The length of a path
from a target node V to a terminal node T is the
number of edges between V and T. For a tree
with n terminal nodes, there are n paths. A pivot
is defined as the [n/2]th terminal node when n is
odd and between [n/2]th and [(n+1)/2]th termi-
nal nodes if n is even, where [] is a ceiling
function. The SM is defined as

()

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛ −
=

∑
∑

=

>

3
1

3

0

1

σ

ρ

ρ
ρ

n

i
ii

i

xx
SM

i

 Eqn (1)

where xi is the length of the i-th path pointing to
the i-th terminal node, x and σ are the average
and standard deviation of the length of all paths
at that level of focus (LF). ρi is the distance
measured from the i-th terminal node to the
pivot. The distance is positive if the terminal
node is to the left of the pivot, zero if it is right
at the pivot, and negative if the terminal node is
to the right of the pivot. Obviously, if the
lengths of all paths are the same in the tree, the
numerator of Eqn (1) will be crossed out and the
SM returns to zero. The pivot also provides an
axis of vertical flipping where the SM still holds.
The farther the terminal node from the pivot, the
longer the distance. The distances ρ provide the
moment factors to quantify the skewness of

trees. For illustration, let us consider subtree B
with the target node VP at level of focus (LF) =
4 in Figure 1. Since there are five terminal
nodes, the pivot is at the third node VB. The
lengths of the paths xi from left to right in the
subtree are 1, 2, 3, 4, 4 and the moment factors
ρi for the paths are 2, 1, 0, -1, -2. Assuming that
x and σ for all the trees in the Treebank at
level 4 are, say, 2.9 and 1.2 respectively, then
SM = -3.55. It implies that subtree B under the
target node VP has a strong right branching ten-
dency, even though it has a very uniform
branching factor which is usually defined as the
number of children at each node.

��

��

��

��

��

��

��

��

��

���	
��������	
���
�

�� �� ��� �� ��� �� �� �� �� �� ���

������ �
���
������ ������

�������

�������

�������

������

������!

���
 Figure 1. Two different subtrees in the sentence S

In our parser, to determine whether the two
target nodes at level 4, i.e., NP and VP, should
be merged to form a S at level 5 or not, an at-
tribute vector with TT features for both NP and
VP are devised as a training case. The corre-
sponding target attribute is a binary value, i.e.,
chunking vs. merging. In addition, a set of if-
merged attributes are introduced. For example,
the attribute SM-if-merged indicates the changes
of the SM if both target nodes are merged. This
is particularly helpful since they are predictive
under our bottom-up derivation strategy.

3.3 Information-Theoretic Feature Set

Context features are usually helpful in many
applications of supervised language learning. In
modelling context, one of the most central
methodological concepts is co-occurrence.
While collocation is the probabilistic co-
occurrence of pure word tokens, colligation is
defined as the co-occurrence of word tokens
with grammatical patterning such as POS cate-

120

gories (Hunston, 2001). In this research, to cap-
ture the colligation without word tokens, a slid-
ing window of 6 POS tags at the neighborhood
of the focus point yn is defined as our first set of
context attributes. In addition, we define a set of
information-theoretic (IT) attributes which re-
flect the likelihood of the fragment collocation.
Various adjacent POS fragments around the
focus point yn are constructed, as in Table 2.

xn-2 xn-1 xn xn+1 xn+2 xn+3 Colligation meas.

xn-1 xn d1:ζ(xn-1, xn)

 xn xn+1 d2:ζ(xn, xn+1)

 xn+1 xn+2 d3:ζ(xn+1, xn+2)

xn-2 xn-1 xn d4:ζ(xn-2xn-1, xn)

xn-1 xn xn+1 d5:ζ(xn-1xn, xn+1)

 xn xn+1 xn+2 d6:ζ(xn, xn+1xn+2)

 xn+1 xn+2 xn+3 d7:ζ(xn+1, xn+2xn+3)

Table 2. Colligation as context measure in various adjacent
POS fragments where the focus point yn is between xn and
xn+1

An n-gram is treated as a 2-gram of an n1-
gram and an n2-gram, where n1 + n2 = n
(Magerman & Marcus, 1990). The information-
theoretic function ζ, namely, mutual informa-
tion (MI), quantifies the co-occurrence of frag-
ments. MI compares the probability of observ-
ing n1-gram and n2-gram together to the prob-
ability of observing them by chance (Church &
Hanks, 1989). Here is an example illustrating
the set of attributes. Take the point yn between
RB and JJ in Section 3.1 as an example. d5
represents the MI between (DT RB) and JJ, i.e.
MI(DT/RB, JJ).

