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Abstract 

As unlexicalized parsing lacks word to-
ken information, it is important to inves-
tigate novel parsing features to improve 
the accuracy. This paper studies a set of 
tree topological (TT) features. They 
quantitatively describe the tree shape 
dominated by each non-terminal node. 
The features are useful in capturing lin-
guistic notions such as grammatical 
weight and syntactic branching, which 
are factors important to syntactic proc-
essing but overlooked in the parsing lit-
erature. By using an ensemble classifier-
based model, TT features can signifi-
cantly improve the parsing accuracy of 
our unlexicalized parser. Further, the 
ease of estimating TT feature values 
makes them easy to be incorporated into 
virtually any mainstream parsers.  

1 Introduction 

Many state-of-the-art parsers work with lexical-
ized parsing models that utilize the information 
and statistics of word tokens (Magerman, 1995; 
Collins, 1999, 2003; Charniak, 2000). The per-
formance of lexicalized models is susceptible to 
vocabulary variation as lexical statistics is often 
corpus-specific (Ratnaparkhi, 1999; Gildea, 
2001). As parsers are typically evaluated using 
the Penn Treebank (Marcus et al., 1993), which 
is based on financial news, the problems of 
lexicalized parsing could easily be overlooked. 
Unlexicalized models, on the other hand, are 
less sensitive to lexical variation and are more 
portable across domains. Though the perform-
ance of unlexicalized models was believed not 
to exceed that of lexicalized models (Klein & 

Manning, 2003), Petrov & Klein (2007) show 
that unlexicalized parsers can match lexicalized 
parsers in performance using the grammar rule 
splitting technique. Given the practical advan-
tages and the latest development, unlexicalized 
parsing deserves further scrutiny.  

A profitable direction of research on unlexi-
calized parsing is to investigate novel parsing 
features. This paper examines a set of what we 
call tree topological (TT) features, including 
phrase span, phrase height, tree skewness, etc. 
This study is motivated by the fact that conven-
tional parsers rarely consider the shape of 
subtrees dominated by these nodes and rely 
primarily on matching tags. As a result, an NP 
with a complicated structure is treated the same 
as an NP that dominates only one word. How-
ever, our study shows that TT features are use-
ful predictors of phrase boundaries, a critical 
ambiguity resolution issue. TT features have 
two more advantages. First, TT features capture 
linguistic properties, such as branching and 
grammatical “heaviness”, across different syn-
tactic structures. Second, they are easily com-
putable without the need for extra language re-
sources.  

The organization of the paper is as follows. 
Section 2 reviews the features commonly used 
in parsing. Section 3 provides the details of TT 
features in the unlexicalized parser. The parser 
is evaluated in Section 4. In Section 5, we 
discuss the effectiveness and advantages of TT 
features in parsing and possible enhancement. 
This is followed by a conclusion in Section 6. 

2 Related Work 

2.1 Parsing Features 

This section reviews major types of information 
in parsing.  
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Tags: The dominant types of information that 
drive parsing and chunking algorithms are 
POS/syntactic tags, context-free grammar (CFG) 
rules, and their statistical properties. Matching 
tags against CFG rules to form phrases is central 
to all basic parsing algorithms such as Cocke-
Kasami-Younger (CKY) algorithm, and the Ear-
ley algorithm, and the chart parsing.  

Word Token-based: Machine learning and sta-
tistical modelling emerged in the 90s as an ideal 
computational approach to feature-rich parsing. 
Classifiers can typically capitalize on a large set 
of features in decision making. Magerman 
(1995), Ratnaparkh (1999) and Charniak (2000) 
used classifiers to model dependencies between 
word pairs. They popularized the use word to-
kens as attributes in lexicalized parsing. Collins 
(1999, 2003) also integrated information like 
head word and distance from head into the sta-
tistical model to enhance probabilistic chart 
parsing. Since then, word tokens, head words 
and their statistical derivatives have become 
standard features in many parsers. Word token 
information is also fundamental to dependency 
parsing (Kübler et al., 2009) because depend-
ency grammar is rooted in the idea that the head 
and the dependent word are related by different 
dependency relations.  