3.4 Multiple Classifications using Ensem-
ble Technique

The basic idea of ensemble techniques involves
considering several classification methods or
multiple outputs to reach a decision. An ensem-
ble of classifiers is a set of classifiers whose
individual decisions are combined in some
way, typically by weighted or un-weighted vot-
ing to classify new examples. Empirically
speaking, ensembles methods deliver highly
accurate classifiers by combining less accurate
ones. They tend to yield better results than a
single classifier in those situations when differ-
ent classifiers have different error characteris-

tics and their errors can compensate each other.
Two questions need to be addressed when
building and using an ensemble that integrates
the predictions of several classifiers. First, what
data are used to train the classifiers so that the
errors made by one classifier could be remedied
by the other? Second, how are the individual
classifiers fused or integrated to produce a final
ensemble prediction? As shown in the last two
sections, we address the first question by intro-
ducing two heterogeneous and mutually inde-
pendent attribute feature sets, namely the tree
topological (TT) features and information-
theoretic (IT) features. Instead of training all the
features to form a single giant classifier, we
produce two distinct, sometimes diversified,
training sets of data to form two separate mod-
erate classifiers, in the hope that they will pro-
duce a highly accurate prediction. The second
question is addressed by employing the boosting
algorithm. Boosting is an effective method that
produces a very accurate prediction rule by
combining rough and moderately inaccurate
rules of thumb (Schapire & Singer, 2000). It
generates the classifiers in an iterative way. At
the early beginning, an initial base classifier
using a set of training data with equal weight is
first constructed. When the prediction of the
base classifier differs from the expected out-
come, the weight of the poorly predicted data is
increased to an extent based on their misclassi-
fication rate on the preceding classifiers. As a
result, the learning of the subsequent classifier
will focus on learning the training data that are
misclassified, or poorly predicted. This process
continues until a specified number of iterations
is reached or a predefined termination condition
is met. The ensemble prediction is also a
weighted voting process, where the weight of a
classifier is based on its errors over the training
data used to generate it. The first practical
boosting algorithm, AdaBoost, was introduced
by Freund & Schapire (1997), and solved many
practical difficulties of the earlier boosting algo-
rithms. Table 3 illustrates the main idea of the
algorithm. Interested readers can refer to the
literature for detailed discussion (Freund &
Schapire, 1997; Hastie et al., 2001).

121

Given: (x1, y1),..,(xm, ym) where xi ∈ X, yi ∈ Y = {-1, +1}
Initialize D1(i) = 1/m
For t = 1, …, T

� Train a weak learner using distribution Dt

� Get a weak hypothesis ht : X → {-1, +1} with error
εt = Pri~Dt[ht(xi) ≠ yi]

� Choose ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −=
t

t
t ε

εα 1
ln

2
1

� Update:

Dt+1(i) =
⎩
⎨
⎧

≠
=

×
−

iit

iit

t

t

yxhe

yxhe

Z

iD
t

t

)(if

)(if)(
α

α

=
t

ititt

Z

xhyiD))(exp()(α−

where Zt is a normalization factor

� Output:

 H(x) = ⎟
⎠

⎞
⎜
⎝

⎛∑
=

T

t
tt xh

1

)(sign α

Table 3. Adaboost algorithm

4 Experimental Results

Table 4 presents some sampled statistics of the
skewness measure (SM) of some major phrase
types, which include VP, NP, S, and PP, based
on Sections 2—21 of the Penn Treebank (Mar-
cus et al., 1993).

VP L2-VP L3-VP L4-VP L5-VP
N 18,406 22,052 18,035 15,911
Mean -1.022 -4.454 -4.004 -3.738
S.D. 1.018 1.406 1.438 1.405
tscore 284.085* -31.483* -17.216*
NP L2-NP L3-NP L4-NP L5-NP

N 23,270 28,172 10,827 8,375
Mean 1.013 -1.313 -1.432 -2.171
S.D. 1.284 2.013 1.821 1.628
tscore 158.748* 5.609* 29.614*

S L2-S L3-S L4-S L5-S
N 2,233 5,020 7,049 7,572
Mean 0.688 -1.825 -1.459 -1.517
S.D. 1.229 2.732 2.451 2.128
tscore 54.031* -7.568* 1.523
PP L2-PP L3-PP L4-PP L5-PP

N 53,589 11,329 11,537 5,057
Mean -1.337 -3.322 -3.951 -3.301
S.D. 0.935 1.148 1.112 1.183
tscore 172.352* 42.073* -33.173*
Table 4. SM values for various phrases (* = the mean in
the column is statistically significantly different from the
mean in the immediately following column, with degree of
freedom in all cases greater than 120)

For illustration purpose, the count of Level 2 VP
subtrees, their SM mean and standard deviation

are -1.022 and 1.018 respectively. We
performed t-tests for difference in means be-
tween various levels, even under the same
phrase type. For example, the t score for the
difference in mean between L2-VP and L3-VP
is 284.085, which indicates a strong difference
in SM values between the two levels.

The means of all phrases beyond level 2 are
negative, consistent with the fact that English is
generally a right branching language. When we
compare the SM values across phrase types, it is
easy to notice that VPs and PPs have larger
negative values, meaning that the skewness to
the right is more prominent. Even within the
same phrase type, the SM values may differ sig-
nificantly as one moves from its current level to
parent level. The SM offers an indicator that
differentiates different phrase types with differ-
ent syntactic levels. Chunkers can use this addi-
tional parameter to do chunking better.

Our parsing models were trained and tested
using the Penn Treebank (Marcus et al., 1993).
Following the convention of previous studies,
we pre-processed the trees by removing NULL
elements and functional tags and collapsing
ADVP and PRT into ADVP. Sections 2—21 are
used for training and Section 23 for testing. To
evaluate the contribution of the features, five
different experiments were set up, as in Table 5.

Experiment Features involved
E1 POS tags only (=baseline)
E2 POS+IT
E3 POS+IT+TT (node coordinates only)
E4 POS+TT (with all features)
E5 All features in E3 & E4

Table 5. Parsing features in five experiments

E1 is the baseline experiment with tag fea-
tures only. E2 and E4 include additional IT and
TT features respectively. E3 and E5 are partial
and full mixture of the two feature types. In the
evaluation below, the chunker, phrase recog-
nizer and parser are the same throughout the
five sets of experiments. They only differ in
terms of features used (i.e. E1—E5). We first
study the impact of the feature sets on chunking.
Five chunkers CH1—CH5 are evaluated.

Table 6 shows the training and test errors in
five different chunkers in the respective ex-
periments. All chunkers were trained using the
ensemble-based learning. If one compares CH2
and CH4, it is clear that both IT and TT features

122

enhance sentence chunking but the gain from
TT features (i.e. CH4) is much more substantial.
The best chunkers (CH4 and CH5) reduce the
test error rate from the baseline 4.36% to 3.25%.

Chunkers Training error % Test error %
CH1 1.66 4.36
CH2 1.53 4.32
CH3 0.69 3.79
CH4 0.33 3.25
CH5 0.45 3.25

Table 6. Performance of the five chunkers

Similarly, the phrase recognizer uses ensem-
ble learning to capture the rule patterns. Instead
of reading off the rules straight from a lookup
table, the learning can predict the syntactic tags
even when it encounters rules not covered in the
treebank. Certainly, the learning allows the rec-
ognizer to take into account features more than
just the tags. The error rates in training and test-
ing are 0.09% and 0.68% respectively. The
chunker and the phrase recognizer were assem-
bled to form a parser. The features described in
Table 5 were used to construct five parsers. We
use the PARSEVAL measures to compare the
performance as shown in Table 7.