Semantic-based: Some efforts have also been 
made to consider semantic features, such as 
sense tags, in parsing. Words are first tagged 
with semantic classes, often using WordNet-
based resources. The lexical semantic class can 
be instructive to the selection of the correct 
parse from a set of candidate structures. It has 
been reported that the lexical semantics of 
words is effective in resolving structural ambi-
guity, especially PP-attachment (Black et al., 
1992; Stetina & Nagao, 1997; Agirre et al., 
2008). Nevertheless, the use of semantic fea-
tures has still been relatively rare. They incur 
overheads in acquiring semantic language re-
sources, such as sense-tagged corpora and 
WordNet databases. Semantic-based parsing 
also requires accurate sense-tagging.  

Since substantial gain from tag features is 
unlikely in the near future and deriving seman-
tic features is often a tremendous task, there is a 
pressing need to seek for new features, particu-
larly in unlexicalized parsing. 

2.2 Linguistic-motivated Features 

In this section, a review of the linguistic motiva-
tion behind the TT features is provided. 

Grammatical Weight: Apart from syntactic 
categories, linguists have long observed that the 
number of words (often referred to as “weight” 
or “heaviness”) in a phrase can affect syntactic 
processing of sentences (Quirk et al., 1985; Wa-
sow, 1997; Rosenbach, 2005). It corresponds 
roughly to the span feature described in Section 
3.2. The effect of grammatical weight often 
manifests in word order variation. Heavy NP 
shift, dative alternation, particle movement and 
extraposition in English are canonical examples 
where “heavy” chunks get dislocated to the end 
of a sentence. In his corpus analysis, Wasow 
(1997) found that weight is a very crucial factor 
in determining dative alternation. Hawkins 
(1994) also argued that due to processing con-
straints, the human syntactic processor tends to 
group an incoming stream of words as rapidly 
as possible, preferring smaller chunks on the left.

Tree Topology: CFG-based parsing approach 
hides the structural properties of the dominated 
subtree from the associated syntactic tag. Struc-
tural topology, or tree shape, however, can be 
useful in guiding the parser to group tags into 
phrases. Structures significantly deviating from 
left/right branching, e.g. center embedding, are 
much more difficult to process and rare in pro-
duction (Gibson, 1998). Another example is the 
resolution of scope ambiguity in coordinate 
structures (CSs). CSs are common but notori-
ously difficult to parse due to scope ambiguity 
when the conjuncts are complex (Collins, 1999; 
Kübler et al., 2009). One good cue to the prob-
lem is that humans prefer CSs with parallel in-
ternal syntactic structures (Frazier et al., 2000). 
In a corpus-based study, Dubey et al. (2008) 
show that structural repetition across conjuncts 
is significantly more frequent. The implication 
to parsing is that preference should be given to 
bracketing in which conjuncts are structurally 
similar. TT information can inform the parser of 
the structural properties of phrases.  

3 An Ensemble-based Parser 

To accommodate a large set of features, we opt 
for classifier-based parsing because classifiers 
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can easily handle many features, as pointed out 
in Ratnaparkhi (1999). This is different from 
chart parsing models popular in many parsers 
(e.g. Collins, 2003) which require special statis-
tical modelling. Our parser starts from a string 
of POS tags without any hints from words. As 
in other similar approaches (Abney 1991; Ram-
shaw & Marcus, 1995; Sang, 2001; Sagae & 
Lavie, 2005), the first and the foremost problem 
that has to be resolved is to identify the bound-
ary points of phrases, without any explicit 
grammar rules. Here we adopt the ensemble 
learning technique to unveil boundary points, or 
chunking points hereafter. Two heterogeneous 
and mutually independent attribute feature sets 
are introduced in Section 3.2 and 3.3.   

3.1 Basic Architecture of the Parser 

Our parser has two modules, namely, a chunker 
and a phrase recognizer. The chunker locates 
the boundaries of chunks while the phrase rec-
ognizer predicts the non-terminal syntactic tag 
of the identified chunks, e.g. NP, VP, etc. In the 
chunker, we explore a new approach that aims 
at identifying chunk boundaries. Assume that 
the input of the chunker is a tag sequence <x0 … 
xn … xm> where 0 ≤ n ≤ m. Let yn be the point of 
focus between two consecutive tags xn and xn+1. 
The chunker classifies all focus points as either 
a chunking point or a merging point at the rele-
vant level. A focus point yn is a merging point if 
xn and xn+1 are siblings of the same parent node 
in the target parse tree. Otherwise, yn is a chunk-
ing point. Consider the tag sequence and the 
expected classification of points in the example 
below. Chunking points are marked with “%” 
and merging points with “+”. 

PRP % VBZ % DT % RB   +  JJ  % NN 
He    is    a    very    nice  guy  

The point between RB and JJ is a merging 
point because they are siblings of the parent 
node ADJP in the target parse tree. The point 
between DT and RB is a chunking point since 
DT and RB are not siblings and do not share the 
same parent node. Chunks are defined as the 
consecutive tag sequences not split up by %. 
When a focus point yn is classified as a chunk-
ing point, it effectively means that no fragment 
preceding yn can combine with any fragment 
following yn to form a phrase, i.e. a distituent.  

Both the chunker and the recognizer are 
trained using the Penn Treebank (Marcus et al., 
1993). In addition, we adopt the ensemble tech-
nique to combine two sets of heterogeneous fea-
tures. The method yields a much more accurate 
predictive power (Dietterich, 2000). One neces-
sary and sufficient condition for an ensemble of 
classifiers to be more accurate than any of its 
individual members is that the classifiers must 
be diverse. Table 1 summaries the basic ration-
ale of the parser. The two feature sets will be 
further explained in Section 3.2 and 3.3.  

� Prepare training data from the Treebank based 
on topological & information-theoretic features 

� Train the chunker and phrase recognizer using 
the ensemble technique 

� For any input tag sequence l,  
WHILE l contains more than one element DO 

IDENTIFY the status, + or %, of each focus 
point in l

RECOGNIZE the syntactic tag (ST) of each 
identified chunk 

UPDATE l with the new ST sequence
ENDWHILE 

� Display the parse tree 
Table 1. Basic rationale of the parser 

The learning module acquires the knowledge 
encoded in the Penn Treebank to support vari-
ous classification tasks. The input tag sequence 
is first fed into the chunker. The phrase recog-
nizer then analyzes the chunker’s output and 
assigns non-terminal syntactic tags (e.g. NP, VP, 
etc.) to identified chunks. The updated tag se-
quence is fed back to the chunker for processing 
at the next level. The iteration continues until a 
complete parse is formed. 

3.2 Tree Topological Feature Set 

Tree topological (TT) features describe the 
shape of subtrees quantitatively. Our approach 
to addressing this problem involves examining a 
set of topological features, without any assump-
tion of the word tokens. They all have been im-
plemented for chunking.  

Node Coordinates (NCs): NCs include the level 
of focus (LF) and the relative position (RP) of 
the target subtree. The level of focus is defined 
as the total number of levels under the target 
node, with the terminal level inclusive while the 
RP indicates the linear position of the target 
node in that level. As in Figure 1, the LF for 
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subtree A and B are the same; however, the RP
for subtree A is smaller than that for subtree B.  

Span Ratio (SR): The SR is defined as the total 
number of terminal nodes spanned under the 
target node and is divided by the length of the 
sentence. In Figure 1, the span ratio for the tar-
get node VP at subtree B is 5/12. This ratio il-
lustrates not only how many terminal nodes are 
covered by the target node, but also how far the 
target node is from the root S.  

Aspect Ratio (AR): The AR of a target node in a 
subtree is defined as the ratio of the total num-
ber of non-terminal nodes involved to the total 
number of terminal nodes spanned. The AR is 
also indicative of the average branching factor 
of the subtree.  

Skewness Measure (SM): The SM estimates the 
degree to which the subtree leans towards either 
left or right. In this research, the SM of a subtree 
is evaluated by the distribution of the length of 
the paths connecting the target node and each 
terminal node it dominates. The length of a path 
from a target node V to a terminal node T is the 
number of edges between V and T. For a tree 
with n terminal nodes, there are n paths. A pivot 
is defined as the [n/2]th terminal node when n is 
odd and between [n/2]th and [(n+1)/2]th termi-
nal nodes if n is even, where [ ] is a ceiling 
function. The SM is defined as  
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          Eqn (1) 

where xi is the length of the i-th path pointing to 
the i-th terminal node, x and σ are the average 
and standard deviation of the length of all paths 
at that level of focus (LF). ρi is the distance 
measured from the i-th terminal node to the 
pivot. The distance is positive if the terminal 
node is to the left of the pivot, zero if it is right 
at the pivot, and negative if the terminal node is 
to the right of the pivot. Obviously, if the 
lengths of all paths are the same in the tree, the 
numerator of Eqn (1) will be crossed out and the 
SM returns to zero. The pivot also provides an 
axis of vertical flipping where the SM still holds. 
The farther the terminal node from the pivot, the 
longer the distance. The distances ρ provide the 
moment factors to quantify the skewness of 