 R P F CBs 0 CBs �2 CBs
P1 78.9 77.6 78.3 1.6 48.7 76.4
P2 81.9 79.7 80.8 1.5 50.6 78.7
P3 85.1 82.8 83.4 1.4 53.3 80.2
P4 84.1 82.2 83.1 1.5 52.7 78.1
P5 84.7 83.4 84.0 1.3 54.6 80.5
Table 7. Performance of five parsers corresponding to five
different experiments E1—E5

Our baseline parser (P1) actually performs
quite well. With only tag features, it achieves an
F-score of 78.3%. Both IT and TT features can
separately enhance the parsing performance (P2
and P4). However, the gain from TT features
(78.3�83.1%) is much more than that from IT
features (78.3�80.8%). When the two feature
sets are combined, they consistently produce
better results. The best (P5) has an F-score of
84.0%. Even though the test errors in CH4 and
CH5 are the same as shown in Table 6, P5 dem-
onstrates that the cooperative effect of utilizing
TT and IT features and leads to better parsing
results.

5 Discussion

5.1 Tree Topology and Structures

Our study has provided a way to quantitatively
capture linguists’ various insights that tree to-
pology is helpful in syntactic structure building
(e.g. grammatical weight, subtree shape, etc.).
The SM seems to capture the basic right branch-
ing property. It is noteworthy that Collins (2003)
found that the parsing model that can learn the
branching property of structures delivers a much
better parsing performance over the one that
cannot. In our case, chunkers refer to TT fea-
tures to distinguish different phrase types and
levels, and assign chunking points in such a way
that the resulting phrases can be maximally
similar to the trees in the treebank topologically.
Apart from the overall accuracy, one may ask in
what way TT features improve parsing. Here we
provide our preliminary analysis on one syntac-
tic construction that can be benefitted from a
TT-feature-aware parser. The structure is coor-
dinate structures (CSs). A practical cue is that
conjuncts tend to be similar syntactically (and
semantically). TT-feature-aware parsers can
produce more symmetrical conjuncts. All rules
of the form “XP → XP ‘and’ XP” were ex-
tracted from the training data.

NP L3 (-CS) L3-(+CS) L4 (-CS) L4-(+CS)
N 27,950 222 10,222 605
Mean -1.321 -0.397 -1.448 -1.162
S.D. 2.010 2.190 1.806 2.047
tscore -6.266* -3.360*
VP L3 (-CS) L3-(+CS) L4 (-CS) L4-(+CS)
N 21,855 197 17,711 324
Mean -4.488 -0.628 -4.063 -0.793
S.D. 1.350 2.136 1.364 1.676
tscore -25.319* -34.908*
Table 8. TT feature values of coordinate structures (+CS =
node that immediately dominates a CS; -CS otherwise; * =
the mean in the column is statistically significantly differ-
ent from the mean in the immediately following column).

We compared the SM of CS and non-CS phrases
using t-tests for mean difference. The t-score is
calculated based on unequal sample sizes and
unequal variances. As shown in Table 8, we
have to reject the null hypothesis that their
means of the SM, between phrases with and
without a CS, are equal at α = 0.0005 signifi-
cance level. In other words, phrases with and
without a CS are statistically different. +CS
phrases are much more balanced with a smaller
SM value from -0.4 to -1.2. -CS columns gener-
ally have a much larger SM value, ranging from

123

-1.321 to -4.488. The SM offers information for
the chunkers to avoid over- or under-chunking
conjuncts in phrases with a coordination marker
(e.g. ‘and’).