trees. For illustration, let us consider subtree B
with the target node VP at level of focus (LF) = 
4 in Figure 1. Since there are five terminal 
nodes, the pivot is at the third node VB. The 
lengths of the paths xi from left to right in the 
subtree are 1, 2, 3, 4, 4 and the moment factors 
ρi for the paths are 2, 1, 0, -1, -2. Assuming that 
x and σ for all the trees in the Treebank at 
level 4 are, say, 2.9 and 1.2 respectively, then 
SM = -3.55. It implies that subtree B under the 
target node VP has a strong right branching ten-
dency, even though it has a very uniform 
branching factor which is usually defined as the 
number of children at each node. 
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 Figure 1. Two different subtrees in the sentence S

In our parser, to determine whether the two 
target nodes at level 4, i.e., NP and VP, should 
be merged to form a S at level 5 or not, an at-
tribute vector with TT features for both NP and 
VP are devised as a training case. The corre-
sponding target attribute is a binary value, i.e., 
chunking vs. merging. In addition, a set of if-
merged attributes are introduced. For example, 
the attribute SM-if-merged indicates the changes 
of the SM if both target nodes are merged. This 
is particularly helpful since they are predictive 
under our bottom-up derivation strategy.  

3.3 Information-Theoretic Feature Set 

Context features are usually helpful in many 
applications of supervised language learning. In 
modelling context, one of the most central 
methodological concepts is co-occurrence. 
While collocation is the probabilistic co-
occurrence of pure word tokens, colligation is 
defined as the co-occurrence of word tokens 
with grammatical patterning such as POS cate-
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gories (Hunston, 2001). In this research, to cap-
ture the colligation without word tokens, a slid-
ing window of 6 POS tags at the neighborhood 
of the focus point yn is defined as our first set of 
context attributes. In addition, we define a set of 
information-theoretic (IT) attributes which re-
flect the likelihood of the fragment collocation. 
Various adjacent POS fragments around the 
focus point yn are constructed, as in Table 2.  

xn-2 xn-1 xn xn+1 xn+2 xn+3 Colligation meas.

xn-1 xn   d1:ζ(xn-1, xn) 

  xn xn+1 d2:ζ(xn, xn+1) 

   xn+1 xn+2 d3:ζ(xn+1, xn+2) 

xn-2 xn-1 xn   d4:ζ(xn-2xn-1, xn) 

xn-1 xn xn+1 d5:ζ(xn-1xn, xn+1) 

  xn xn+1 xn+2 d6:ζ(xn, xn+1xn+2) 

   xn+1 xn+2 xn+3 d7:ζ(xn+1, xn+2xn+3) 

Table 2. Colligation as context measure in various adjacent 
POS fragments where the focus point yn is between xn and 
xn+1  

An n-gram is treated as a 2-gram of an n1-
gram and an n2-gram, where n1 + n2 = n
(Magerman & Marcus, 1990). The information-
theoretic function ζ, namely, mutual informa-
tion (MI), quantifies the co-occurrence of frag-
ments. MI compares the probability of observ-
ing n1-gram and n2-gram together to the prob-
ability of observing them by chance (Church & 
Hanks, 1989). Here is an example illustrating 
the set of attributes. Take the point yn between 
RB and JJ in Section 3.1 as an example. d5 
represents the MI between (DT RB) and JJ, i.e. 
MI(DT/RB, JJ). 

3.4 Multiple Classifications using Ensem-
ble Technique 

The basic idea of ensemble techniques involves 
considering several classification methods or 
multiple outputs to reach a decision. An ensem-
ble of classifiers is a set of classifiers whose 
individual decisions are combined in some 
way, typically by weighted or un-weighted vot-
ing to classify new examples. Empirically 
speaking, ensembles methods deliver highly 
accurate classifiers by combining less accurate 
ones. They tend to yield better results than a 
single classifier in those situations when differ-
ent classifiers have different error characteris-

tics and their errors can compensate each other. 
Two questions need to be addressed when 
building and using an ensemble that integrates 
the predictions of several classifiers. First, what 
data are used to train the classifiers so that the 
errors made by one classifier could be remedied 
by the other? Second, how are the individual 
classifiers fused or integrated to produce a final 
ensemble prediction? As shown in the last two 
sections, we address the first question by intro-
ducing two heterogeneous and mutually inde-
pendent attribute feature sets, namely the tree 
topological (TT) features and information-
theoretic (IT) features. Instead of training all the 
features to form a single giant classifier, we 
produce two distinct, sometimes diversified, 
training sets of data to form two separate mod-
erate classifiers, in the hope that they will pro-
duce a highly accurate prediction. The second 
question is addressed by employing the boosting 
algorithm. Boosting is an effective method that 
produces a very accurate prediction rule by 
combining rough and moderately inaccurate 
rules of thumb (Schapire & Singer, 2000). It 
generates the classifiers in an iterative way. At 
the early beginning, an initial base classifier 
using a set of training data with equal weight is 
first constructed. When the prediction of the 
base classifier differs from the expected out-
come, the weight of the poorly predicted data is 
increased to an extent based on their misclassi-
fication rate on the preceding classifiers. As a 
result, the learning of the subsequent classifier 
will focus on learning the training data that are 
misclassified, or poorly predicted. This process 
continues until a specified number of iterations 
is reached or a predefined termination condition 
is met. The ensemble prediction is also a 
weighted voting process, where the weight of a 
classifier is based on its errors over the training 
data used to generate it. The first practical 
boosting algorithm, AdaBoost, was introduced 
by Freund & Schapire (1997), and solved many 
practical difficulties of the earlier boosting algo-
rithms. Table 3 illustrates the main idea of the 
algorithm. Interested readers can refer to the 
literature for detailed discussion (Freund & 
Schapire, 1997; Hastie et al., 2001). 
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Given: (x1, y1),..,(xm, ym) where xi ∈ X, yi ∈ Y = {-1, +1}
Initialize D1(i) = 1/m
For t = 1, …, T

� Train a weak learner using distribution Dt 

� Get a weak hypothesis ht : X → {-1, +1} with error  
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Table 3. Adaboost algorithm 

4 Experimental Results 

Table 4 presents some sampled statistics of the 
skewness measure (SM) of some major phrase 
types, which include VP, NP, S, and PP, based 
on Sections 2—21 of the Penn Treebank (Mar-
cus et al., 1993).  

VP L2-VP L3-VP L4-VP L5-VP
N 18,406 22,052 18,035 15,911
Mean -1.022 -4.454 -4.004 -3.738
S.D. 1.018 1.406 1.438 1.405
tscore  284.085* -31.483* -17.216* 
NP L2-NP L3-NP L4-NP L5-NP

N 23,270 28,172 10,827 8,375
Mean 1.013 -1.313 -1.432 -2.171
S.D. 1.284 2.013 1.821 1.628
tscore  158.748* 5.609* 29.614* 

S L2-S L3-S L4-S L5-S 
N 2,233 5,020 7,049 7,572
Mean 0.688 -1.825 -1.459 -1.517
S.D. 1.229 2.732 2.451 2.128
tscore  54.031* -7.568* 1.523 
PP L2-PP L3-PP L4-PP L5-PP

N 53,589 11,329 11,537 5,057
Mean -1.337 -3.322 -3.951 -3.301
S.D. 0.935 1.148 1.112 1.183
tscore  172.352* 42.073* -33.173* 
Table 4. SM values for various phrases (* = the mean in 
the column is statistically significantly different from the 
mean in the immediately following column, with degree of 
freedom in all cases greater than 120) 

For illustration purpose, the count of Level 2 VP
subtrees, their SM mean and standard deviation 

are -1.022 and 1.018 respectively. We 
performed t-tests for difference in means be-
tween various levels, even under the same 
phrase type. For example, the t score for the 
difference in mean between L2-VP and L3-VP
is 284.085, which indicates a strong difference 
in SM values between the two levels.  

The means of all phrases beyond level 2 are 
negative, consistent with the fact that English is 
generally a right branching language. When we 
compare the SM values across phrase types, it is 
easy to notice that VPs and PPs have larger 
negative values, meaning that the skewness to 
the right is more prominent. Even within the 
same phrase type, the SM values may differ sig-
nificantly as one moves from its current level to 
parent level. The SM offers an indicator that 
differentiates different phrase types with differ-
ent syntactic levels. Chunkers can use this addi-
tional parameter to do chunking better. 