5.2 Implications to Parsing

The findings in Section 4 indicate that the pre-
sented initial version of the unlexicalized parser
performs on a par with the first generation lexi-
calized parsers (e.g. Magerman, 1995). The
promising results have two implications. First,
the integration of IT and TT features produces
substantial gain over the baseline model. TT
features consistently outperform IT features by
a noticeable margin. To the best of our knowl-
edge, TT features have not been systematically
investigated in parsing before. The effectiveness
of these new features suggests that in addition to
improving algorithms, practitioners should not
overlook the development of new features.
Second, the implementation of TT and IT fea-
tures is simple and relatively computationally
inexpensive. No extra resources or complicated
algorithms are needed to compute TT features.
Most importantly, they are suitable to the strin-
gent requirements of unlexicalized parsing in
which no word token information is allowed.
The features can be added to other parsers rela-
tively easily without substantial changes.

5.3 Further Work

The reported parsing results pertain to the initial
version of the parser. There is still room for fur-
ther improvement. First, it would be interesting
to integrate TT features in combination with
other design features (e.g. rule splitting) into the
unlexicalized parser to enhance the results.
Moreover, TT features is likely to enhance lexi-
calized parsers too. Second, more detailed
analysis of TT features can be conducted in dif-
ferent syntactic constructions. It is quite possi-
ble that TT features are more useful to some
syntactic structures than others. TT features
seem to be good cues for identifying CSs. It is
possible to compare the outputs from parsers
with and without TT features (e.g. P1 vs. P4).
The contribution of TT features towards specific
constructions can be estimated empirically.
Third, an insight from Collins (2003) is that
head words and their POS tags in lexicalized

parsing can improve parsing. In unlexicalized
models, one can use the head POS tag alone to
approximate similar mechanism.

6 Conclusion

This paper has demonstrated that TT features
give rise to substantial gain in our classifier-
based unlexicalized parser. The IT features have
been explored as well, though the performance
gain is more moderate. TT features can be inex-
pensively computed and flexibly incorporated
into different types of parsers. Our parsing
model matches early lexicalized parsing models
in performance, and has good potential to do
even better with adjustment and optimization.
The statistical analysis of the treebank shows
that TT features are effective in capturing basic
linguistic properties, such as grammatical
weight and branching direction, which are over-
looked in previous studies of parsing. We have
also hinted how TT features may have reduced
chunking errors of CSs by producing balanced
conjuncts. Though the present study focuses on
unlexicalized parsing, it is likely that TT fea-
tures can contribute to accuracy enhancement in
other parsing models as well.

Acknowledgments

The work described in this paper was partially
supported by the grants from the Research
Grants Council of the Hong Kong Special Ad-
ministrative Region, China (Project Nos.
CUHK440607 and CUHK440609). We also
thank Henry Lee, our computer officer, for his
network support during the experiments.

References

Abney, Steven. 1991. Parsing by Chunks. In Ber-
wick, R., Abney, S., Tenny, C. (eds.), Principle-
Based Parsing. Kluwer Academic.

Agirre, Eneko, Timothy Baldwin, and David Marti-
nez. 2008. Improving Parsing and PP Attachment
Performance with Sense Information. In Proceed-
ings of the 46th Annual Meeting of the Human
Language Technology Conference (HLT’08).

Black, Ezra, Frederick Jelinek, John Lafferty, David
Magerman, Robert Mercer, and Salim Roukos.
1992. Towards History-based Grammars: Using
Richer Models for Probabilistic Parsing. In Pro-
ceedings of the 5th DARPA Speech and Natural
Language Workshop.

124

Charniak, Eugene. 2000. A Maximum-Entropy-
Inspired Parser. In Proceedings of the 1st Meeting
of the North American Chapter of the Association
of Computational Linguistics.

Church, Kenneth. and Patrick Hanks. 1989. Word
Association Norms, Mutual Information and Lexi-
cography. In Proceedings of the Association for
Computational Linguistics 27.

Collins, Michael. 1999. Head-driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania, Philadelphia.

Collins, Michael. 2003. Head-Driven Statistical
Models for Natural Language Parsing. Computa-
tional Linguistics 29 (4): 589—637.

Dieterich, Thomas G. 2000. Ensemble Methods in
Machine Learning. Lecture Notes in Computer
Science, v.1857.

Dubey, Amit, Frank Keller, and Patrick Sturt. 2008
A Probabilistic Corpus-based Model of Syntactic
Parallelism. Cognition 109 (3): 326-344.