Our parsing models were trained and tested 
using the Penn Treebank (Marcus et al., 1993). 
Following the convention of previous studies, 
we pre-processed the trees by removing NULL
elements and functional tags and collapsing 
ADVP and PRT into ADVP. Sections 2—21 are 
used for training and Section 23 for testing. To 
evaluate the contribution of the features, five 
different experiments were set up, as in Table 5.  

Experiment Features involved 
E1 POS tags only (=baseline) 
E2 POS+IT 
E3 POS+IT+TT (node coordinates only)
E4 POS+TT (with all features) 
E5 All features in E3 & E4 

Table 5.  Parsing features in five experiments 

E1 is the baseline experiment with tag fea-
tures only. E2 and E4 include additional IT and 
TT features respectively. E3 and E5 are partial 
and full mixture of the two feature types. In the 
evaluation below, the chunker, phrase recog-
nizer and parser are the same throughout the 
five sets of experiments. They only differ in 
terms of features used (i.e. E1—E5). We first 
study the impact of the feature sets on chunking. 
Five chunkers CH1—CH5 are evaluated. 

Table 6 shows the training and test errors in 
five different chunkers in the respective ex-
periments. All chunkers were trained using the 
ensemble-based learning. If one compares CH2 
and CH4, it is clear that both IT and TT features 
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enhance sentence chunking but the gain from 
TT features (i.e. CH4) is much more substantial. 
The best chunkers (CH4 and CH5) reduce the 
test error rate from the baseline 4.36% to 3.25%. 

Chunkers Training error % Test error % 
CH1 1.66 4.36 
CH2 1.53 4.32 
CH3 0.69 3.79 
CH4 0.33 3.25 
CH5 0.45 3.25 

Table 6.  Performance of the five chunkers 

Similarly, the phrase recognizer uses ensem-
ble learning to capture the rule patterns. Instead 
of reading off the rules straight from a lookup 
table, the learning can predict the syntactic tags 
even when it encounters rules not covered in the 
treebank. Certainly, the learning allows the rec-
ognizer to take into account features more than 
just the tags. The error rates in training and test-
ing are 0.09% and 0.68% respectively. The 
chunker and the phrase recognizer were assem-
bled to form a parser. The features described in 
Table 5 were used to construct five parsers. We 
use the PARSEVAL measures to compare the 
performance as shown in Table 7. 

 R P F CBs 0 CBs �2 CBs
P1 78.9 77.6 78.3 1.6 48.7 76.4 
P2 81.9 79.7 80.8 1.5 50.6 78.7 
P3 85.1 82.8 83.4 1.4 53.3 80.2 
P4 84.1 82.2 83.1 1.5 52.7 78.1 
P5 84.7 83.4 84.0 1.3 54.6 80.5 
Table 7.  Performance of five parsers corresponding to five 
different experiments E1—E5 

Our baseline parser (P1) actually performs 
quite well. With only tag features, it achieves an 
F-score of 78.3%. Both IT and TT features can 
separately enhance the parsing performance (P2 
and P4). However, the gain from TT features 
(78.3�83.1%) is much more than that from IT 
features (78.3�80.8%). When the two feature 
sets are combined, they consistently produce 
better results. The best (P5) has an F-score of 
84.0%. Even though the test errors in CH4 and 
CH5 are the same as shown in Table 6, P5 dem-
onstrates that the cooperative effect of utilizing 
TT and IT features and leads to better parsing 
results. 

5 Discussion 

5.1 Tree Topology and Structures 

Our study has provided a way to quantitatively 
capture linguists’ various insights that tree to-
pology is helpful in syntactic structure building 
(e.g. grammatical weight, subtree shape, etc.). 
The SM seems to capture the basic right branch-
ing property. It is noteworthy that Collins (2003) 
found that the parsing model that can learn the 
branching property of structures delivers a much 
better parsing performance over the one that 
cannot. In our case, chunkers refer to TT fea-
tures to distinguish different phrase types and 
levels, and assign chunking points in such a way 
that the resulting phrases can be maximally 
similar to the trees in the treebank topologically.
Apart from the overall accuracy, one may ask in 
what way TT features improve parsing. Here we 
provide our preliminary analysis on one syntac-
tic construction that can be benefitted from a 
TT-feature-aware parser. The structure is coor-
dinate structures (CSs). A practical cue is that 
conjuncts tend to be similar syntactically (and 
semantically). TT-feature-aware parsers can 
produce more symmetrical conjuncts. All rules 
of the form “XP → XP ‘and’ XP” were ex-
tracted from the training data.  

NP L3 (-CS) L3-(+CS) L4 (-CS) L4-(+CS)
N 27,950 222 10,222 605
Mean -1.321 -0.397 -1.448 -1.162
S.D. 2.010 2.190 1.806 2.047
tscore  -6.266* -3.360*
VP L3 (-CS) L3-(+CS) L4 (-CS) L4-(+CS)
N 21,855 197 17,711 324
Mean -4.488 -0.628 -4.063 -0.793
S.D. 1.350 2.136 1.364 1.676
tscore  -25.319* -34.908*
Table 8. TT feature values of coordinate structures (+CS = 
node that immediately dominates a CS; -CS otherwise; * = 
the mean in the column is statistically significantly differ-
ent from the mean in the immediately following column). 

We compared the SM of CS and non-CS phrases 
using t-tests for mean difference. The t-score is 
calculated based on unequal sample sizes and 
unequal variances. As shown in Table 8, we 
have to reject the null hypothesis that their 
means of the SM, between phrases with and 
without a CS, are equal at α = 0.0005 signifi-
cance level. In other words, phrases with and 
without a CS are statistically different. +CS
phrases are much more balanced with a smaller 
SM value from -0.4 to -1.2. -CS columns gener-
ally have a much larger SM value, ranging from 
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-1.321 to -4.488. The SM offers information for 
the chunkers to avoid over- or under-chunking 
conjuncts in phrases with a coordination marker 
(e.g. ‘and’).

5.2 Implications to Parsing 

The findings in Section 4 indicate that the pre-
sented initial version of the unlexicalized parser 
performs on a par with the first generation lexi-
calized parsers (e.g. Magerman, 1995). The 
promising results have two implications. First, 
the integration of IT and TT features produces 
substantial gain over the baseline model. TT 
features consistently outperform IT features by 
a noticeable margin. To the best of our knowl-
edge, TT features have not been systematically 
investigated in parsing before. The effectiveness 
of these new features suggests that in addition to 
improving algorithms, practitioners should not 
overlook the development of new features. 
Second, the implementation of TT and IT fea-
tures is simple and relatively computationally 
inexpensive. No extra resources or complicated 
algorithms are needed to compute TT features. 
Most importantly, they are suitable to the strin-
gent requirements of unlexicalized parsing in 
which no word token information is allowed. 
The features can be added to other parsers rela-
tively easily without substantial changes.  

5.3 Further Work 

The reported parsing results pertain to the initial 
version of the parser. There is still room for fur-
ther improvement. First, it would be interesting 
to integrate TT features in combination with 
other design features (e.g. rule splitting) into the 
unlexicalized parser to enhance the results. 
Moreover, TT features is likely to enhance lexi-
calized parsers too. Second, more detailed 
analysis of TT features can be conducted in dif-
ferent syntactic constructions. It is quite possi-
ble that TT features are more useful to some 
syntactic structures than others. TT features 
seem to be good cues for identifying CSs. It is 
possible to compare the outputs from parsers 
with and without TT features (e.g. P1 vs. P4). 
The contribution of TT features towards specific 
constructions can be estimated empirically. 
Third, an insight from Collins (2003) is that 
head words and their POS tags in lexicalized 

parsing can improve parsing. In unlexicalized 
models, one can use the head POS tag alone to 
approximate similar mechanism.  

6 Conclusion 

This paper has demonstrated that TT features 
give rise to substantial gain in our classifier-
based unlexicalized parser. The IT features have 
been explored as well, though the performance 
gain is more moderate. TT features can be inex-
pensively computed and flexibly incorporated 
into different types of parsers. Our parsing 
model matches early lexicalized parsing models 
in performance, and has good potential to do 
even better with adjustment and optimization. 
The statistical analysis of the treebank shows 
that TT features are effective in capturing basic 
linguistic properties, such as grammatical 
weight and branching direction, which are over-
looked in previous studies of parsing. We have 
also hinted how TT features may have reduced 
chunking errors of CSs by producing balanced 
conjuncts. Though the present study focuses on 
unlexicalized parsing, it is likely that TT fea-
tures can contribute to accuracy enhancement in 
other parsing models as well. 
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