Frazier, Lyn, Alan Munn and Charles Clifton 2000.
Processing Coordinate Structures. Journal of Psy-
cholinguistic Research 29 (4): 343—370.

Freund, Yoav and Robert E. Schapire. 1997. A Deci-
sion-Theoretic Generalization of On-line Learning
and an Application to Boosting. Journal of Com-
puter and System Sciences 55 (1): 119—139.

Gibson, Edward. 1998. Linguistic Complexity: Lo-
cality of Syntactic Dependencies. Cognition 68
(1): 1—76.

Gildea, Daniel. 2001. Corpus Variation and Parser
Performance. In Proceedings of 2001 Conference
on Empirical Methods in Natural Language Proc-
essing (EMNLP).

Hastie, Trevor, Robert Tibshirani and Jerome Fried-
man. 2001. The Elements of Statistical Learning.
Springer.

Hawkins, John. 1994. A Performance Theory of Or-
der and Constituency. Cambridge Univ. Press.

Hunston, Susan. 2001. Colligation, Lexis, Pattern,
and Text. In M. Scott and G. Thompson. (ed.),
Patterns of Text: In Honour of Michael Hoey.
Amsterdam, Philadelphia: John Benjamins.

Klein, Dan, and Christopher Manning. 2003. Accu-
rate Unlexicalized Parsing. In Proceedings of the
41st Meeting of the Association for Computa-
tional Linguistics.

Kübler, Sandra, Ryan McDonald, and Joakim Nivre.
2009. Dependency Parsing. Morgan & Claypool
Publishers.

Magerman, David. 1995. Statistical Decision-tree
Models for Parsing. In Proceedings of the 33rd
Annual Meeting on Association for Computational
Linguistics.

Magerman, David, and Mitchell Marcus. 1990. Pars-
ing a Natural Language Using Mutual Information
Statistics. In Proceedings of 8th National Confer-
ence on Artificial Intelligence (AAAI-90).

Marcus, Mitchell, Beatrice. Santorini, and Mary
Marcinkiewicz 1993. Building a Large Annotated
Corpus of English: the Penn Treebank. Computa-
tional Linguistics 19 (2): 313—330.

Petrov, Slav, and Dan Klein. 2007. Learning and
Inference for Hierarchically Split PCFGs. In Pro-
ceedings of the 22nd Conference on Artificial In-
telligence.

Quirk, Randolph, Sidney Greenbaum, Geoffrey
Leech, and Jan Svartvik. 1985. A Grammar of
Contemporary English. London: Longman.

Ramshaw, Lance A., and Mitchell P. Marcus. 1995.
Text Chunking Using Transformation-based
Learning. In Proceedings of the 3rd Workshop on
Very Large Corpora.

Ratnaparkhi, Adwait. 1999. Learning to Parse Natu-
ral Language with Maximum Entropy Models.
Machine Learning 34 (1-3): 151—175.

Rosenbach, Anette. 2005. Animacy versus Weight as
Determinants of Grammatical Variation in Eng-
lish. Language 81 (3): 613-644.

Sagae, Kenji, and Alon Lavie. 2005. A Classifier-
Based Parser with Linear Run-Time Complexity.
In Proceedings of the Ninth International Work-
shop on Parsing Technologies (IWPT).

Sang, Erik. 2001. Transforming a Chunker to a
Parser. In J. Veenstra, W. Daelemans, K. Sima‘an,
J. Zavrel (eds.), Computational Linguistics in the
Netherlands 2000.

Schapire, Robert E., & Yoram Singer. 2000. BoosT-
exter: A Boosting-based System for Text Catego-
rization. Machine Learning 39 (2-3): 135—168.

Stetina, Jiri, and Nagao, Makoto. 1997. Corpus-
based PP Attachment Ambiguity Resolution with
a Semantic Dictionary. In Proceedings of the 5th
Workshop on Very Large Corpora.

Wasow, Thomas. 1997. Remarks on Grammatical
Weight. Language Variation and Change 9: 81—
105.

125

